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Abstract
Interinstitutional scientific collaboration plays an important role in knowledge production

and scientific development. Together with the increasing scale of scientific collaboration, a

few institutions that positively participate in interinstitutional scientific collaboration are

important in collaboration networks. However, whether becoming an important institution

in collaboration networks could be a contributing factor to research success and how these

important institutions collaborate are still indistinct. In this paper, we identified the sci-

entific institutions that possess the highest degree centrality as important institutions of an

interinstitutional scientific collaboration network in materials science and examined their

collaboration preferences utilizing several network measures. We first visualized the

appearance of these important institutions that had the most positive collaborations in the

interinstitutional scientific collaboration networks during the period of 2005–2015 and

found an obvious scale-free feature in interinstitutional scientific collaboration networks.

Then, we measured the advantages of being important in collaboration networks to

research performance and found that positive interinstitutional collaborations can always

bring both publication advantages and citation advantages. Finally, we identified two

collaboration preferences of these important institutions in collaboration networks—one

type of important institution represented by the Chinese Academy of Science plays an

intermediary role between domestic institutions and foreign institutions with high

betweenness centrality and a low clustering coefficient. This type of important institution

has better performance in the number of publications. The other type of important insti-

tution represented by MIT tends to collaborate with similar institutions that have positive

collaborations and possess a larger citation growth rate. Our finding can provide a better

understanding of important institutions’ collaboration preferences and have significant

reference for government policy and institutional collaboration strategies.
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Introduction

Global scientific collaboration is particularly interesting to study since it has grown at a

remarkable rate since 1990 (Adams 2012). Attempts to describe the patterns of global

scientific collaboration, in terms of who collaborates with others and how they collaborate,

have been a preoccupation of bibliometric researchers (Wagner et al. 2017). The most

commonly used approach is the bibliometric analysis of scientific co-authorship networks,

as the data can be easily and accurately extracted from publication databases (Pike 2010).

Co-authorship networks constitute an important class of social networks. A co-authorship

network is defined as a collection of individuals, each of whom is acquainted with some

subset of the others by one or more different types of relationships, such as friendship,

kinship and co-authorship. There is a substantial body of literature in information science

that addresses both co-authorship patterns (Egghe and Rousseau 1990; Melin and Persson

1996). In this paper, we constructed interinstitutional scientific collaboration networks

(ISCNs) in which two institutions are considered connected if they have co-authored a

paper in the field of materials science.

Scientific collaboration is defined by Sonnenwald as ‘‘interaction taking place within a

social context among two or more scientists that facilitates the sharing of meaning and

completion of tasks with respect to a mutually shared, superordinate goal’’ (Sonnenwald

2014). It is mainly identified by authoring records (Wuchty et al. 2007) and project records

(White 1992). Due to the development of information and communication technologies,

most of the publication records could be accessed through the Internet (Asadi et al. 2017).

Increasingly more researchers are analyzing scientific collaborations based on co-authoring

records (Bhattacharyya and Bandyopadhyay 2015; Shahadat et al. 2013) because they are

criteria to determine the structures of social networks among scholars (Fuchs 2017).

It is widely understood that collaborative activity differs by field and sector (Choi et al.

2015). Wuchty examined many fields over decades and observed growth in collaborative

activity in Physics, Environmental Science and Medicine using both article and patent

records of the Web of Science database (Wuchty et al. 2007). Furthermore, Carrington

examined collaboration networks in six fields: Physics, Biology, Environmental, Engi-

neering, Agriculture and Mathematics (Carrington et al. 2005). Taşkın and Aydinoglu

(2015) analyzed co-authored publications in astrobiology and investigated journal refer-

ences. As scientific disciplines become increasingly diversified, there also appears to be an

increasing amount of ‘‘communication’’ among various fields, thereby connecting pro-

fessionals from different research backgrounds (Mattsson et al. 2008). More recent studies

focus on interdisciplinary collaborations (Porter and Youtie 2009; Wagner et al. 2011).

Karlovčec and Mladenić (2015) investigated interdisciplinarity scientific fields and their

evolution based on a graph of project collaboration and co-authorship. Avkiran (2013)

investigated the impact of collaborative research in academic finance literature and found

that collaboration can lead to articles of high impact. Although interdisciplinary collabo-

rations were found to have a higher potential to foster research outcomes (Sigelman 2009),

to the best of our knowledge, there has been a relative lack of research on collaborations in

materials science, which is a syncretic discipline hybridizing metallurgy, ceramics, solid-

state physics, and chemistry (Kockelmans 1979).

Previous research has shown that collaboration at different levels, such as the author

level, institution level, and country level, have different characteristics (Li and Li 2015). At

the author level, Wallace showed that an increasing share of citations come from collab-

orators, as well as the collaborators of collaborators (Wallace et al. 2011). Kronegger’s
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study of researchers from four scientific disciplines was designed to understand which

kinds of incentives, perceptions and personal strategies help account for collaboration from

the perspectives of individual scientists (Kronegger et al. 2015). The researchers who

occupy different positions in the network have their own characteristics and play different

roles (Ebadi and Schiffauerova 2015). At the country level, territorial borders have become

less important in international scientific collaboration (Hoekman et al. 2010). Furthermore,

collaborations at the institutional level, which can be considered the authors’ larger social

network, have attracted much attention. Avkiran (2013) found that collaboration on high

impact articles is mostly cross-institutional. In addition, it was found that institutions with

similar research profiles were more likely to collaborate with each other (Thijs and Glänzel

2010). Notably, as the number of collaborations between two institutions increases, the

likelihood of citations between them also increases (Yan and Ding 2012). Unfortunately,

not every institution has the same importance in the scientific collaboration network, as a

small number of institutions (which we called important institutions in the network) are

very central, while many others are at the periphery (Chang and Huang 2013). For instance,

there was an obvious heterogeneity among the distribution of scientific collaboration

resources. Approximately 20% of the institutions occupied core positions and processed

80% of the collaboration relationship (Dro _zd _z et al. 2017). Owing to the special roles that

important institutions play, this paper performs further investigation to obtain more insight

into these important institutions of ISCNs in materials science.

Studying scientific collaboration networks is important not only for understanding the

entire picture of global scientific collaboration but also for uncovering the underlying

mechanisms (Barabási et al. 2001; Dorogovtsev and Mendes 2002; Ghosh et al.

2015; Newman 2001). Athen et al. (2015) found important functional information char-

acteristics of the system of scientific collaboration by examining topological structures of

co-authorship networks. Çavuşoğlu and Türker (2014) identified small-world structures in

co-authorship networks. Barabasi and Albert (1999) examined a formal model of cumu-

lative advantage in terms of preferential attachment as the driving mechanism of co-

authorship. They found a common property among many large networks: the node degrees

of each network followed a scale-free power-law distribution. The implications of scale-

free distributions have been widely used to understand scientific co-authorship networks

(Moody 2004). Furthermore, this feature was found to be a consequence of two generic

mechanisms: networks expand continuously with the addition of new nodes, and new

nodes attach preferentially to nodes that are well connected. This preferential attachment

mechanism gives superior nodes an accumulated advantage, which results in the appear-

ance of hub nodes (Said et al. 2008).

The important institutions in a scientific collaboration network describe nodes which

play an important role in structural and functional properties (Ma and Mondragón 2015).

Several traditional network centrality measures such as degree, closeness, betweenness and

PageRank have been applied in collaboration networks to estimate the importance of nodes

(Porter and Youtie 2009). Also some complex methods such as the SIR model, HITS

algorithm and structural holes theory have been used to measure the importance of nodes

(Latora et al. 2013; Zhou et al. 2018). These studies describe importance from different

perspectives (Zhou et al. 2018). In this paper, we define important institutions in interin-

stitutional scientific collaboration networks as institutions with high degree centrality in

collaboration networks. Recent research revealed that collaborations among the 100

highest-impact institutions have increased faster than those among lower-impact institu-

tions (Gazni and Thelwall 2016). They also found that the top-100 institutions cite the

papers of other top-100 institutions more than those of lower-ranked institutions, which
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indicates that they prefer to cite a narrower set of high-quality works, instead of the

research that they wrote jointly with lower-impact institutions. Similarly, Athen et al.

(2015) examined the global interconnectedness among the leading institutions, which

corresponds to the nodes with the largest degrees, i.e., the so-called hubs, by detecting the

rich-club phenomenon in the co-funding networks, and found an extremely heterogeneous

funding distribution. Notwithstanding focal interests, only a few studies have applied

network analysis to analyze the performance of important academic and research institu-

tions (Abbasi et al. 2011). However, the configuration of the interinstitutional collaboration

network in materials science remains unclear. Little attention has been given to discover

which institutions occupy prominent positions in the interinstitutional scientific collabo-

ration networks. Could becoming important in interinstitutional scientific collaboration

networks be a contributing factor toward success in research? Do these important insti-

tutions have any collaboration preference? To answer these questions, in this paper, we

first examined the heterogeneity of the ISCNs in materials science through degree distri-

bution and visualized the appearance of important institutions. Second, the research per-

formance of these important institutions’ is discovered to determine whether being

important in ISCNs can be a contributing factor toward success in research. Additionally,

MIT and the Chinese Academy of Science are shown as outliers which have better research

performance. Finally, we analyze the collaboration preference of MIT and the Chinese

Academy of Science to explain the reason for their outstanding performance.

Data and method

Constructing collaboration networks

The data were extracted from the Web of Science database, one of the largest paper citation

indices in the world. The attributes of data that were processed included the time of

publication, the institutions and the titles. All data including the above three attributes

which were indexed using the subject search ‘‘materials science’’ were downloaded. The

results contained 32,592 records published between 2005 and 2015.

In this paper, an affiliation relationship can be found between articles and institutions

which co-authored the articles. Networks constructed according to affiliation relationships

are a typical two-mode member-network (Breiger 1974) or hyper-network (Mcpherson

1982). This network is composed of a set of actors (articles) and a set of events (co-

authored institutions). According to Li et al., when there are two nodes, a and b, which
have the same relationship with c, then a and b are equivalent (Li et al. 2014). In the

interinstitutional collaboration network, the institutions that co-authored one paper are

equivalent. Therefore, we can construct a collaboration network through the co-authored

relationship. We assumed that matrix A is the primitive N 9 M matrix of the affiliation

relationships between articles and institutions. Then, we used formula (1) to obtain the

derivative N 9 N matrix X of the collaboration network. Formula (1) shows the typical

way to analyze two-mode networks and can be used to determine the number of the actors

that the two events are co-containing as well as the number of the events at which the two

actors are co-attendant (Breiger 1974). The demonstration of the constructing network is

shown in Fig. 1.

X ¼ A0 � A: ð1Þ
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Topological features of the network

Many indices can be used to analyze the topological features and evolution of scientific

collaboration networks (Abbasi et al. 2011). In this article, we chose six major indices:

degree, weighted degree, weighted degree assortativity, clustering coefficient, eigenvector

centrality and betweenness centrality.

Degree

The node degree of a node, which is given by formula (2), indicates the number of nodes

that are in contact with it (Freeman 1980). In our collaboration network, the node degree

represents the number of collaborators of the institution.

di ¼
Xn

j¼1

dij; ð2Þ

where di denotes the degree of node i; dij ¼ 1 if node i and node j have a co-relationship,

and dij ¼ 0 if node i and node j have no co-relationship. n is the total number of nodes in

the network.

Weighted degree

The weighted degree of a node, which is given by formula (3), indicates the frequency with

which this node is in contact with others (Freeman 1980). Therefore, the node weighted

degree can well represent the positivity of participating in interinstitutional scientific

collaborations.

wi ¼
Xn

j¼1

wij; ð3Þ

where wi denotes the weighted degree of node i, and wij equals the number of co-rela-

tionships between node i and node j.

In a weighted network, if nk nodes have the same weighted degree w and n is the total

number of nodes in the network, the weighted degree distribution can be defined as

p wð Þ ¼ nw=n: ð4Þ

Fig. 1 Construction of a co-authorship collaboration network at the institutional level
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Moreover, if p wð Þ�w�k 5), where k is the power-law index and w is the weighted

degree of the nodes, the weighted degree distribution satisfies the power law (Newman

2003b). Thus, most of the nodes have few connections, while a few crucial nodes have

many connections.

Weighted degree assortativity

The weighted degree assortativity indicates the extent to which institutions in the network

cooperate preferentially with other institutions with similar collaboration positivity

(weighted degree). We calculate the weighted degree assortativity by formula (6 Newman

2003a):

rw ¼
H�1

P
/ w/

Q
irF /ð Þ k

� �

i
� H�1

2

P
/ w/

P
i2F /ð Þ ki

� �� �2

H�1

2

P
/ w/

Q
irF /ð Þ ki

� �2

� H�1

2

P
/ w/

Q
i2F /ð Þ ki

� �� �2
; ð6Þ

where w/ is the weighted degree of edge / and F(/) is the pair of nodes connected by edge
/. H is the sum of the weighted degrees of all edges in the network.

Finally, r ¼ �1 when there is perfect disassortative mixing, r ¼ 0 when there is no

assortative mixing, and r ¼ 1 when there is perfect assortative mixing. In other words,

weighted degree assortativity indicates the level of homophily among institutions and their

corresponding cooperators. For instance, if the coefficient rw is equal to 1, institutions in

the network only cooperate with cooperators with the same positivity. In contrast, if rw is

equal to - 1, scientific institutions with high positivity prefer cooperating with institutions

with low positivity. Moreover, if rw is equal to 0, there are no assortative collaboration

patterns among these institutions.

Clustering coefficient

The clustering coefficient is always used to measure the connectivity of the neighbors of a

given node. We use the average clustering coefficient, which is given by formula (7), to

analyze the closeness and strength of the collaboration relationship (Goh et al. 2003).

C ¼ Cih ii¼ 2Ei=Pi pi � 1ð Þ
D E

; ð7Þ

where Ei is the number of links between the neighbors of node i, and 1
2
Pi pi � 1ð Þ is the

total number of possible links between the neighbors of node i. If the value of C is high, the

corresponding nodes in the collaboration network form a cohesive circle with a relatively

unimportant position, whereas if the value of C is low, the corresponding nodes in the

collaboration network form a circle with a relatively important position.

Betweenness centrality

The concept of betweenness centrality was first introduced by Freeman, and is defined as

‘‘the number of shortest paths (between all pairs of nodes) that pass-through a given node’’.

The betweenness centrality of a node is given by formula (8) (Freeman 1980).

CB nið Þ ¼
X

j\k

gjk nið Þ=gjk; ð8Þ
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where gjk(ni) is the number of paths through node i from node j to node k and gjk is the total

number of the paths from node j to node k.

Betweenness centrality is an indicator of the potential that a node (institution) will play

the role of a broker or gatekeeper. Such a node frequently controls the resource flows in the

collaboration network. A node with high betweenness centrality is located in a central

position.

Eigenvector centrality

Eigenvector centrality is a measure of the importance of a node in the network. This index

assigns relative scores to all nodes in the network according to the following concept:

connections to high-scoring nodes contribute more than those to the low-scoring nodes. We

use formula (9) to calculate eigenvector centrality (Bonacich and Lloyd 2001). The

institutions with high eigenvector centrality in our collaboration networks always possess

abundant collaboration resources and belong to an elite scientific collaboration circle.

Ce ið Þ ¼ k�1
Xn

j¼1

aijej; ð9Þ

where n is the total number of nodes, and A represents the adjacency matrix of the network.

If node i and node j have collaboration links with each other, aij = 1. In contrast, if node i

and node j have no collaboration link, aij = 0. k1; k2; . . .; kn are the eigenvalues of A, and

the eigenvector that corresponds to ki is a ¼ ðe1; e2; . . .; enÞ:
Nodes with high eigenvector centrality are connected to nodes that have high weighted

degree.

Results and discussion

Appearance of important institutions

We collected 32,592 publications from the period 2005–2015 from WOS (www.

webofknowledge.com), of which 10,525 were multi-institutional. The percentage of

multi-institutional publications was approximately 40% during 2005–2012, and increased

rapidly to approximately 57% in 2015, as Fig. 2 shows, which suggests an increase in

scientific collaboration in the field of materials science since 2013.

As an increasing number of multi-institutional publications appeared, scientific col-

laboration among institutions gradually became mainstream. According to Fig. 3, the scale

of the collaboration network expanded year after year. The number of nodes increased

from 4367 to 10,631, and some nodes with a very high degree or weighted degree

appeared, as shown in Fig. 4. This implies that in the field of materials science, more

institutions gradually realized the significance of collaboration and actively participated in

interinstitutional scientific collaboration. In addition, some ‘‘powerful’’ institutions allo-

cated their resources to participating in interinstitutional scientific collaboration.

Although we know that the collaboration scale has increased over time, its internal

variation is still poorly understood. Here, we exploited the node weighted degree distri-

bution, which reflects the distribution of collaboration levels, to determine the inherent

characteristics of the collaborations. As the fat tail characteristic appears in the node degree

distributions, we examined the power-law distribution of the node degree distribution

(Barabási and Albert 1999). The formation of a power-law distribution is given by
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Fig. 2 Total number of publications and the percentage of multi-institutional publications

Fig. 3 The numbers of nodes and edges of a global interinstitutional scientific collaboration network,
2005–2015
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p xð Þ� x�k. P xð Þ means the distribution of nodes degree, x means the node degree and k is

the scaling parameter. As shown in Fig. 5 and Table 1, we calculated the fitting function of

the node weighted degree distribution in log–log coordinates from 2005 to 2015. The

measure of goodness of fit (R2) was always larger than 0.85. It indicated that the nodes

degree distribution followed the power-law distribution. Various complex networks with a

power-law distribution are highly heterogeneous and perform scale-free characteristics.

Thus, these interinstitutional collaboration networks possess scale-free characteristics.

Thus, few important institutions in the network have many collaboration links, whereas

most institutions have few collaboration links; this suggests a high level of focused col-

laboration in select institutions. In addition to heterogeneity, the scale-free characteristics

of social networks indicate an expanding tendency, which supports the increasing scale of

collaboration. Another important scale-free characteristic is the preferential attachment

mechanism: in global interinstitutional scientific collaboration in materials science, new

institutions prefer to engage in interinstitutional scientific collaboration with the important

institutions. In other words, the important institutions have a catalytic effect on the

expanding collaboration scale and play an important role in promoting global interinsti-

tutional scientific collaboration (Table 1).

Advantages of being important in ISCN

In this article, important institutions are defined as the top-20 nodes in terms of degree, as

such nodes have both the largest-scale collaboration behavior and play a dominating role in

Fig. 4 Visualization of a global interinstitutional scientific collaboration network in 2005, 2009, 2012 and
2015
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structural and functional properties. However, is being a hub in an ISCN a contributing

factor toward success in research? To identify the benefits of being a hub in an ISCN, we

investigated the research performance of such institutions in terms of papers accepted each

year into the WOS core collection and h index as shown in Figs. 6 and 7. The WOS core

collection is the world’s leading scholarly literature database; the h index of a researcher is

the number of papers co-authored by the researcher with at least h citations each (Hirsch

2005). A variety of studies have shown that the h index, by and large, agrees with other

objective and subjective measures of scientific quality in a variety of different disciplines

(Bornmann and Daniel 2005; Hirsch 2005; Raan 2006). The h index, annual publications

and growth rate of citations of important institutions are shown in Table 2. First, we found

that the average number of papers accepted by the WOS core collection over 11 years is

linearly correlated with the number of times Ncore that the institutions were presented as

hubs, except for the Chinese Academy of Sciences, which has published papers that were

accepted by the WOS core collection beyond what is expected from linear behavior.

Furthermore, we referred to the h index of core institutions’ publications during 2005–2015

Fig. 5 Node weighted degree distributions in log–log coordinates

Table 1 The indices of the fitting function

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

k 1.683 1.718 1.657 1.681 1.641 1.623 1.557 1.586 1.495 1.474 1.412

R2 0.9228 0.9211 0.9022 0.939 0.9059 0.922 0.9075 0.9131 0.8797 0.8776 0.8836
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to capture the research depth. We observed that a few institutions outperformed the rest of

the institutions, which was a marked deviation from the linear behavior that was observed

at the collaboration level. Their outstanding collaboration profiles seem to enable hubs to

develop the depth of research that leads to the generation of high-quality papers.

Collaboration preferences of important institutions

For an ordinary institution, constructing collaboration links with important institutions

such as MIT is definitely a good way to develop research and expand academic reputation,

as important institutions are always bellwethers of research direction and have already

accumulated abundant resources and achievement. However, fierce competition among

important institutions with high-level impact makes their relationships much more com-

plex, although active interinstitutional scientific collaboration among important institutions

has brought numerous benefits such as more publications and higher-quality research. In

this part, we uncovered different collaboration preferences of important institutions in

ISCNs. We used four indices to describe their collaboration preferences: eigenvector

centrality, betweenness centrality, clustering coefficient and assortativity (Figs. 8, 9).

Effect of cooperators’ collaboration positivity on important institutions

The higher the eigenvector centrality is, the higher the collaboration level of one’s

cooperators is. In other words, eigenvector centrality reflects the cooperators’ collaboration

positivity. First, to examine the impact of cooperators’ collaboration positivity on citation

advantages, we fitted data on core institutions’ annual citations linearly and obtained the

slope k, which is the annual citation growth rate. Then, we examined the relationship

between the eigenvector centrality of core institutions and these institutions’ slope k.

Fig. 6 Publications accepted by the WOS core collection and N values of core institutions
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According to Fig. 8, the annual citation growth rate over these 11 years is linearly cor-

related with eigenvector centrality, except for MIT, which accumulated outstanding sci-

entific achievements and enjoyed a high reputation in the field of materials science. In

general, collaborating with active cooperators is a good collaboration strategy for impor-

tant institutions, as their cooperators’ collaboration positivity brings them obvious citation

advantages.

Two different collaboration preferences between important institutions

An institution is said to be an intermediary if it occupies an advantageous position in the

network for developing opportunities through its connections. We use the betweenness

centrality and clustering coefficient to quantify an institution’s mediating effect. In a

collaboration network, the betweenness centrality of an institution reflects the superiority

of the position that it occupies in the network. The collaboration network would crash in a

short time without the institutions with the highest betweenness centrality. In addition,

institutions with high betweenness centrality always possess abundant resources and

control the crucial points of the information flow. The clustering coefficient ranges from 0

to 1. It attains its smallest value when an institution is the center of a star, and there is no

connection between any of its partners, and it attains its largest value when an institution is

a general member in its circle, as its partners are fully connected to each other.

According to Fig. 9, institutions such as the Chinese Academy of Sciences and the

Russian Academy of Science with low clustering coefficients (less than 0.04) always have

high betweenness centrality, which means that these institutions are the center of their

circles and act as intermediaries in their collaboration networks. Although institutions such

as MIT, University of Cambridge, and University of California, Berkeley also have

Fig. 7 h-index and N values of core institutions
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relatively high betweenness centrality, they do not have dominant positions among their

cooperators with relatively high clustering coefficients (larger than 0.04).

We can easily divide these 20 important institutions into two groups. The first group

contains the Indian Inst Technol, the Chinese Acad Sci, Russian Acad Sci, CNRS and

CSIC, whose clustering coefficients are less than 0.04. We found that institutions in this

group are all nationally supported institutions. Furthermore, most of their cooperators are

from their own country, and most of their foreign partners are world-class institutions. The

other group contains Tohoku Univ, CNR, Tech Univ Dresden, Univ Cambridge, Osaka

Univ, MIT, Natl Inst Mat Sci, Georgia Inst Technol, Univ Tokyo, Oak Ridge Natl Lab,

Seoul Natl Univ, Univ Calif Berkeley, Los Alamos Natl Lab, Northwestern Univ and

Tsinghua Univ, whose clustering coefficients are larger than 0.04. Here, we chose the

Chinese Acad Sci and MIT as examples of each group, due to their outstanding research

performance and obvious difference in collaboration preference.

To make the difference clearer, we calculated the assortativity of the Chinese Acad Sci,

MIT, and the whole collaboration network, as shown in Fig. 10. Due to the extremely large

scale of the whole collaboration network, its assortativity was close to 0, which indicates

that collaboration patterns at the institutional level do not present obvious heterogeneity or

homogeneity. Surprisingly, this result is different from that obtained in research on col-

laboration at the author level (Fafchamps et al. 2010). They underlined that collaboration is

most likely between authors of similar levels of ability, which implies positive

assortativity.

Table 2 The h index, annual publications and growth of citations of important institutions

Important institutions H index Annual
publications

Growth rate of
citations

CHINESE ACAD SCI 72 67.45 372.91

MIT 56 23.00 413.65

CNRS 48 27.45 226.45

RUSSIAN ACADEMY OF SCIENCES 38 34.64 64.25

NASA 39 27.82 83.86

UNIVERSITY OF LONDON 48 26.64 108.93

UNIVERSITY OF CALIFORNIA BERKELEY 56 24.18 140.84

CNR 37 22.27 81.71

HARVARD UNIVERSITY 53 21.00 163.23

UNIVERSITY OF TEXAS SYSTEM 41 19.45 158.01

CALIFORNIA INSTITUTE OF
TECHNOLOGY

44 19.36 75.95

UNIVERSITY COLLEGE LONDON 38 16.55 66.53

LBNA 52 16.36 103.11

TSINGHUA UNIVERSITY 43 17.09 82.64

NORTHWESTERN UNIVERSITY 49 16.73 120.57

INDIA INST TECHNOL 22 8.00 28.16

CSIC 35 13.36 59.71

TOHOKU UNIV 28 14.00 39.87

UNIV CAMBRIDGE 43 18.18 73.99

OSAKA UNIV 26 13.00 35.88
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Although the weighted degree assortativity of the Chinese Acad Sci and MIT are much

lower than the average level, the Chinese Acad Sci’s weighted degree assortativity (which

is close to - 1) is much lower than that of MIT, which means the Chinese Acad Sci prefers

Fig. 8 Eigenvector and slope k of core institutions
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Fig. 9 Clustering coefficient and betweenness centrality of core institutions
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collaborating with inactive institutions to a greater degree than MIT. In addition, we

calculated the percentage of domestic collaboration and found that the Chinese Acad Sci

has more domestic collaboration links than MIT. As a national institution in China, the

Chinese Acad Sci, with large betweenness centrality and small clustering coefficient, is the

center of its collaboration circle and plays the role of an intermediary between domestic

partners and foreign world-level partners. As the Chinese Acad Sci actively collaborates

with domestic institutions, it has had an apparent catalytic effect on connecting domestic

institutions to global interinstitutional scientific collaboration and, in return, it has obtained

obvious citation advantages from its active collaboration. Moreover, the Chinese Acad Sci

has aggregated domestic research resources to keep pace with other worldwide top-level

institutions. However, MIT seems to have less interest in promoting the performance of

native institutions in the field of materials science, compared to the Chinese Acad Sci.

Although MIT has the largest number of citations almost every year, its collaboration

positivity is much lower than that of the Chinese Acad Sci. Although the Chinese Acad Sci

has many more cooperators, the average collaboration positivity of MIT’s partners is much

larger than that of the Chinese Acad Sci’s cooperators. This suggests that MIT is more

selective when choosing partners. The difference in collaboration preferences between the

two groups that we mentioned before has been made much clearer through this example.

The institutions in the same group (whose clustering coefficients are less than 0.04) as the

Chinese Acad Sci stressed their catalytic effect by acting as intermediary agents between

domestic partners and foreign top-level institutions, while the other group (whose clus-

tering coefficients are larger than 0.04) paid more attention to their own development by

collaborating with high-impact cooperators.

The different collaboration preferences between these two groups can be explained very

well by previous research. Kronegger identified the main factors driving collaboration at

two levels: research-policy-related external factors and internal factors affecting the

motivations of scientists regarding compatibility, cultural proximity and academic
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excellence (Kronegger et al. 2015). Institutions in the first group, which contains the

Chinese Acad Sci, are more likely to be affected by external factors, as they are influenced

by their national research policy to pay more attention to supporting the domestic devel-

opment of materials science research. In contrast, institutions in the other group are more

likely to be affected by internal factors; however, the factors that affect their collaboration

preferences, such as compatibility, cultural proximity and academic excellence, require

future research.

Conclusion

In this paper, we constructed 11 interinstitutional scientific collaboration networks based

on co-authorship over 11 years to gain insight into important institutions in the field of

materials science. Although the scale of institutional scientific collaboration networks is

becoming larger, the networks still have apparent heterogeneity and fit a power-law dis-

tribution with high goodness of fit. The institutions with high degree which we called

important institutions over-attracted a large number of co-authorships. Furthermore, we

used the number of publications and the h index to represent these institutions’ research

performance and found an apparent positive correlation between research performance and

the number of times of being important. Becoming important in the collaboration network

is truly a contributing factor to research success. In addition, among these institutions, two

institutions—the Chinese Academy of Science and MIT are important institutions through

all time periods and have outstanding research performance exceeding the linear behavior.

The Chinese Academy of Science had the largest number of publications accepted by the

Web of Science Core collection. The Chinese Academy plays an intermediary role

between domestic institutions with low degrees and foreign top-level institutions with high

betweenness centrality and a low clustering coefficient. MIT has the largest growth of

citations and large eigenvector centrality which means its cooperators have a relatively

high collaboration positivity. In contrast with the Chinese Academy of Science, MIT has a

relatively high assortativity which means it prefers collaborating with the positive insti-

tutions with high degree. It may be the possible reason for MIT’s larger citation growth

rate.

There is still some work needed to improve our study. On the one hand, we merely use

co-authoring records to identify scientific collaboration limited to the availability of data.

On the other hand, we discovered the difference between two types of important institu-

tions in interinstitutional scientific collaboration networks. In future research, we aim to

further uncover the differences in collaboration preference among elite institutions and

establish an econometric model to determine the reason for the difference.
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