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Abstract
We consider the three interesting problems posed by the CL-SciSumm series of shared

tasks. Given a reference document D and a set CD of citances for D: (1) find the span of

reference text that corresponds to each citance c 2 CD, (2) identify the facet corresponding

to each span of reference text from a predefined list of five facets, and (3) construct a

summary of at most 250 words for D based on the reference spans. The shared task

provided annotated training and test sets for these problems. This paper describes our

efforts and the results achieved for each problem, and also a discussion of some interesting

parameters of the datasets, which may spur further improvements and innovations.
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Introduction

The main goal of the CL-SciSumm 2017 Shared Task (Jaidka et al. 2017) was automated

summarization of scientific articles from the computational linguistics domain. We are

given a reference document D to be summarized along with a set of citances CD—each

sentence c 2 CD cites document D. The goal is to create a summary of D that is driven by

the citances in CD. While there has been considerable research in single document sum-

marization techniques (Barrera and Verma 2012; Gambhir and Gupta 2017; Verma and

Lee 2017)—the task evaluates the role of citances in generating informative summaries of

a paper. This is interesting since a citance can give considerable insight about the purpose

and content of the scientific article being summarized, from the viewpoint of the per-

son(s) citing the paper.

For CL-SciSumm 2017, the entire shared task has been split into three subtasks. Given a

reference document D and a set CD of citances for D:

• Task 1A: For each citance c 2 CD, extract the span of reference text,1 SR(c), that
provides the most information about the citation.2

• Task 1B: Classification of each SR(c) according to a predefined set of facets: Aim,

Method, Hypothesis, Implication, and Results.

• Task 2: Generate a summary of at most 250 words for D based on all the SR(c)’s

(c 2 CD).

We participated in the shared task and our initial results are presented in Karimi et al.

(2017). In this paper, we expand upon our methods and experiments and study the problems

and datasets in more detail. We present several methods for Tasks 1A and 1B and a simple

approach for Task 2.We evaluate the proposedmethods on a dataset of scientific articles from

the Computational Linguistics domain. This dataset contained 30 documents for training and

10 documents for testing. A detailed description of this dataset is given in ‘‘Datasets’’ section.

For Task 1A, to identify SR(c), we experimented with a number of approaches:

structural correspondence learning (SCL), positional language model (PLM), and textual

entailment (TE) with two entailment systems.

Each approach returns a score for the sentence in D. The sentences in D are then ranked

in non-ascending order by their scores and the top three sentences from D are selected as

SR(c). It is challenging to extract just three sentences relevant to a citance from the entire

document consisting of hundreds of sentences. Therefore, we also used combinations of the

basic approaches and a learning to rank approach to retrieve the best set of sentences to

construct SR(c).

We employ SCL modeling technique to learn a joint representation of domains repre-

sented by CD and sentences of D. The second method is a positional language model that

leverages proximity information of D to modulate relevance, given a citance c 2 CD. We

also studied the measure of textual entailment existing between citance c and each sentence
s from D—a positive entailment between c and s may imply that s 2 SRðcÞ. We ranked the

top sentences extracted by the systems to get the most relevant ones. LambdaRank (Burges

2010) appeared to be one of the best ranking algorithms.

For the facet classification task (Task 1B), we present two methods: a Rule-based
method augmented by WordNet expansion, a Machine learning based method using five

1 A short piece of text from D.
2 I.e. what specific information has been cited.
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classifiers: SVMs, random forests, decision trees, multi-layer perceptron, and AdaBoost.

TFIDF features are used to train the classifiers.

Our approach to Task 2 is simply to sort all the sentences in all the SR(c)’s (for all

c 2 CD) in the order in which they appear in the document, and then truncate to 250 words.

On Task 1A, the performance of our methods differed considerably on the training and

test sets. This provided yet another motivation for us to conduct an analysis of the training

and test sets. We believe that this analysis is of independent interest as well.

The rest of the paper is organized as follows. ‘‘Preliminaries’’ section presents the

definitions and background for the paper. In ‘‘Related work’’ section we present the rel-

evant related work. ‘‘Task 1A: Reference span detection’’, ‘‘Task 1B: Facet detection’’ and

‘‘Task 2: Summary generation’’ sections present our methods for Tasks 1A, 1B, and 2

respectively. ‘‘Datasets’’ section describes the dataset for CL-SciSumm 2017, our analysis

of its characteristics, and our results. ‘‘Discussion’’ section gives our perspectives on the

results and ‘‘Conclusion’’ section concludes the paper.

Preliminaries

This section gives a brief description of the terms that have been used throughout the

paper.

Cosine similarity A similarity measure between two non-zero vectors A and B is given

by the cosine of the angle between them, say h. Equation 1 gives the formula for calcu-

lating cosine similarity.

SimilarityðA;BÞ ¼ cos h ¼ A � B
kAk�kBk ð1Þ

TFIDF Term frequency-inverse document frequency (Manning et al. 2008) is a popular

term weighting method used for selecting the important words across a corpus of textual

documents. It ranks words by rewarding them based on their frequency in one document

and penalizes the words if they appear across all documents. The method is originally

directed towards extraction of documents from a corpus as opposed to extraction of sen-

tences from a document.

For the purpose of our task, we adjust the metric to calculate the scores based on

sentence-level granularity in a document as opposed to document-level granularity in a

corpus. In other words, we use the frequencies of words in a sentence. Thus the ‘‘corpus’’

in our scenario refers to the entire document. The term frequency (tfwi
) refers to the

frequency of the word (wi) in the sentence. The inverse ‘‘document’’ frequency (idf wi
) is

calculated using the number of sentences that contain the word (wi) in the same document.

A sentence S is a collection of word frequencies given by Eq. 2, where N is the number of

sentences in the document containing S and dfwi
denotes the number of sentences con-

taining wi in that document.

S ¼ hs1; s2; s3; . . .; sni where si ¼ tfwi
� idf wi

ð2Þ

idf wi
¼ logðN=dfwi

Þ ð3Þ

LDA Latent Dirichlet allocation (LDA) (Blei et al. 2003) is a generative method used for

topic detection of a document. While topics in a corpus follow a symmetric Dirichlet

distribution, terms in the corpus are assumed to follow a multinomial distribution.
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Therefore, the parameters learned from the corpus can be used to determine the topic

distribution of terms in a corpus—thus generating the topics of the document. We refer to

Eq. 4, where LDA is a measure of topic membership of a sentence S to a topici. The topic

membership vector is used to compare with cosine similarity values.

S ¼ hs1; s2; s3; . . .; sni where si ¼ PðS 2 topiciÞ ð4Þ

F1-score F1-score is the harmonic mean of precision and recall.

Precision is the proportion of correct results among the results that were returned. And

recall is the proportion of correct results among all possible correct results. Our system

outputs the top 3 sentences and we compute recall, precision, and F1-score using these

sentences. If a relevant sentence appears in the top 3, then it factors into recall, precision,

and F1-score. Whenever we present the F1-score on a set of documents, we calculate it

through micro-averaging, i.e. averaging among all instances, instead of averaging the F1-

score obtained for each document.

SVM Support vector machines (SVMs) (Cortes and Vapnik 1995) is a discriminative

classification method. SVM is a supervised classifier used to linearly classify between data

instances even in high dimensional spaces. We use support vector machines for our

machine learning based approach in facet detection (‘‘Machine learning approach’’ sec-

tion). The SVM model was trained on the training set of reference documents and tested on

the given Test set. We use the Scikit-learn python library for the implementation.

RandomForest RandomForest (Breiman 2001) constructs a multitude of decision trees.

It uses majority voting across the outputs of the individual trees during classification for the

final class decision. The decision trees are usually constructed using a random subset of

features from the entire feature list. We use the python Scikit-learn library to build our

RandomForest classifier for the supervised facet classification in ‘‘Machine learning

approach’’ section. In the Machine learning based method experiments for Task 1B, the

default values of the parameters are used. The number of trees in the forest is 10, Gini
impurity is used as the function to measure the quality of a split and nodes are expanded

until all leaves are pure or until all leaves contain less than two samples.

Decision trees Decision tree (Quinlan 1986) is used as a non-parametric supervised

classifier to create a robust model that predicts the class of a test instance by learning

simple decision rules inferred from the given set of attributes. Similar to the previous

machine learners, we use decision trees for facet classification in ‘‘Machine learning

approach’’ section. The Gini impurity is used to measure the quality of a split.

MLP Multi-layer perceptron (MLP) (Bishop 1995) is a supervised neural learning

algorithm. It differs from a simple perceptron in that, between the input and the output

layer, there can be one or more non-linear layers, called hidden layers. The system learns a

pattern using a feedforward network of neurons and a supervised technique called back-

propagation, for calculating weights of the connections. The MLP has been used as a

classifier for identification of the facet of the reference text span from the given list

(‘‘Machine learning approach’’ section). We use the default architecture of a single hidden

layer with 100 neurons.

AdaBoost Adaptive boosting (AdaBoost) (Freund and Schapire 1997) is a supervised

boosting machine learner, which can be used to combine several ‘weak learners’ to

improve their performance. The final predicted class is the given by the weighted sum of

the outputs of the learners used. The final boosted learner often proves to be a strong

classifier. AdaBoost is implemented using Scikit-learn python library in our facet classi-

fication system. The decision tree classifier is used as the weak learner in our experiments
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for facet detection. The maximum number of estimators at which the boosting is termi-

nated is set to 50.

The next section describes the related work, gives an overview of the shared task and

the performance of the participating teams, and ranks the documents based on a measure of

their difficulty.

Related work

In Moraes et al. (2017), we have provided an extensive review of the literature on citance-

based reference span identification. Citations are considered an important source of

information in many text mining areas (Elkiss et al. 2008). For example, citations can be

used in summarization to improve a summary (Nanba et al. 2000). It is thought that

citations embody the community’s perspective on the content of the cited paper (Nakov

et al. 2004).

In Qazvinian et al. (2013), the authors illustrate the importance of citations for sum-

marization purposes. They made their summaries based on three sets of information

including only the reference article; only the abstract; and, only citations. Finally, they

showed that citations produced the best results. In another study, Mohammad et al. (2009)

also showed that the information from citations is different from that which can be gleaned

from just the abstract or reference article. However, there is one caveat, viz., citations often

focus on very specific aspects of a paper (Elkiss et al. 2008).

Facet identification is another task tackled by the participating teams in CL-SciSumm

shared tasks. In CL-SciSumm shared task 2016, a feature engineering approach is proposed

by one of the participating teams (Lu et al. 2016) to solve the problem. They define a set of

features including lexical features such as tfidf, the similarity between the topic distribu-

tions of citation and candidate reference spans, the concept similarity between citation and

candidate reference spans using WordNet and sentence importance. Then they apply three

different classifiers including Naı̈ve Bayes, decision tree and support vector machine to

identify the facet. Decision tree is also employed by another team in CL-SciSumm 2016

(Cao et al. 2016), which uses the tfidf vectors as features. We have also used tfidf vectors as
features in our classification methods for this task. In Pramanick et al. (2017), authors

propose a new method based on the cosine similarity between each candidate sentence

vector and each facet’s bag of words. A different approach to Task 1B is proposed in Ma

et al. (2017), which builds a dictionary for each facet and the reference span is assigned to

the facet whose dictionary contains any of the reference span words. Neural networks

(Prasad 2017), majority voting (Felber and Kern 2017) and convolutional neural network

(Lauscher et al. 2017) are some other approaches proposed by CL-SciSumm 2017 par-

ticipants for Task 1B. In addition to the classification methods, we have also proposed

three variants of a rule-based method, which employs WordNet expansion to identify the

facets.

CL-SciSumm 2017

We briefly describe the variety of techniques used by the participating teams in the CL-

SciSumm 2017 Shared Task (Jaidka et al. 2017). A total of nine teams participated in Task

1, a subset of five teams further submitted runs for Task 2. Based on the CL-SciSumm

2017 overview (Jaidka et al. 2017), the top three best-performing teams for Task 1A were
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NJUST (Ma et al. 2017), TUGRAZ (Felber and Kern 2017) and CIST (Li et al. 2017)

with the Sentence-overlap F1 metric. Based on ROUGE F1 scores, the top three teams for

Task 1A were NJUST, TUGRAZ and UHouston.3 For Task 1B the top three performing

teams were CIST, PKU (Zhang and Li 2017), and NJUST. We summarize below the

techniques used by the teams: CIST, NJUST, TUGRAZ, PKU, and UPF (AbuRaed et al.

2017), which did well on Task 2.

The CIST system proposed in Li et al. (2017) calculates similarity values, including

Jaccard similarity, context similarity, and idf similarity, between reference text and

citances. The final results for Task 1A are based on a combination of similarity scores

using methods like fusion, majority voting, Jaccard Cascade and Jaccard Focused methods.

For Task 1B, they explored better features and tried three methods: rule-based, SVM and

fusion. For Task 2 they used Determinantal Point Processes with a linear combination of

five types of features that had been previously used. A majority voting across multiple

distance-based metrics is used for getting the best pairs of relevant citance and reference

text pair in the UPF system (Aburaed et al. 2017). The authors use a multi-class classi-

fication system for the facet distribution task.

The majority voting results from an ensemble of classifiers (Linear SVM, SVM using

radial basis kernel function, Logistic Regression, Decision Tree) is used for identification

of reference and citance spans in the NJUST (Ma et al. 2017). The authors maintained a

dictionary of related words for each discourse facet. While evaluating Task 1B, a reference

sentence is assigned a facet if it contains any word from the dictionary of the particular

facet. The proposed system uses bisecting K-means clustering to generate the summaries

for a particular reference document.

For Task 1A, the PKU system (Zhang and Li 2017) uses a combination of sentence-

level and character-level tfidf scores as well as Word2Vec based similarity values as

features to a logistic regression classifier. TUGRAZ (Felber and Kern 2017) proposed a

query-based retrieval system where the reference spans are treated as an index and citance

acts as the query. For a given citance query, the relevant reference text is chosen depending

on the results of a ranking algorithm.

Participating systems’ performance

In this section, the performance of all participating systems in CL-SciSumm 2017 is

reported with the F1 score. The plots in this section are based on the workshop proceedings

reports of the systems’ performance (Jaidka et al. 2017). However, note that the papers

were reviewed and revised after the workshop for the proceedings, so the reported results

in these papers might not match with the results obtained at the competition stage. Note

that the performance we report for Task 1B in this section follows the convention of the

shared task. For a correct facet classification to count, the system must have retrieved the

correct reference span during Task 1A. Thus, Task 1A acts as an upper bound for Task 1B

performance.

We examine the top performing systems on each of the subtasks to analyze the current

best-performing techniques for that subtask. In Fig. 1, NJUST is the winner followed by

TUGRAZ and CIST. NJUST (Ma et al. 2017) used ensemble learning for identification of

reference text based on similarity-based, rule-based and position-based features extracted

3 Some examples on how this difference in rankings can occur for Task 1A with the two different metrics
were given in Jaidka et al. (2017).
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from the reference text as well as the citance. CIST (Li et al. 2017) also makes use of

similarity scores for Task 1A.

For Task 1B (Fig. 2), CIST (Li et al. 2017) performs the best, and they also had a fusion

method for this task. A closer examination of their methods is needed to confirm whether the

fusionmethod indeed had the best score for this task.Our reading of theirworkshop paperwas

inconclusive on this point.NJUST (Ma et al. 2017) andTUGRAZ (Felber andKern 2017) are

almost similar in their performance on this task. If we look at the summaries of their

approaches for this task in Jaidka et al. (2017), the methods do look similar. Both of them

have used an index (called dictionary in NJUST) of reference text along with the facets. Then

based on the citance words and which facet(s) in the index contains that word, they identify

the citance’s facet. A deeper examination of their papers is needed to confirm this.

For Task 2 (Fig. 3), CIST (Li et al. 2017) used a combination of pre-processing tech-

niques that included: document merging, sentence filtering, etc., followed by feature

extraction using topic modeling (hLDA) and title similarity. In the final step, the system

uses Jaccard similarity for redundancy elimination across chosen reference sentences and

Determinantal Point Processes for diverse yet structured summary generation.

Reference documents difficulty for Task 1A

Since all teams participated in Task 1A, we now compare the 10 reference documents in
the Test Set based on the teams’ performance (F1 scores) on each reference document on

this task.

For this purpose, all systems’ runs for each reference document are sorted based on their

sentence overlap F1 scores, then the top-ranked run of each system is selected and used to

represent the system’s performance on that reference document. The variance of the

Fig. 1 Systems’ performance on Task 1A with sentence overlap F1 metric
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Fig. 2 Systems’ performance on Task 1B with F1 metric

Fig. 3 Systems’ performance on Task 2 (summaries vs. abstracts) with ROUGE-2 F1 metric
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systems’ best F1 scores for each reference document is shown in parentheses and also in

Table 1. According to Fig. 4, based on the median of each box plot, ‘W09-0621’ is the

easiest reference document in the test set and ‘P07-1040’ is the most difficult reference

document in the test set for the participating systems.

Task 1A: Reference span detection

Our methods for Task 1A include: positional language model, structural correspondence

learning, textual entailment and refinements of methods we presented in Moraes et al.

(2017) and Moraes et al. (2016). The methods that we refined include TFIDF (Salton and

Buckley 1988).

Text preprocessing We employed some pre-processing steps for cleaning the text in the

provided datasets for the purpose of our experiments. We remove the contents inside

parentheses like names of authors along with removal of special characters4 (like @, #,

etc.), which provide little information in this context. We also skipped reference sentences

with no or very little textual content, e.g., sentences comprising one character or word, the

result of sentence segmentation in provided datasets.

Positional language model approach

The notion of positional language model (PLM) was used with the goal of retrieving better

results in response to a query (with citances being considered as queries and the reference

spans as the results of the queries), which employs proximity information in documents in

the retrieval process (Lv and Zhai 2009). In this approach, a separate language model is

defined for each position (of words) in the document. The PLM of document d at position i
is estimated as follows:

pðwjd; iÞ ¼ c0ðw; iÞ
P

w0�V c
0 w0; ið Þ ;

wherein V denotes the vocabulary and c0ðw; iÞ is the propagated count of word w at position

i from all of its occurrences in the document.

As shown in the formula above, the weights of the terms in each PLM is estimated

based on two factors: their frequencies in the document and also their distance to the

position for which the positional language model is built. In other words, the weight of

each term in a PLM is the propagated count of that term to that position using a

Table 1 The variance of the systems’ best F1 scores for each reference document

Reference docs W11_0815 W09_0621 W06_3909 P07_1040 P00_1025

Variance (r2) 0.0046 0.0131 0.0074 0.0010 0.0101

Reference docs N09_1025 N09_1001 D09_1023 C98_1097 D10_1058

Variance (r2) 0.0049 0.0019 0.0131 0.0031 0.0002

4 Only alphanumeric characters remain unfiltered.
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propagation function (also called proximity-based kernels) (Lv and Zhai 2009). Gaussian

kernel, Triangle kernel, Cosine kernel and Circle kernel are four types of propagation

functions that can be used to estimate the terms weights in PLMs. As an example, the

following is a Gaussian kernel.

kði; jÞ ¼ exp
�ði� jÞ2

2r2

" #

In other words, in the PLM built for position i, the count of each word, at position j, is
weighted by k(i, j). Parameter r specifies the propagation scope of each word. We used the

default value for this parameter.

The total propagated count of word w at position i from the occurrences of w in all the

positions is computed according to the following formula:

c0ðw; iÞ ¼
XN

j¼1

cðw; jÞkði; jÞ

Here N is the length of the document and c(w, j) is the count of term w at position j in
the document. In other words, if w occurs at position j, c(w, j) is 1, otherwise 0. After

building the PLMs for all of the positions in the document, a position-specific retrieval

score can be computed for each position in the document in response to the query by

computing the similarity between the language model of the query and the PLM of that

position using KL-divergence formula (Kullback and Leibler 1951) which is known as a

way of measuring the distance between probability distributions. These position-specific

retrieval scores can be used to compute an overall retrieval score for the document through

Fig. 4 Participating systems’ best runs sentence overlap F1 score for Task 1A by reference document. The
variance is reported in parentheses
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different strategies. For instance, using best position strategy, the final retrieval score of the

document is the score of its best matching position.

We now explain the application of PLM to Task 1A. In Task 1A, each reference

sentence is considered as a document and each citance is assumed to be a query. Based on

these assumptions, we can use any retrieval method to find the most relevant documents

(reference sentences) to the query (citance) to solve Task 1A. For using the PLM approach

as a retrieval method, a separate language model is constructed for each position of the

reference sentence and then based on the similarity between the positional language

models and citance’s language model, the similarity score of the reference sentence with

the citance can be computed. As mentioned above, the elements of positional language

model (PLM) are the propagated counts of all words within the reference sentence which

are estimated using a propagation function. With this idea, the closer the words to the

position, the higher the weight of the word in the PLM. Therefore, according to the formula

above, the PLM of reference sentence rs at position k is estimated as follows:

pðwjrs; kÞ ¼ c0ðw; kÞ
P

w0�V c
0ðw0; kÞ

wherein V denotes the vocabulary of our collection and c0ðw; iÞ is the propagated count of

word w at position k from all of its occurrences in the reference sentence. Ultimately, PLM

of each position in the reference sentence is compared with the language model of citance

using KL-divergence to acquire a position-specific similarity score as follows:

Sðq; d; iÞ ¼ �
X

w�V

pðwjqÞ log pðwjqÞ
pðwjd; iÞ

where p(w|q) is the language model of the citance q, p(w|d, i) denotes the positional

language model of reference sentence d at position i and S(q, d, i) is the similarity score

between the position i in the reference document and the citance. These scores are then

used to find the final similarity score of reference sentence (as a document) in response to

the citance (as a query). Therefore, we can apply PLM approach as a retrieval process

which aims at finding the most relevant reference sentences in response to each citance.

The motivation of using PLM for this task is that reference sentences in which the words

occurring in the citance appear close to each other are more likely to be relevant to the

citance.

In this paper, the PLM implementation released by the authors of Lv and Zhai (2009) is

used. In this experiment, the best position strategy is employed for finding the sentence’s

score based on position-specific scores and a Gaussian kernel is used as a propagation

function. Furthermore, positional language models are smoothed using Dirichlet prior

smoothing method. Pre-processing steps employed in this experiment are: (1) stopwords

are removed from both citances and reference sentences. (2) all special characters are

removed, only alphanumeric remain. Parentheses/braces/etc are dealt with differently (by

removing internal contents). (3) sentences longer than 70 terms and shorter than eight

terms are removed.

Textual entailment approach

Entailment between two pieces of text can be identified as a directional implicational

relationship that holds between them. The goal is to measure the degree to which a text

fragment can be inferred from another. The pair of text fragments consists of (a) Text: The
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piece of source information used for drawing the inference and (b) Hypothesis: The second
fragment, which is to be inferred from the ‘text.’ The task of deriving inference from pairs

of text is called Recognizing Textual Entailment (RTE).5

The entailment relationship between a pair of text fragments, i.e., the text (t) and the

hypothesis (h) can belong to one of the following:

• Positive When the Text can ‘‘prove,’’ i.e., provide strong evidence for, that the

Hypothesis is True. Thus, the Hypothesis is entailed from the Text. For example, the

following pair of text fragments demonstrate positive entailment:

Text (t): The cat ate the fat rat.
Hypothesis (h): The cat is likely not hungry.

• Negative: When the Hypothesis can be disproved by using the Text. This is an inverse

of positive entailment. For example, the following pair demonstrates negative

entailment:

Text (t): The cat ate the rat.
Hypothesis (h): The rat ate the cat.

• Neutral When no relation exists between the two text fragments—the pair is unrelated.

For example, the following pair demonstrate neutral entailment:

Text (t): The cat ate the rat.
Hypothesis (h): The cat and dog are enemies.

Thus, the property of textual entailment between two pieces of text is True when the

information contained in one text fragment is directly or indirectly derived from the other

text fragment.

One of our approaches for Task 1A uses a measure of entailment to extract reference

sentences SR(c) relevant to a given citance c.
In a textual pair used for measuring textual entailment, we use the given citance c as

(text) and a reference sentence s from document D as (hypothesis) to find SR(c). For the

calculation of textual entailment, we use two state-of-the-art RTE systems: TIFMO (Dong

et al. 2014; Tian et al. 2014) and a deep learning model (Zhao et al. 2016).

Textual entailment system A: TIFMO

We use the Textual Inference Forward-chaining Module (TIFMO) (Dong et al. 2014; Tian

et al. 2014) to measure textual entailment (TE) between a citance and a sentence from the

reference document. TIFMO was chosen as a baseline for our TE approach because it is

one of the few systems that is: state-of-the-art, publicly available with good

5 https://aclweb.org/aclwiki/Recognizing_Textual_Entailment.
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documentation, and easy to set up.6 TIFMO uses Dependency-based Compositional

Semantics (DCS) (Tian et al. 2014) trees to represent a text body. The system derives an

inference for entailment prediction by considering logic based relations between ‘abstract
denotations’ or relational expressions generated from the queries in the DCS trees. A

further improvement to the system was proposed in Dong et al. (2014), where Generalized

Quantifiers (GQs) present in text are taken into account to evaluate lexical and/or syn-

tactical relations between pairs of sentences (text and hypothesis) to predict the presence of

entailment and also the type of entailment.

Input generation TIFMO reads the inputs in the form of XML formatted files of text and

hypothesis pairs. During evaluation we found TIFMO to be relatively slower (an average

of 5 h for processing a set of 100 citance-reference text pairs) compared to our other

methods. Therefore, the input to TIFMO (Dong et al. 2014; Tian et al. 2014) was restricted

as follows:

(a) We select the top 50 relevant reference sentences (SR’(c), an over-approximation of

SR(c)) ranked by our TFIDF system per citance c per document. We used TFIDF

since it had the best recall among our systems for Task 1A.

(b) For each given citance c (c 2 CD), we generate an XML input file, wherein we have

50 pairs of text fragments (c, s), where c is the text and s 2 SR0ðcÞ is the hypothesis.
TIFMO evaluation TIFMO does not do well as a reference span detector, as seen in

Table 5. On the training set of documents, it has recall, precision and F1 scores of 3.22,

1.68 and 2.21%, respectively. On the test set, it has an F1 score of 1.41%. We compare the

TIFMO results with another deep learning entailment system to check whether the results

are specific to TIFMO, or whether the issue is with TE and our problem.

Textual entailment system B: TE using deep learning

A recent trend is for textual entailment systems to make use of deep learning. Systems that

use deep learning are usually more robust since they make use of soft alignment schemes.

Hence, we also test the performance of a deep learning textual entailment system on our

task. The details for the system we employ can be found in Zhao et al. (2016). The authors

only provide the code so we had to train our own model. We used the same hyperparameter

configuration as the authors to train our model, except we adjusted the learning rate to 0.01

(from 0.001) and the batch size to 128 (from 32). The code was then run on the SNLI

corpus (Bowman et al. 2015)—a collection of 570k sentence pairs that were manually

labeled for the textual entailment problem. Although the model is better at the textual

entailment task, its performance in retrieving sentences relevant to a citance is only

marginally better than TIFMO with F1 scores of 2.87 and 1.69% on train and test,

respectively, for sentence overlap.

Our results on using TE systems with Task 1A suggest that recognizing textual

entailment has little overlap with our task. This could mean annotators rarely take TE into

account when selecting sentences. In order to determine if that was the case, we each

manually annotated a sample of the dataset (15 citances from the training set and 5 from

the test set). Each annotator is given the list of citances and their corresponding reference

spans (SR(c)) in order to determine if entailment occurred. The number of entailments

found by each annotator is presented in Table 2. On average, annotators found 5.5 sen-

tences with entailment among the sample of 20, which corresponds to 27.5% of our

6 The latest version of the software is at https://github.com/tomtung/tifmo.
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sample. Annotators A, B, and C submitted detailed annotations, thus we report their inter-

annotator agreement by way of Cohen’s j (Pontius and Millones 2011) and Fleiss’ j
(Fleiss 1971) in Table 3. The moderate to low agreement between the annotators highight

the subjective nature of the task. We believe the strict definition of entailment is in large

part responsible.

We also asked the annotators to mark the sentences which had negative entailment, i.e.

entailment in the opposite direction. Once we integrate these negative entailments into the

calculations, nearly all inter-annotator agreement scores improve as can be seen in Table 4.

Thus, it might be worthwhile to relax the definition of entailment.

Structural correspondence learning approach

Structural correspondence learning is a transfer learning method introduced in Blitzer et al.

(2006). Our goal with SCL is to learn how to recognize citations and later transfer this

expertise towards recognizing reference spans instead. In order to do so, we must select

pivot features—these are crucial for the method.

A pivot feature is a feature that is frequent in both domains of interest, such as citances

and chosen reference spans. We consider the vocabulary of the union of citances and

chosen reference spans that belong to the training set. Words that are frequent in both sets

of text are chosen as pivot features. The key to SCL is to predict the occurrence of pivot

features from the non-pivot features of an example—we predict the occurrence of a fre-

quent word from the occurrences of the infrequent words in a sentence. For each pivot

feature chosen, we learn a different SVM model that predicts whether the pivot feature is

present or not, returning a positive or negative label accordingly.

Internally, an SVM has coefficients that determine the importance of a feature for

classification. If we collect the coefficients for all the SVM models learned in this manner

Table 2 Count of entailments occurring in the sample of 20 citances

A B C D Avg.

Entailment count 3 12 6 1 5.5

Table 3 Inter-annotator agreement between A, B, and C

A/B A/C B/C Avg. Fleiss’ j

Cohen’s j 0.035 0.305 0.444 0.261 0.194

Table 4 Inter-annotator agreement using a relaxed definition of entailment

A/B A/C B/C Avg. Fleiss’ j

Cohen’s j 0.181 0.294 0.528 0.334 0.305
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we can construct a matrix, which can be used to predict all pivot features simultaneously; a

convenient linear algebra trick to run each SVM concurrently.

The next step is to reduce the dimensionality of these predictors—this forces general-

ization. We apply truncated Singular Value Decomposition (SVD) to the coefficient matrix

we constructed previously. The joint representation consists of the predicted pivot features

(non-pivot features are thrown away after being used for prediction). For our purposes,

these new feature vectors are used to rank candidate sentences through the calculation of

cosine similarity scores between them and the citance.

Previous methods

In our previous work, we examined the performance of three different methods: TFIDF,

Latent Dirichlet Allocation (Hoffman et al. 2010), and Word Embeddings (Mikolov et al.

2013). Our usage of these methods in this work is changed in one significant respect, which

is described below. For a detailed analysis refer to Moraes et al. (2017).

For every citance, we construct a vector where each dimension corresponds to the

TFIDF value of a term in the vocabulary of the reference document. Every sentence within

the reference document also has its own vector. We compare the vector of every sentence

with the citance’s vector to determine the sentences with highest similarity. This com-

parison is performed by calculating the cosine similarity between vectors as explained in

the ‘‘Preliminaries’’ section.

One change from Moraes et al. (2017) is that, in addition to unigrams of words, we also

considered bigrams and trigrams as part of the terms of a document or sentence. Whenever

we refer to a TFIDF system we will also refer to the range of ngrams that the system uses

(for instance, 2:3 for bigrams and trigrams excluding unigrams).

For Latent Dirichlet Allocation (LDA), we trained models on a corpus of documents

from the ACL Anthology.7 LDA is a method for topic modeling, so it recognizes a number

of topics from the corpus. An LDA model is then used to convert sentences to vectors of

topic membership. These are compared with cosine similarity as well.

Finally, we learn word embeddings using the same corpus of documents from the ACL

Anthology. However, word embeddings are not as straightforward to use for similarity

comparisons. A word embedding will give us a vector for each word in the sentence. One

option is to calculate an ‘‘average’’ vector. Instead, we decided to use the Word Mover’s

distance (Kusner et al. 2015). In essence, given two collections of vectors, we try to align

these vectors while moving them as little as possible.

Method combinations

In this section, we explore the potential of method combinations and how best to combine

them.

Linear combination

This method was also employed in Moraes et al. (2017). We take the scores from two

different systems and generate new scores using the simple formula:

7 http://aclweb.org/anthology/.
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k � sys1þ ð1� kÞ � sys2 ð5Þ

To determine the best value for the k parameter we test different values uniformly along an

interval. Whenever we refer to the scores for linear combinations, we shall report only the

best-performing system we observed.

Filtering

Another simple way to combine the results from two methods is to rank all the sentences

according to one method first. Then, we keep only the top N results and re-rank them

according to the second method. We must tune N to achieve the best performance. It is

interesting to note that low values of N favor the first system’s ranking since the second

system is given very little freedom in reordering the top results. All filtering methods had

TFIDF as the first system since it was the best individual method on the training dataset.

The best filtering system would re-rank the top 5 results from tfidf-1:2 with a word

embedding system.

Learning-to-rank

Since we had multiple systems, we opted to combine several through the use of learning-

to-rank algorithms. This is a better alternative than trying to tune the previous combination

methods for multiple systems. We used a library of learning-to-rank algorithms, RankLib,8

to combine the scores generated by the other methods. We construct a modified dataset for

use with RankLib. For each citance, we construct three different queries by subsampling

the irrelevant sentences in the reference document. Therefore, each query consists of all of

the relevant sentences chosen by the annotator and 10 irrelevant sentences chosen at

random. This helps emphasize learning the ranking of the relevant sentences.

The scores of the following systems were used in conjunction: tfidf-1:1, tfidf-1:2, tfidf-

1:3, tfidf-2:3, word2vec (ACL), word2vec (pretrained GoogleNews), variations on LDA,

SCL, TIFMO, and deeplearning TE. These systems were chosen in an ad-hoc manner to

provide a diverse set of competing rankings. Even though some of these systems under-

perform in general, they can occasionally provide better rankings for specific citances. No

attempt was made to tune the hyperparameters for the algorithms. The learning-to-rank

algorithms will attempt to combine the different scorings given by the different systems

into a better ranking.

Among the different algorithms implemented by RankLib, many try to minimize an

objective function by gradient descent. Sometimes this function is a list-wise cost such as

NDCG,9 in the case of LambdaRank. Other times, the algorithm tries to minimize a

simpler function such as pairwise errors, in the case of RankNet. Both MART and

LambdaMART are methods based on boosted regression trees.

Since learning-to-rank methods had a considerable jump in performance, we had to test

whether overfitting was occurring. We perform tenfold cross-validation on the training set

and report the results for a variety of learning-to-rank algorithms. The performance gains

measured were much more modest in the cross-validation scenario. In addition, the best

learning-to-rank algorithm changed from MART (Burges 2010) to Random Forests.

8 https://sourceforge.net/p/lemur/wiki/RankLib/.
9 Normalized Discounted Cumulative Gain is a metric for search results that takes into account the position
of relevant items.
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Results

We now report the results on the training and test sets for the methods employed in Task

1A which can be found in Table 5. Precision, Recall, and F1 are three measures used to

evaluate and compare the methods. In general, TFIDF still performed well among our

systems on the training set. However, once we move to the test set its performance

degrades severely. In fact, across the board the performance is worse on the test set.

Looking closer at the discrepancy between the training and test set we can see some

interesting behavior: the system based on word embeddings was our most robust system.

Although previous work in Moraes et al. (2017) downplayed the importance of word

embeddings (because combining them with TFIDF did not improve our performance by

much) it seems they may have other advantages. In particular, we suspect the use of the

Word Mover’s Distance is what led to this robustness.

Two information retrieval methods, KL-divergence and Okapi, are employed to com-

pare with PLM. In all three methods, reference sentences are considered as documents and

citances as queries. Okapi is a ranking function that is based on the probabilistic retrieval

framework, and KL-divergence is a language modeling retrieval approach, which ranks

Table 5 Task 1A scores for individual systems on the 2017 dataset

Method Train Test (%)

P@3 (%) R@3 (%) F1 (%) F1

tfidf-1:1 11.05 21.20 14.53 6.77

tfidf-1:2 11.39 21.85 14.97 7.62

tfidf-1:3 11.05 21.20 14.53 6.77

tfidf-2:3 8.64 16.57 11.36 7.06

Word2vec 10.88 20.88 14.31 9.03

LDA 2.63 5.05 3.46 4.51

PLM 7.29 13.99 9.59 6.21

KL-div 6.84 13.13 9.00 6.21

Okapi 7.85 15.06 10.32 6.21

SCL 3.14 6.02 4.13 1.69

TIFMO 1.68 3.22 2.21 1.41

Deeplearn TE 2.18 4.19 2.87 1.69

Linear Comb. 11.72 22.49 15.41 7.06

Filtering 11.78 22.60 15.49 7.34

Randomforest 17.34 (11.67) 33.26 (22.38) 22.79 (15.34) 6.28

Coordascent 11.67 (11.50) 22.38 (22.06) 15.34 (15.12) 8.47

Rankboost 11.61 (11.27) 22.28 (21.63) 15.27 (14.82) 8.47

Linreg 11.27 (10.99) 21.63 (21.09) 14.82 (14.45) 5.64

Lambdamart 25.75 (9.42) 49.40 (18.08) 33.86 (12.39) 8.47

Mart 26.20 (8.86) 50.26 (17.00) 34.45 (11.65) 8.47

Listnet 2.24 (2.13) 4.30 (4.09) 2.95 (2.80) 1.41

Ranknet 2.24 (1.79) 4.30 (3.44) 2.95 (2.36) 5.64

Lambdarank 5.33 (1.57) 10.22 (3.01) 7.00 (2.06) 0.00

Cross-validated results appear in parentheses
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documents based on the similarity between their language models and query’s language

model using KL-divergence formula. According to Table 5 PLM and Okapi perform better

than KL-div on training set. However, their performance on test set are the same. The drop

in performance on the test set resulted in several ties, which were scrutinized carefully to

eliminate the possibilities of errors in evaluation or implementation creating the ties.

Task 1B: Facet detection

In Task 1B, for each SR(c), the facet to which it belongs is picked among a predefined set

of five facets. This task involves mainly two approaches: a rule-based approach and a

machine learning approach. In both of our approaches, we employ the citance instead of

the reference text to identify the facet, based on the assumption that the relation between

citances and their reference texts can help the facet identification method find the correct

facet.

Rule-based approach

The Rule-based approach is comprised of three sequential steps where each one is designed

to find the right facet through specific comparisons, in case no match was found in any of

the previous steps. In the first step, citance words are compared with all five facet labels:

Method, Implication, Result, Hypothesis and Aim. If none of the words in the citance

match a facet label, then we proceed to the second step. In the second step of the rule-based

approach, an expanded form of the citance is compared with the facet labels. The citance is

expanded by adding all WordNet synsets (Miller 1995) of each word found in the citance.

In the last step, if no matched facet label is found within the previous steps, the facet labels

are expanded with their synsets and once again are compared with the words in the citance.

Machine learning approach

In this approach, each citance is represented by a feature vector containing TFIDF values

of its terms which is the number of times a term occurs in the citance multiplied with idf

component which is computed according to Eq. 3. The total number of features used in

these experiments is 4663.

After classification model is learned using the training set, the trained model is used to

classify citances of the test set. Machine learning methods used in this approach include

support vector machines (SVMs) (Cortes and Vapnik 1995), random forests (Breiman

2001), decision trees (Quinlan 1986), MLP (Bishop 1995), and Adaboost (Freund and

Schapire 1997).

Evaluation

The rule-based approach has different variations: (1) rule_based-V1: In this variation, all

three sets of comparisons (comparing citance words with facet labels, comparing expanded

form of citances with facet labels and comparing expanded form of facets with citance

words) are done while non-relevant synsets of all facets are excluded. To find the non-

relevant synsets, we manually investigate all synsets of each facet label in WordNet and

exclude those that seem irrelevant. (2) Rule_based-V2: in the second variation, all three

sets of comparisons are done while only non-relevant synsets of ‘‘Method’’ facet are
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excluded. (3) Rule_based-V3: in the third variation, only first and second comparisons are

done. Table 6 represents the results of the first approach to Task 1B on training set 2017

and test set 2017. A ‘‘Method_only’’ approach which assigns ‘‘method’’ to all of the

citances is also employed to be compared with the rule-based approach.

As Table 6 shows, the third variation of the rule-based approach outperforms other

variations on both training and test sets. It means that expansion of facet labels does not

help in finding the correct facet label of reference spans when citances are used for the

computation.

Furthermore, the higher performance of Rule_based-V2 over Rule_based-V1 shows that

excluding non-relevant synsets of the ‘‘Method’’ facet leads to better results. It might be

due to the fact that ‘‘Method’’ is the most frequent facet label in both the training and test

set for 2017. The results of the Method-only approach also verify this fact.

Table 7 shows the results of Task 1B for machine learning methods on the training and test

set. For classification experiments on the training set, two set of results are reported in Table 7:

(1) the results which are obtained by training the classifier using the whole 30 documents of the

training set and testing on the same set of 30 documents as test data (similar to the rule-based

methods results) and (2) the tenfold cross-validation results, in parentheses. For the classifi-

cation experiments on the test set, the whole training set is used for the learning phase.

As Table 7 shows SVM has the best performance in comparison with other classifi-

cation methods on Task 1B and the lowest results among classification methods belong to

the Decision Tree. Furthermore, comparison between the results of Tables 6 and 7 shows

that Rule_based-V3 is our best-performing method on Task 1B among all rule-based and

classification methods.

Table 6 Recall, precision, and F1

score of rule-based method vari-
ations (Task 1B)

Method Train Test

P (%) R (%) F1 (%) F1 (%)

Rule_based-V1 47.82 42.30 44.89 28.84

Rule_based-V2 63.24 55.94 59.36 68.33

Rule_based-V3 68.37 60.48 64.19 78.99

Method_only 69.16 61.18 64.93 95.29

Table 7 Recall, precision, and F1 score of classification methods (Task 1B)

Method Train Test

P (%) R (%) F1 (%) F1 (%)

SVM 99.38 (63.58) 98.92 (58.67) 99.15 (60.98) 73.35

Random Forest 92.85 (62.94) 92.14 (57.62) 92.49 (60.11) 72.50

Decision Tree 98.46 (48.67) 98.76 (53.55) 98.61 (50.88) 56.89

MLP 100.0 (57.38) 100.00 (54.30) 100.00 (55.72) 65.83

Adaboost 83.99 (46.09) 88.13 (47.21) 86.01 (46.60) 61.72

Rule_based-V1 47.82 42.30 44.89 28.84

Rule_based-V2 63.24 55.94 59.36 68.33

Rule_based-V3 68.37 60.48 64.19 78.99

Method_only 69.16 61.18 64.93 95.29

Cross-validated results appear in parentheses
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Task 2: Summary generation

In summary generation experiments, the reference span detection results of five best-

performing methods on the training set and five best-performing methods on the test set are

chosen to be used for evaluation of the summarization task. Table 8 includes the union of

these two sets of methods which includes five method due to the duplicates in two sets of

best-performing methods. The summary of each reference document via each method is

extracted from reference spans detected by the method, which is cut off according to the

summary’s length limit which is 250 words.

In Table 8, average precision, recall, and F1 scores are reported for the five best-

performing methods on the 2017 test set using the ROUGE toolkit (Lin 2004), specifically

ROUGE-2 which counts the overlap of bigrams between the system generated summary

and the gold standard. According to Table 8, word embeddings outperform other methods

in summarization.

Datasets

In this section, we investigate the differences between the training set and the test set that

could possibly account for the loss of performance when going from one to the other. We

believe the lower performance can be explained by a larger percentage of challenging

instances. First, we review the quantitative characteristics of each set. In addition to

statistics such as word counts and facet distributions, we also compare various metrics that

try to capture qualitative assessments, such as reading difficulty. Overall, our goal is to

determine whether there are metrics that can recognize challenging instances.

Dataset statistics

The dataset for CL-SciSumm 2017 (Jaidka et al. 2017) contains 30 training documents and

10 testing documents, each with multiple citances. We use Scikit-learn to tokenize the

sentences. Some statistics, without any preprocessing, about the training dataset (30

documents) are reported below.

• The total number of sentences is 6700 across all documents and the average is 223.33

per document.

• The total number of citances is 594 across all documents and the average is 19.8 per

document.

Table 8 ROUGE-2 scores for
summarization methods (Task 2)
on the 2017 test set

Method Avg. precision (%) Avg. recall (%) Avg. F1 (%)

Word2vec 21.84 27.73 24.40

tfidf-1:1 21.18 24.93 22.88

tfidf-1:3 20.15 24.30 21.98

tfidf-1:2 19.81 24.11 21.70

Lambdamart 19.45 23.85 21.38

Filter 18.32 23.06 20.39

Lambda 26.77 16.39 20.27

tfidf-2:3 17.38 22.73 19.66
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• There are 529 unique sentences chosen as SR(c) across all documents and the average

is 17.63 per document.

• The set contains 139,842 words, of which 121,291 are unique, among the reference

documents.

• The average number of words per document is 4661.4 and the standard deviation is

2546.7 words.

Some statistics about the test dataset (10 documents), also without any preprocessing,

are as follows:

• The total number of sentences is 2012 across all documents and the average is 201.2

per document.

• The total number of citances is 159 across all documents and the average is 15.9 per

document.

• There are 152 unique sentences chosen as SR(c) across all documents and the average

is 15.2 per document.

• The set contains 40,558 words, of which 10,313 are unique, among the reference

documents.

• The average number of words per document is 4055.8 and the standard deviation is

1101.3 words.

The results of the reference span detection and facet detection methods are quite dif-

ferent on the test set from those on the training set. We analyze this difference by com-

paring the datasets’ characteristics including their lingual or statistical characteristics.

Facet distribution

We evaluate the gold standard annotation files of all citances, c, and reference spans,

SR(c), to observe their distribution across the set of predefined facets: Aim, Method,

Hypothesis, Implication, and Results. Tables 9 and 10 give details of the distribution

across facets for training and test documents.

We observe that there is a significant variation in the distribution of citances (c) across
the facets in training data compared to test data.10 While approx. 96% of the citances CD;test

extracted from the test documents belong to the Method facet, around 69% of the training

set citances CD;train are in the Method facet. Also, while the training set has citances which

belong to Implication and/or Hypothesis facets, test set has 0 citances belonging to

Hypothesis or Implication facets. Thus the facet distribution across all CD;train is clearly

unbalanced with respect to corresponding test set citances CD;test.

Text difficulty level

In this section, we study and characterize the ‘‘difficulty’’ of the test documents versus that

of the training set. For this purpose, Flesch–Kincaid grade level (Kincaid et al. 1975),

SMOG readability index (McLaughlin 1969) and Gunning’s FOG index (Dubay 2004) are

employed as three text difficulty measures to compare test set and training set documents.

All of these three measures are calculated using textstat 0.4.1, which is a Python package

for calculating statistical features from text (Shivam Bansal 2017).

10 Recall that we use the citances to solve the Task 1B.
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In this experiment, Flesch–Kincaid grade level, SMOG readability index and Gunning’s

FOG index are computed for citances and their corresponding reference text of each

reference document separately. Tables 11 and 12 show the results of this experiment on

Training set and Test set respectively.

In the next experiment, the three measures are computed for unsolved-by-us citances.11

As citances in this problem act as queries in Information Retrieval problems, the higher

difficulty level of citances of the test set in comparison with the training set can be

considered as the reason for the lower performance of our methods on the test set rather

Table 9 Distribution of reference span facets by citances in training documents of CL-SciSumm’17

TrainSetIDs Method Aim Result(s) Hypo. Implic. Total Total
Cit. Facets

C00-2123 17 1 0 0 2 18 20

C02-1025 12 0 5 0 1 18 18

C04-1089 13 6 0 0 2 15 21

C08-1098 21 1 6 0 2 28 30

C10-1045 14 6 12 0 0 31 32

C90-2039 6 2 1 0 4 13 13

C94-2154 3 0 0 1 0 4 4

D10-1083 10 2 5 0 0 16 17

E03-1020 11 0 1 0 1 13 13

E09-2008 8 0 0 0 0 8 8

H05-1115 3 8 0 0 0 11 11

H89-2014 8 1 0 0 1 10 10

I05-5011 13 1 0 0 5 17 19

J00-3003 6 4 0 0 0 10 10

J96-3004 42 1 13 0 10 64 66

J98-2005 1 3 0 0 0 4 4

N01-1011 3 0 2 0 1 6 6

N04-1038 17 5 1 0 2 22 25

N06-2049 16 0 5 0 2 20 23

P05-1004 13 0 0 0 0 13 13

P05-1053 37 1 12 1 8 56 59

P06-2124 9 3 3 5 3 15 23

P98-1046 8 1 2 8 3 21 22

P98-1081 12 1 7 0 1 21 21

P98-2143 43 1 7 0 5 49 56

W03-0410 15 1 3 1 2 21 22

W04-0213 15 0 0 0 1 15 16

W08-2222 7 0 0 0 2 8 9

W95-0104 25 12 9 2 0 37 48

X96-1048 4 0 4 0 2 10 10

Total 412 61 98 18 60 594 649

Total (%) 69.36 10.27 16.50 3.03 10.10 100.00

11 Citances for which all our systems failed to identify the correct reference spans.
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than the training set. After computing the difficulty measures on unsolved-by-us citances of

the test and training sets, a Mann–Whitney (Mann and Whitney 1947) test is used as a non-

parametric statistic to test if the difference between difficulty measure values on unsolved-

by-us citances of test set and training set are statistically significant. For our implemen-

tation, we use the SciPy Python library—scipy.stats (Jones et al. 2001–), for statistical

evaluations. Using the Mann–Whitney test, we can check if there is a statistically signif-

icant difference between two data groups without any constraints on the data to be nor-

mally distributed. This test works by ranking the data in each group and computing the

mean ranks for each of them. If the distributions of the groups are identical, the mean rank

will be the same for both groups (Mann and Whitney 1947). The null hypothesis for the

Mann–Whitney test in this experiment is that the distribution of difficulty measure values

on unsolved-by-us citances of test set and training set are equal.

Table 13 shows the P values of Mann–Whitney test for each of the difficulty measures.

The results of one-sided Mann–Whitney test with 95% confidence interval on the dif-

ficulty measures on Table 13 show that the null hypothesis is rejected which means that the

SMOG index on unsolved-by-us citances of training set is statistically significantly lower

than that of test set, which implies the more difficult textual content in test set that can lead

to lower performance of the methods on test set rather than training set. To have a more

robust conclusion, SMOG index is investigated separately in the next experiment. In this

experiment, SMOG index is computed for all citances and their associated reference texts

of each set. Then, Mann–Whitney test is computed on both sets of values to figure out if it

shows that test set has more difficult text than that of the training set. In this experiment,

the null hypothesis is that the distribution of SMOG index on all citances (and all reference

texts) of training set and test set is the same.

As shown in Table 14 Mann–Whitney test with 95% confidence interval on SMOG

values of both citances and reference texts show that SMOG values on the training set are

statistically significantly lower than the test set which means the null hypothesis is rejected.

In the next experiment, we compute the absolute differences in SMOG values between

citances (c) and their reference spans (SR(c)) i.e., jSMOGðcÞ � SMOGðSRðcÞÞj for the
training set versus the same differences for the test set. Then we compute the Mann–

Whitney test on both sets of values to figure out if the difference values of training set is

Table 10 Distribution of reference spans facets by citances in test documents of CL-SciSumm’17

TestSetIDs Method Aim Result(s) Hypo. Implic. Total Cit. Total facets

C98-1097 12 0 0 0 0 12 12

D09-1023 10 0 2 0 0 12 12

D10-1058 18 0 0 0 0 18 18

N09-1001 11 1 2 0 0 13 14

N09-1025 32 0 0 0 0 32 32

P00-1025 11 0 1 0 0 12 12

P07-1040 26 0 0 0 0 26 26

W06-3909 12 0 0 0 0 12 12

W09-0621 12 0 0 0 0 12 12

W11-0815 8 0 2 0 0 10 10

Total 152 1 7 0 0 159 160

Total (%) 95.60 0.63 4.40 0.00 0.00 100.00
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significantly less than their values of test set. The null hypothesis in this experiment is that

the distribution of the difference in SMOG values is the same for the training and test set.

As shown in Table 15 the null hypothesis is rejected which means that the difference of

SMOG values of citances and their reference spans in training set are significantly lower

that the same value in test set. This comparison between the relative difference of citances

as queries and reference spans as documents in the test set and training set can help us in

explaining the lower results of reference span identification methods on test set.

Table 11 Flesch–Kincaid grade level, SMOG readability index and Gunning’s FOG index for citances and
reference texts of Training documents of CL-SciSumm’17

TrainSetIDs FKgr FKgr SMOGind SMOGind FOGind FOGind

Citances Ref. spans Citances Ref. spans Citances Ref. spans

C00-2123 10.3 10.3 8.8 8.8 10.4 10.4

C02-1025 9.9 11.5 8.8 8.8 10 10.4

C04-1089 7.2 12.7 8.8 11.2 8.4 11.6

C08-1098 13.0 11.1 11.2 11.2 13.2 10

C10-1045 11.5 7.2 8.8 8.8 11.6 7.2

C90-2039 13.8 10.7 11.2 8.8 10.4 8.4

C94-2154 11.1 12.7 8.8 8.8 10 11.6

D10-1083 7.6 11.9 8.8 11.2 7.6 9.6

E03-1020 13.0 9.9 8.8 8.8 13.2 11.2

E09-2008 15.0 16.6 11.2 11.2 14 12

H05-1115 11.5 13.1 11.2 8.8 8 9.6

H89-2014 11.5 11.1 11.2 11.2 11.6 8.8

I05-5011 10.3 10.7 8.8 8.8 8 9.6

J00-3003 8.0 15.8 8.8 13 6.8 11.2

J96-3004 8.7 13.0 8.8 11.2 8.8 12

J98-2005 12.7 9.5 11.2 11.2 11.6 8.4

N01-1011 11.9 12.3 8.8 8.8 10.8 11.2

N04-1038 12.3 14.2 11.2 11.2 10 9.6

N06-2049 8.4 13.1 8.8 11.2 8.4 10.8

P05-1004 8.7 14.6 8.8 11.2 8.8 11.2

P05-1053 8.0 14.2 3.1 11.2 8 10.8

P06-2124 11.5 11.9 8.8 11.2 10.4 8.4

P98-1046 10.3 15.0 8.8 8.8 10.4 12.8

P98-1081 8.0 9.1 8.8 8.8 8 8

P98-2143 12.3 15.8 11.2 13 10 12.4

W03-0410 12.3 13.0 11.2 11.2 11.2 12

W04-0213 11.5 13.8 11.2 11.2 9.2 10.4

W08-2222 13.8 15.0 11.2 13 11.6 11.6

W95-0104 8.7 9.5 8.8 3.1 10 8.4

X96-1048 12.3 9.9 11.2 8.8 11.2 8.8

Mean 10.83 12.30 9.57 10.15 10.05 10.28

Median 11.50 12.50 8.80 11.20 10.00 10.40

Std. Dev. 2.10 2.28 1.70 1.95 1.77 1.48
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Misclassifications

We looked at the misclassifications across each dataset for the various systems we tested.

For certain citances most systems found at least one of the reference sentences chosen by

annotators; for others, none were found. We used this information as a proxy for the

difficulty of a citance. We show the distribution of ‘‘difficulty’’ across the training and test

datasets in Fig. 5.

To generate this data, we calculated how many systems had found a correct reference

span for each citance. For the test set, 46% of citances have at least one system correctly

Table 12 Flesch–Kincaid grade level, SMOG readability index and Gunning’s FOG index for citances and
reference texts of test documents of CL-SciSumm’17

TestSetIDs FKgr FKgr SMOGind SMOGind FOGind FOGind

Citances Ref. spans Citances Ref. spans Citances Ref. spans

C98-1097 11.9 12.3 8.8 11.2 10.8 7.6

D09-1023 12.3 12.3 8.8 11.2 12.4 12.4

D10-1058 11.9 10.7 11.2 8.8 12 10.8

N09-1001 11.1 11.1 11.2 11.2 10 8.8

N09-1025 6.4 5.2 3.1 3.1 7.6 6.4

P00-1025 14.2 17.8 13 14.6 10.8 13.2

P07-1040 6.8 11.5 3.1 8.8 6.8 10.4

W06-3909 11.5 13.5 11.2 8.8 10.4 10

W09-0621 5.6 10.7 3.1 8.8 5.6 9.6

W11-0815 9.9 14.6 8.8 11.2 8.8 12.4

Mean 10.16 11.96 8.23 9.77 9.52 10.16

Median 11.30 11.86 8.8 10 10.2 10.2

SD 2.90 3.22 3.78 2.97 2.25 2.17

Table 13 P values of the Mann–Whitney test on Flesch–Kincaid grade level, SMOG readability index and
Gunning’s FOG index of unsolved-by-us citances of the test set and the training set

MW test (one-tailed) FKgr SMOGind FOGind

P value 0.751 0.042 0.760

Table 14 P values of the Mann–Whitney test on SMOG readability index of all citances and reference texts
of the test set and the training set

MW test (one-tailed) SMOGind SMOGind

Citances Reference texts

P value 0.045 0.000085

Table 15 P value for One-tailed MW test on jSMOGðcÞ � SMOGðSRðcÞÞj of training and test sets

MW test (one-tailed) SMOGind Abs. diff.

P value 0.043
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identify a chosen reference span. For the training set, the equivalent set of citances rep-

resents 74% of the total.

Using this misclassification information, we can generate new metrics. For instance, the

metric CD;impos is the count of citances from document D that were unsolved by any of our

systems. Another metric we use is CD;easy which refers to the count of citances from

document D that were solved by at least half of our systems.

Correlations with unsolved-by-us citances

We calculate the two-tailed and one-tailed Mann Whitney (MW) tests between the number

of unsolved-by-us citances CD;impos in the test set and the training set of reference docu-

ments. The metric is also calculated for the normalized ratio of unsolved-by-us citances to

total number of citances in the two sets. We report the P values of the tests in Table 16.
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Fig. 5 The distribution of correct predictions among the citances of the training and test set

Table 16 P value for two-tailed and one-tailed MW test on CD;impos count and ratio between training and

test sets

MW test (one-tailed) CD;impos CD;impos

Ratio Count

P value 0.0001 0.0494
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We observe from the Mann–Whitney test results in Table 16 that the ratios of unsolved-

by-us citances, CD;impos, to total number of citances in D are more statistically significant in

comparison to the raw count of the unsolved-by-us citances. We look at a distribution of

Spearman’s correlation between the set of unsolved-by-us citances: CD;impos. The corre-

lation values are calculated using an online software (Wessa 2017). We compare several

parameters of the reference documents in both the Training and the Test sets with a raw

frequency count of CD;impos and a normalized ratio of the same to total number of citances.

In Table 17, we report the Spearman’s correlation values for CD;impos with the Vocabu-

lary12 as well as Vocabulary ratio13 of the document, number of Non-ASCII words and

characters in the Reference document as well as the SMOG indexes in citances and

reference texts for the test and training data.

Unsolved-by-us citances tend to be positively correlated with the frequency of Non-

ASCII characters as well as Non-ASCII words in the text, which indicates encoding errors

are a significant obstacle to proper retrieval. In addition we see some small inverse cor-

relations for vocabulary ratio; the more difficult documents have a less diverse vocabulary

for their size. We expect the effect to be larger than reported since we only compared with

the vocabulary for an entire document; we expect the influence to be localized around

citances and reference spans. Furthermore, the number of unsolved-by-us citances are

negatively correlated with the SMOG index values, specially for the citances. It suggests

that higher text difficulty can lead to lower number and ratio of unsolved-by-us citances

(higher performance). The reason could be that higher text difficulty means more

idiosyncratic word choices, which are easier to match. Lower text difficulty means

vocabulary is simple and somewhat similar throughout, which makes matching difficult. A

more detailed study of correlations between citances and reference sentences would help

provide a better explanation.

Similarity with unsolved-by-us citances

We study the Jaccard similarity (JS) of the unsolved-by-us14 citances, CD;impos, for a

reference document D, with the reference sentences (RSs) in the document. The experi-

ments are repeated for the documents in the training and test sets separately. We use the

following notations:

• Unsolved-by-us Citances ðCD;imposÞ: Citances of document D that defeated all our

proposed systems.

Table 17 Spearman correlations across all reference documents in both training and test sets

Unsolved. Vocab. Vocab. Non-ASCII Non-ASCII SMOGind SMOGind

Citance Size Ratio Words Chars. Citances Ref. spans

Count 0.0189 - 0.145 0.323 0.339 - 0.235 - 0.059

Ratio - 0.1033 - 0.1056 0.0814 0.0809 - 0.153 - 0.086

12 Total number of unique words in the document.
13 Ratio of vocabulary size to the total number of words in the document.
14 Citances for which none of the retrieved sentences were relevant across all our proposed systems.
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• Easy Citances (CD;easy): Citances of document D for which the reference spans (SR(c))

were correctly recognized by at least half of our proposed systems (if the number of

correct predictions is � 33, since we have a total of 66 systems)

• Irrelevant Reference texts (RSc;irrel): This consists of all the reference sentences of D

that are not in SR(c), i.e. D� SRðcÞ.
We make the following comparisons:

• Calculation of JS between: (a) CD;impos with all sentences of D and (b) CD;easy with all

sentences of D.
• Calculation of JS between: (a) CD;impos and all the sentences in SR(c), and (b) CD;impos

with all the irrelevant reference sentences, RSc;irrel.

As explained earlier, the Mann–Whitney Non-parametric Test (Mann and Whitney

1947) is used to check the presence of statistically significant difference between two

distributions without any constraints of normal distribution on the data. In this section, we

calculate the two-sided Mann–Whitney test with 95% confidence interval for the Jaccard

similarity (JS) value based distributions.

Table 18 gives the P value for the comparison between similarity distributions of the

unsolved-by-us and easy citances in the train and test data with respect to the RSs in the

documents. Here the null hypothesis is that the JS value distributions of the unsolved-by-us

and easy citances with the corresponding reference sentences in the training and test

documents are equal. In Table 19, we provide the same for the similarity values between

CD;impos with the sentences in SR(c) as well as with the irrelevant sentences given a

document. Similarly, in this experiment, the null hypothesis is that there is no statistically

significant difference between the similarity distributions with respect to the reference

spans and the irrelevant sentences in the training and test data. In both the cases, the

P values prove that there is a statistically significant difference between the corresponding

distributions for both test and training data. Thus the null hypothesis is rejected.

For our similarity measurements, we perform two necessary pre-processing steps on the

data: removal of English stop words (Python NLTK library) and stemming (Python NLTK

PorterStemmer).

Table 18 P values of the two-tailed Mann–Whitney test on JS values of CD;impos and all RSs versus CD;easy

and all RSs for each set separately

Training set Test set

MW test P value 1:73e�45 0.0265

Table 19 P values of the two-tailed Mann–Whitney test on JS values of CD;impos and SR(c) versus CD;impos

and RSc;irrel for each set separately

Training set Test set

MW test P value 3:68e�10 2:29e�18
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Unsolved-by-us versus easy citances

We calculate the Jaccard similarity (JS) between the set of CD;impos with all the sentences of

the reference document D (RSs). We also measure the JS values between CD;easy with RSs

for the corresponding document. Figures 6 and 7 demonstrate the variation in the JS values

between the unsolved-by-us citances and the easy citances respectively with the sentences

for each reference document in training set, and Figs. 8 and 9 show the same but for the

test set. In all the figures, we plot the Jaccard Similarity Values on the y-axis and the

document names in the x-axis. For ease of demonstration in Figs. 6 and 7, we sort the

training documents from 1 to 30 lexicographically and refer the readers to Table 20 for the

filenames.

We observe there are very few easy citances in the test set (present in only 4 out of 10

documents) as shown in Fig. 9. In stark contrast, there are numerous citances present in the

test set that were unsolved by our systems (Fig. 8). The training set is more balanced: we

observe from Fig. 7 that nearly all documents have some easy citance; the situation for

unsolved citances is similar.

Groundtruth v/s irrelevant citances

We calculate the Jaccard similarity (JS) values between CD;impos with two different types of

texts from the document D—the reference span sentences in SR(c) for each c, and the

irrelevant sentences of D RSc;irrel. Figures 10 and 11 demonstrate the variation in JS values

of CD;impos with the ground truth reference sentences and the irrelevant reference sentences

Fig. 6 JS values of unsolved-by-us citances with all the reference sentences in training set reference
documents
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Fig. 7 JS values of easy citances with all reference sentences in training set reference documents

Fig. 8 JS values of unsolved-by-us citances with all reference sentences in test set reference documents
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respectively for the training data using box plots. Figures 12 and 13 show the same for the

test dataset.

We observe that the Jaccard Similarity (JS) measures may not be a good measure of

choosing the best set of reference sentences for a given citance. Comparing Fig. 10 with

Fig. 11, we see higher JS values between the CD;impos with the ‘irrelevant’ reference

sentences when compared to the reference span sentences for a large number of documents

[for example, C00-2123 (Doc 1), D10-1083 (Doc 8)]. Better measures of ‘‘similarity’’ are

needed to understand the relations between reference spans and citances.

Fig. 9 JS values of easy citances with all reference sentences in test set reference documents

Table 20 Labels for the training
set documents

ID Name ID Name ID Name

1 C00-2123 11 H05-1115 21 P05-1053

2 C02-1025 12 H89-2014 22 P06-2124

3 C04-1089 13 I05-5011 23 P98-1046

4 C08-1098 14 J00-3003 24 P98-1081

5 C10-1045 15 J96-3004 25 P98-2143

6 C90-2039 16 J98-2005 26 W03-0410

7 C94-2154 17 N01-1011 27 W04-0213

8 D10-1083 18 N04-1038 28 W08-2222

9 E03-1020 19 N06-2049 29 W95-0104

10 E09-2008 20 P05-1004 30 X96-1048
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Fig. 10 JS values of unsolved-by-us citances with the reference span sentences (SR(c)) in training set
reference documents

Fig. 11 JS values of unsolved-by-us citances with all irrelevant sentences in training set reference
documents
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Fig. 12 JS values of unsolved-by-us citances with the reference span sentences (SR(c)s) in test set reference
documents

Fig. 13 JS values of unsolved-by-us citances with all irrelevant sentences in test set reference documents
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Discussion

The distribution of discourse facets for the training and test sets is clearly quite different. At

this time, we are unable to determine if this is because of a difference in annotators, or drift in

annotator choices, or because the discourse facets are really different for the two sets.15 Of

course, it is also possible that this difference is due to some combination of all these reasons.

Our investigation into the differences between the test and training set also revealed a

significant difference in the number of unsolved citances. Once we track the correlation of

other variables with these ‘‘difficulty indicators’’ we observe that difficult documents tend

to have a smaller vocabulary and tend to be easier to read. We initially expected difficult

citances to be more complex, yet the opposite is true. This makes sense once we realize

that a more varied vocabulary means it is easier to distinguish between sentences. Fur-

thermore, a lower reading difficulty implies the use of more common words. A common

word tend to be more general, which means it require greater contextual awareness since it

can be used in many contexts. These results explain the effectiveness of TFIDF in the past

and its degradation in the test set.

Conclusion

In this paper, we have presented several approaches and their performance on the three

tasks of the CL-SciSumm 2017 shared challenge. We have also analyzed several inter-

esting parameters of the 2017 training and test sets. For example, we found a significant

difference in the facet distribution, and also differences in the readability levels. Our

research suggests a tantalizing pattern: people tend to use ‘‘easier’’ (less technical) lan-

guage when they refer to other papers and this makes it harder to identify reference spans.

This was more frequently observed in the test set and we do see the performance of all our

Task 1A methods declining on the test set.
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