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Abstract
This study explores the extent to which bibliometric indicators based on counts of highly-

cited documents could be affected by the choice of data source. The initial hypothesis is

that databases that rely on journal selection criteria for their document coverage may not

necessarily provide an accurate representation of highly-cited documents across all subject

areas, while inclusive databases, which give each document the chance to stand on its own

merits, might be better suited to identify highly-cited documents. To test this hypothesis, an

analysis of 2515 highly-cited documents published in 2006 that Google Scholar displays in

its Classic Papers product is carried out at the level of broad subject categories, checking

whether these documents are also covered in Web of Science and Scopus, and whether the

citation counts offered by the different sources are similar. The results show that a large

fraction of highly-cited documents in the Social Sciences and Humanities (8.6–28.2%) are

invisible to Web of Science and Scopus. In the Natural, Life, and Health Sciences the

proportion of missing highly-cited documents in Web of Science and Scopus is much

lower. Furthermore, in all areas, Spearman correlation coefficients of citation counts in

Google Scholar, as compared to Web of Science and Scopus citation counts, are

remarkably strong (.83–.99). The main conclusion is that the data about highly-cited

documents available in the inclusive database Google Scholar does indeed reveal signifi-

cant coverage deficiencies in Web of Science and Scopus in several areas of research.

Therefore, using these selective databases to compute bibliometric indicators based on

counts of highly-cited documents might produce biased assessments in poorly covered

areas.
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Introduction

The issue of database selection for calculating bibliometric indicators

It has been proposed that bibliometric indicators based on counts of highly-cited docu-

ments are a better option for evaluating researchers than using indicators such as the

h-index (Bornmann and Marx 2014; Leydesdorff et al. 2011). A recent discussion held

within the journal Scientometrics brought up this issue once again (Bornmann and Ley-

desdorff 2018).

It is known that database selection affects the value that a bibliometric indicator takes

for a given unit of analysis (Archambault et al. 2006; Bar-Ilan 2008; Frandsen and

Nicolaisen 2008; Meho and Yang 2007; Mongeon and Paul-Hus 2016). These differences

are sometimes caused by diametrically opposed approaches to document indexing:

indexing based on journal selection (Web of Science, Scopus), or inclusive indexing based

on automated web crawling of individual academic documents (Google Scholar, Microsoft

Academic, and other academic search engines). For an exhaustive commentary and bib-

liography on studies that compare the coverage and bibliometric indicators available in the

previously mentioned databases (especially for studies that involve Google Scholar), we

refer to Halevi et al. (2017), and Orduna-Malea et al. (2015). Lastly, Delgado López-Cózar

et al. (2018) presents a detailed summary of all studies published to date that discuss the

differences between Google Scholar, Web of Science, and Scopus in terms of coverage and

bibliometric indicators, and the correlations of citation-based indicators at various levels of

aggregation.1

Using databases in which document coverage depends on journal selection criteria

(selective databases) to calculate indicators based on counts of highly-cited documents

could produce biased assessments. This is because documents other than those published in

journals selected by these databases could also become highly-cited. These documents

could be books, reports, conference papers, articles published in non-selected journals…
which could very well meet the same quality criteria as the documents covered in selective

databases. Because it is not possible to predict which documents are going to become

highly-cited before they are published, an inclusive database that gives each document the

chance to stand on its own merit (Acharya 2015), might in theory provide a better coverage

of highly-cited documents than a selective database where document coverage is con-

stricted to specific sources selected beforehand.

Compounded with the previous issue, there is the fact that Web of Science and Scopus,

the most widely used selective databases for bibliometric analyses, are known to have poor

coverage of areas in which research often has a local projection such as the Social Sciences

and Humanities (Mongeon and Paul-Hus 2016), as well as a bias against non-English

publications (Chavarro et al. 2018; van Leeuwen et al. 2001). This goes against the

principle of protecting ‘‘excellence in locally relevant research’’ in the Leiden Manifesto

(Hicks et al. 2015).

There is evidence to show that highly-cited documents are not only being published in

elite journals. Acharya et al. (2014) found that, according to data from Google Scholar, the

number of highly-cited documents published in non-elite journals had significantly grown

between 1995 and 2013. They posited that this change was made possible by web search

and relevance rankings, which meant that nowadays ‘‘finding and reading relevant articles

1 Supplementary material to book chapter containing summary tables already available at: https://doi.org/
10.17605/OSF.IO/PQR53.
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in non-elite journals is about as easy as finding and reading articles in elite journals’’,

whereas before web search, researchers were mostly limited to what they could browse in

physical libraries, or to systems that only presented results in reverse chronological order.

Martı́n-Martı́n et al. (2014) carried out an analysis of 64,000 highly-cited documents

according to Google Scholar, published between 1950 and 2013. In this exploratory study

they found that 49% of the highly-cited documents in the sample were not covered by the

Web of Science. They also found that at least 18% of these 64,000 documents were books

or book chapters (Martı́n-Martı́n et al. 2016).

Google Scholar’s Classic Papers

Since June 14th 2017, Google Scholar started providing a new service called Classic

Papers2 which contains lists of highly-cited documents by discipline. Delgado López-

Cózar et al. (2017) explored the strengths and limitations of this new product.

The current version of Google Scholar’s Classic Papers displays 8 broad subject cat-

egories. These broad categories contain, in total, 252 unique, more specific subject cate-

gories. Each specific subject category (from here on called subcategory) contains the top 10

most cited documents published in 2006. These documents meet three inclusion criteria:

they presented original research, they were published in English, and by the time of data

collection (May 2017, and therefore at least 10 years after their publication), they had at

least 20 citations. Documents appear to have been categorized at the article level, judging

by the fact that articles in multidisciplinary journals such as Nature, Science, or PNAS are

categorized according to their respective topics. ‘‘Appendix’’ provides a high-level com-

parison of how Google Scholar, Web of Science, and Scopus classify this sample of

documents.

Despite the fact that, in line with Google Scholar’s usual lack of transparency, there are

many unanswered methodological questions about the product, like how the subject cat-

egorization at the document level was carried out, this dataset could shed some light on the

differences in coverage of highly-cited documents in Google Scholar, Web of Science, and

Scopus. The results may provide evidence of the advantages and disadvantages of selective

databases and inclusive databases for the specific purpose of finding highly-cited

documents.

Research questions

This study aims to answer the following research questions:

RQ1. How many highly-cited documents according to Google Scholar are not covered by

Web of Science and Scopus? Are there significant differences at the level of subject

categories?

RQ2. To the extent that coverage of highly-cited documents in these databases overlaps,

are citation counts in Google Scholar similar in relative terms (rank orders) to those

provided by Web of Science and Scopus?

RQ3. Which, out of Google Scholar, Web of Science, and Scopus, gives the most

citations for highly-cited documents? Are there significant differences at the level

of subject categories?

2 https://scholar.googleblog.com/2017/06/classic-papers-articles-that-have-stood.html.
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Methods

In order to carry out the analysis, we first extracted all the information available in Google

Scholar’s Classic Papers. For this purpose, a custom script was developed which scraped

all the relevant information, and saved it as a table in a spreadsheet file. The information

extracted was:

• Broad subject categories and subcategories.

• Bibliographic information of the documents, including:

• Title of the document, and URL pointing to the Google Scholar record for said

document.

• Authors (including URL to Google Scholar Citations profile when available), name

of the publication venue, and year of publication.

• Name and URL to Google Scholar Citations profile of showcased author (usually

the first author, or the last author if the first doesn’t have a public profile).

• Number of citations the document had received when the product was developed

(May 2017).

A total of 2515 records were extracted. All subcategories display the top 10 most cited

documents, except the subcategory French Studies, in which only 5 documents were found

with at least 20 citations.

Once the data from Classic Papers had been extracted, we proceeded to check how

many of those 2515 documents were also covered by Web of Science Core Collection, and

Scopus. To do this, we used the metadata embedded in the URL that pointed to the Google

Scholar record of the documents. In most cases, this URL contained the DOI of the

document. Those DOIs were manually searched in the respective web interfaces of the

other two databases, making sure that the documents that were found were actually the

ones that were searched. In the cases when a DOI wasn’t available in the URL provided by

Google Scholar (only 105 records out of 2515), and also when the DOI search wasn’t

successful, the search was conducted using the title of the document. If the document was

found, its local ID in the database (the accession number in Web of Science, and the EID in

Scopus), as well as its citation count was appended to the original table extracted from

Classic Papers. For the documents that were not found, the cause why the document was

not available was identified. The reasons identified were:

• The source (journal/conference) is not covered by the database.

• Incomplete coverage of the source (only some volumes or issues were indexed). A

special case of this is when the source wasn’t being indexed in 2006, but it started being

indexed at a later date.

• The document has not been formally published: for the few cases (4) in which reports

or preprints that were not eventually published made the list of highly-cited documents.

Data collection was carried out in June 2017, shortly after Classic Papers was launched.

At the moment of writing this piece, searches in Web of Science and Scopus were carried

out again to double-check that there had been no changes. It turned out that 2 additional

documents were found in the Web of Science, and 7 additional documents were found in

Scopus. These documents were not added to the sample, because by the time of the second

search, they had had almost one additional year to accumulate citations and therefore

comparisons of citation counts between sources would have not been fair.
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Lastly, in order to clean the bibliographic information extracted from Google Scholar,

which often presented incomplete journal or conference titles, we extracted the biblio-

graphic information from CrossRef and DataCite using the available DOIs and content

negotiation. For the cases when no DOI was available, the information was exported from

Scopus, or added manually (mostly for the 79 documents which were not available in

either of the databases).

To answer RQ1, the proportions of highly-cited documents in Google Scholar that were

not covered in Web of Science and/or Scopus were calculated at the level of broad subject

categories. Additionally, the most frequent causes why these documents were not covered

are provided.

To answer RQ2, Spearman correlation coefficients of citation counts were calculated

between the pairs of databases Google Scholar/Web of Science, and Google Scholar/

Scopus. Correlation coefficients are considered useful in high-level exploratory analyses to

check whether different indicators reflect the same underlying causes (Sud and Thelwall

2014). In this case, however, the goal is to find out whether the same indicator, based on

different data sources, provides similar relative values. Spearman correlations were used

because it is well-known that the distributions of citation counts and other impact-related

metrics are highly skewed (De Solla Price 1976).

To answer RQ3, the average log-transformed citation counts for the three databases

were calculated at the level of broad subject categories, and the normal distribution for-

mula was used to calculate 95% confidence intervals for the log-transformed data (Thel-

wall 2017; Thelwall and Fairclough 2017).

The raw data, the R code used for the analysis, and the results of this analysis are openly

available (Martı́n-Martı́n et al. 2018).

Results

RQ1. How many highly-cited documents according to Google Scholar are not covered by

Web of Science and Scopus? What are the differences at the level of subject categories?

Out of the 2515 documents displayed in Google Scholar’s Classic Papers, 208 (8.2%) were

not covered in Web of Science, and 87 (3.4%) were not covered in Scopus. In total, 219

highly-cited documents were not covered either by Web of Science or Scopus. Among

these, 175 of them were journal articles, 40 were conference papers, one was a report, and

three were preprints. Regarding these preprints, all three are in the area of Mathematics. As

far as we could determine, a heavily modified version of one of the preprints was published

in a journal 2 years after the preprint was first made public, but the other two preprints

have not been published in journals.

Significant differences in coverage were found across subject categories (Table 1). The

areas where there are more highly-cited documents missing from Web of Science and

Scopus are Humanities, Literature & Arts (28.2% in Web of Science, 17.1% in Scopus),

and Social Sciences (17.5% in Web of Science, and 8.6% in Scopus). Moreover, Web of

Science seems to be missing many highly-cited documents from Engineering and Com-

puter Science (11.6%), and Business, Economics & Management (6.0%). The coverage of

these last two areas in Scopus seems to be better (2.5% and 2.7% missing documents,

respectively).

Among the causes why some highly-cited documents were not covered in Web of

Science and/or Scopus (Table 2), the most frequent one is that the journal or conference
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where the document was published was not covered in these databases in 2006, but it

started been indexed at a later date (56% of the missing documents in Web of Science, and

49% of the missing documents in Scopus). Web of Science and Scopus do not practice

backwards indexing except in special cases like the Emerging Sources Citation Index

Backfile for documents published between 2005 and 2014, released on October 2017 and

sold separately (Clarivate Analytics 2017). Thus, documents published in journals before

they are selected are missing from the databases.

RQ2. To the extent that coverage of highly-cited documents in these databases overlaps,

are citation counts in Google Scholar similar in relative terms (rank orders) to those

provided by Web of Science and Scopus?

If we focus exclusively in the documents that were covered both by Google Scholar and

Web of Science, or by Google Scholar and Scopus, we find that the correlation coefficients

are, in both cases, remarkably strong (Table 3).

Table 1 Number of highly-cited documents in Google Scholar that are not covered by Web of Science and/
or Scopus, by broad subject areas

Subject category N Not in WoS % Not in Scopus %

Humanities, Literature & Arts 245 69 28.2 42 17.1

Social Sciences 510 89
(J: 88, R: 1)

17.5 44
(J: 43, R: 1)

8.6

Engineering & Computer Science 570 66
(J: 26, C: 40)

11.6 14
(J: 10, C: 4)

2.5

Business, Economics & Management 150 9 6.0 4 2.7

Health & Medical Sciences 680 19 2.8 2 .3

Physics & Mathematics 230 5
(J: 2, P: 3)

2.2 4
(J: 1, P: 3)

1.7

Life Sciences & Earth Sciences 380 2
(J: 1, R: 1)

.5 2
(J: 1, R: 1)

.5

Chemical & Material Sciences 170 0 0 0 0

Unless otherwise specified, all missing publications are journal papers

J journal paper, C conference paper, P preprint, R report

Table 2 Causes of highly-cited documents not being indexed in Web in Science and/or Scopus

The journal/conference where the document was published… Web of Science
(N = 208)

% Scopus
(N = 87)

%

… was not covered in 2006, but it was added at a later date (no
backwards indexing)

117 56 43 49

… was being indexed in 2006, but coverage is incomplete
(some volumes or issues are missing)

50 24 12 14

… is not covered by the database 37 18 29 33

The document is not formally published 4 2 4 5
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The weakest correlations of citation counts between Google Scholar and Web of Sci-

ence are found in Engineering & Computer Science (.83), Humanities, Literature & Arts

(.84), Social Sciences (.86), and Business, Economics & Management (.89), but even these

are strong. Between Google Scholar and Scopus, correlations are even stronger than

between Google Scholar and Web of Science in all cases. The weakest one is also found in

the Humanities, Literature & Arts (.89). In the rest of the subject categories, the correla-

tions are always above .90, reaching their highest value in Chemical & Material Sciences

(.99).

RQ3. Which, out of Google Scholar, Web of Science, and Scopus, gives the most cita-

tions for highly-cited documents?

Citation counts of highly-cited documents in Google Scholar are higher than citation

counts in Web of Science and Scopus in all subject categories (Fig. 1). Furthermore, the

differences are statistically significant in all subject categories. They are larger in Business,

Economics & Management, Social Sciences, and Humanities, Literature & Arts. The

smallest difference that involves Google Scholar is found in Chemical & Material Sci-

ences, where the lower bound of the 95% confidence interval for Google Scholar citation

counts is closest to the higher bound of the confidence intervals for Scopus and Web of

Science data.

If we look at the differences between Web of Science and Scopus, we observe that,

although the average of log-transformed citation counts is always higher in Scopus, the

differences are statistically significant in only 4 out of 8 subject categories: Engineering &

Computer Science, Health & Medical Sciences, Humanities, Literature & Arts, and Social

Sciences. Even in these areas, the confidence intervals are very close to each other.

Table 3 Spearman correlation coefficients of citation counts between Google Scholar and Web of Science,
and Google Scholar and Scopus, for highly-cited documents according to Google Scholar published in 2006,
by broad subject categories

Subject category GS-WoS GS-Scopus

N Spearman corr. N Spearman corr.

Humanities, Literature & Arts 176 .84 203 .89

Social Sciences 421 .86 466 .91

Engineering & Computer Science 504 .83 556 .92

Business, Economics & Management 141 .89 146 .92

Health & Medical Sciences 661 .94 678 .95

Physics & Mathematics 225 .93 226 .94

Life Sciences & Earth Sciences 378 .97 378 .98

Chemical & Material Sciences 170 .99 170 .99

Confidence level: 95%

p values\ .0001
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Limitations

Google Scholar’s Classic Papers dataset suffers from a number of limitations to study

highly-cited documents (Delgado López-Cózar et al. 2017). An important limitation is the

arbitrary decision to only display the top 10 most cited documents in each subcategory,

when it is well-known that the number of documents published in any given year greatly

varies across subcategories. Moreover, the dataset only includes documents written in

English which presented original research, and published in 2006. Nevertheless, these 10

documents should be well within the limits of the top 10% most cited documents suggested

by Bornmann and Marx (2014) to evaluate researchers, even in the subcategories with the

smallest output. Further studies could analyze whether similar effects are also found for

non-English documents, and documents published in years other than 2006.

For this reason, the set of documents used in this study can be considered as an

extremely conservative sample of highly-cited documents. Thus, negative results in our

analysis (no missing documents in Web of Science or Scopus), especially in subcategories

with a large output, should not be considered conclusive evidence that these databases

cover most of the highly-cited documents that exist out there. On the other hand, positive

results (missing documents in Web of Science or Scopus) in this highly exclusive set

should put into question the suitability of these databases to calculate indicators based on

counts of highly-cited documents, especially in some areas.

Another limitation of this study is that, although it analyzes how many highly-cited

documents in Google Scholar are not covered by Web of Science and Scopus, it does not

carry out the opposite analysis: how many highly-cited documents in Web of Science and

Scopus are not covered by Google Scholar. This analysis deserves its own separate study,

but as a first approximation, we can consider the results of a recent working paper (Martı́n-

Martı́n et al. 2018) in which a sample of 2.6 million documents covered by Web of Science

Fig. 1 Average log-transformed citation counts of highly-cited documents according to Google Scholar
published in 2006, based on data from Google Scholar, Web of Science, and Scopus, by broad subject
categories
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where searched in Google Scholar. The study found that 97.6% of all articles and reviews

in the sample were successfully found in Google Scholar. Also, it is worth noting that this

study only searched documents in Google Scholar using their DOI, and made no further

efforts to find documents that were not returned by this type of search. Therefore, it is

reasonable to believe that most or all the documents covered by Web of Science are also

covered by Google Scholar.

Discussion and conclusions

The results of this study demonstrate that, even when only journal and conference articles

published in English are considered, Web of Science and Scopus do not cover a significant

amount of highly-cited documents in the areas of Humanities, Literature & Arts (28.2% in

Web of Science, 17.1% in Scopus), and Social Sciences (17.5% in Web of Science, and

8.6% in Scopus). Additionally, a significant number of documents in Engineering &

Computer Science, and Business, Economics & Management are also invisible to the Web

of Science. In the case of Computer Science the cause is that Web of Science did not cover

as many conference proceedings as Google Scholar and Scopus, even though this type of

publication is an important part of the literature in this field. Therefore, bibliometric

indicators based on counts of highly-cited documents that use data from these two data-

bases may be missing a significant amount of relevant information.

Spearman correlation coefficients of citation counts based on Google Scholar and Web

of Science, and Google Scholar and Scopus, for the 8 broad subject categories used in this

study are remarkably strong: from .83 in Business, Economics & Management (GS-WoS),

to .99 in Chemical & Material Sciences (both GS-WoS, and GS-Scopus). This evidence

matches the results found in other studies (Delgado López-Cózar et al. 2018; Moed et al.

2016), and is a step towards dispelling doubts about the possibility that documents that are

highly-cited in Google Scholar but are not covered by Web of Science and/or Scopus are

merely the product of unreliable citation counting mechanism in the search engine.

Therefore, the notion that Google Scholar citation counts are unreliable at the macro level

(Bornmann et al. 2009) does not seem to hold anymore. Although coverage of fields such

as Chemistry in Google Scholar may have been poor in the past (Orduña-Malea et al. 2016;

Vine 2006), that issue seems to have been solved, as Harzing (2013) already reported, and

as this study confirms.

Also, although it is well-known that Google Scholar contains errors, such as duplicate

documents and citations, incomplete and incorrect bibliographic information (Delgado

López-Cózar et al. 2018; Orduna-Malea et al. 2017), and that it is easy to game citation

counts because document indexing is not subjected to quality control (Delgado López-

Cózar et al. 2014), these issues seem to have no bearing on the overall values of the citation

counts of highly-cited documents. Further studies are needed to check whether these

correlations hold for larger samples of documents. If that is the case, it would no longer be

justified to dismiss Google Scholar’s citation counts as unreliable on account of the bib-

liographic errors present in this source, at least in macro-level studies.

Lastly, Google Scholar is shown to provide significantly higher citation counts than

Web of Science and Scopus in all 8 areas. Business, Economics & Management, Hu-

manities, Literature & Arts, and Social Sciences are the areas where the differences are

larger. Previous studies also pointed in this direction (Garcı́a-Pérez 2010; Levine-Clark and

Gil 2008; Meho and Yang 2007; Mingers and Lipitakis 2010). This indirectly points to the

existence of a much larger document base in Google Scholar for these areas of research,
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and provides a reasonable explanation for the weaker Spearman correlation coefficients of

citation counts in these areas. Further studies could focus on identifying the sources of the

citing documents. Some studies have already analysed citing documents (sources, docu-

ment types, languages, unique citations) in Google Scholar and compared them to the

citations found by Web of Science and Scopus (Bar-Ilan 2010; de Winter et al. 2013;

Kousha and Thelwall 2008; Meho and Yang 2007; Rahimi and Chandrakumar 2014).

These studies reported that after journal articles, a large proportion of the citations found

only by Google Scholar came from conference papers, dissertations, books, and book

chapters. However, these studies focused on specific case studies, and most of them were

carried out more than 5 years ago. Therefore, an updated, in-depth, multi-discipline

analysis of the sources of citations in Google Scholar (that examines aspects such as

document types, languages, peer-review status…), as compared to other citation databases

like Web of Science and Scopus is now warranted, and could further elucidate the suit-

ability of each platform as sources of data for different kinds of bibliometric analyses.

All this evidence points to the conclusion that inclusive databases like Google Scholar

do indeed have a better coverage of highly-cited documents in some areas of research than

Web of Science (Humanities, Literature & Arts, Social Sciences, Engineering & Computer

Science, and Economics & Management) and Scopus (Humanities, Literature & Arts, and

Social Sciences). Therefore, using these selective databases to compute bibliometric

indicators based on counts of highly-cited documents might produce biased assessments in

those poorly covered areas. In the other areas (Health & Medical Sciences, Physics &

Mathematics, Life Sciences & Earth Sciences, Chemical & Material Sciences) all three

databases seem to have similar coverage and citation data, and therefore the selective or

inclusive nature of the database in these areas does not seem to make a difference in the

calculation of indicators based on counts of highly-cited documents.

Google Scholar seems to contain useful bibliographic and citation data in the areas

where coverage of Web of Science and Scopus is deficient. However, although there is

evidence that it is possible to use Google Scholar to identify highly-cited documents

(Martin–Martin et al. 2017), there are other practical issues that may discourage the choice

of this source: lack of detailed metadata (for example, author affiliations, funding

acknowledgements are not provided), or difficulty to extract data caused by the lack of an

API (Else 2018). As is often the case, the choice of data source presents a trade-off

(Harzing 2016). The suitability of each database (selective or inclusive) therefore depends

on the specific requirements of each bibliometric analysis, and it is important that

researchers planning to carry out these analyses are aware of these issues before making

their choices, because these assessments often have direct consequences on the careers of

individual researchers (hiring, promotion, or funding decisions) or institutions (university

rankings).
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Appendix: top 5 most common subject categories assigned by Web
of Science and Scopus to highly-cited documents in Google Scholar,
by Google Scholar broad subject categories

Google Scholar category: Humanities, Literature
& Arts

Google Scholar category: Social Sciences

Web of Science
categories (176 docs.)

Scopus categories (203
docs.)

Web of Science
categories (421
docs.)

Scopus categories (466
docs.)

Area Studies (24)
Linguistics (21)
Psychology (18)
Literature (17)
Social Sciences—

Other Topics (16)

Arts and Humanities
(138)

Social Sciences (127)
Psychology (17)
Economics,
Econometrics and
Finance (11)

Medicine (7)

Psychology (58)
Education &
Educational Research
(57)

Business &
Economics (56)

Government & Law
(48)

Social Sciences—
Other Topics (32)

Social Sciences (285)
Arts and Humanities (97)
Medicine (76)
Psychology (69)
Economics, Econometrics
and Finance (49)

Google Scholar category: Business, Economics &
Management

Google Scholar category: Engineering & Computer
Science

Web of Science
categories (141 docs.)

Scopus categories (146
docs.)

Web of Science
categories (504
docs.)

Scopus categories (556
docs.)

Business &
Economics (113)

Social Sciences—
Other Topics (20)

Public Administration
(12)

Environmental
Sciences & Ecology
(9)

Science &
Technology—Other
Topics (6)

Business, Management
and Accounting (87)

Economics,
Econometrics and
Finance (70)
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Web of Science
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Web of Science
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docs.)
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docs.)
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Mathematics (73)
Science &

Technology—Other
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Engineering (21)
Mechanics (17)
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General (31)
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Computer Science (25)

General & Internal
Medicine (170)
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Technology—Other
Topics (80)

Surgery (53)
Neurosciences &
Neurology (36)

Psychology (24)
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Biochemistry, Genetics
and Molecular Biology
(73)

Social Sciences (32)
Nursing (32)
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