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Abstract The factors that foster successful scientific collaboration and teamwork have

been studied extensively. However, these factors have been studied in isolation and it is not

clear to what extent one factor is more relevant than other in the formation of research

groups. In this work we propose a new methodology based on network analysis to

simultaneously evaluate multiple factors considered relevant in the conformation of formal

research groups. Our methodology is supported on structural, statistical, and correlation

analysis. In addition to validating our methodology with a case study at a research-teaching

university, we introduce a new network to represent the success of scientific collaboration

that produces the best prediction in group formation. Our methodology and the results

obtained can be used for organising researchers in a university that seeks to strengthen its

research strategy.
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Introduction

Universities and other research institutions constantly need to adapt their research strategy

to meet quality standards and necessities at a local, national, and global level. A first

example concerns university rankings, which have become an important performance

metric (Tomas-Folch et al. 2015). For prestigious rankings, such as Times Higher Edu-

cation (THE), Qacquarelli Symonds (QS), Academic Ranking of World Universities

(ARWU), CWTS Leiden Ranking, and SCImago Institutions Ranking (SIR), research is

considered as one of the most important criteria, and—as a result—the activity of research

staff has gained attention among university managers. Motivated by this, institutions have

developed research strategies directed to increase their scientific productivity and impact

(e.g. citations).

A second example concerns the triple helix (Leydesdorff 2013; Etzkowitz and Ley-

desdorff 1998, 2000) and the entrepreneurial university (Etzkowitz 2003; Sam and Van

Der Sijde 2014)—models that intertwine the university with the government and the

industry and are shifting research from basic to applied and to socially-oriented or to

industry-related. Even though the entrepreneurial university model has caused both posi-

tive and negative reactions (Martin 2012), it has become a reality and, in Latin American

countries, it has started to develop (Heredia and Vinueza 2015) and thus requires support to

take root. Two affected entities in this model are the professor and research groups. While

the former has passed from (a) teaching to (b) teaching and researching to (c) teaching,

researching, and managing research, the latter are now organised as ‘‘small businesses’’

and there is a need, at the institutional level, to encourage these dynamics.

A third example consists of the rise of multidisciplinary, interdisciplinary, and trans-

disciplinary research (Stokols et al. 2008; Klein 2008). Emerging fields such as Biotech-

nology require new schemes of research and collaboration to grow and develop. As such,

institutional research strategies need to be shaped for coping with these changes and, thus,

aid problem solving in these fields.

A key component of research is collaboration. According to Beaver (2001), collabo-

ration has evolved from being dyadic to being in groups. Therefore, an important part of an

institutional research strategy heavily relies upon its research groups. In this case, we refer

to the formal intra-institutional research groups, which are the ones recognised by the

university and—more importantly—can be directly strengthened, supported, and nurtured

by this institution. Furthermore, research strategies can be directly aimed at these groups.

In that sense, so far, other types of groups (e.g. collaborations outside the institution) lie out

of our scope and are left for future work.

Strategy alignment sometimes implies group reconfiguration, i.e. adding, eliminating,

splitting, or merging groups. To prevent reconfiguring groups arbitrarily, knowledge about

the factors that influence group formation, persistence, and success is highly desirable.

While there is a body of work that already touches this subject (see ‘‘Related work’’

section) little is known about—specifically—research group formation. Moreover, our key

contribution is that—as we will see—we explore several factors under the network analysis

perspective. This perspective, on one hand, works with objective information. On the other

hand, it allows us to produce a unique methodology for combining factors.

In this work, we analyse the influence of seven factors on team formation: past coau-

thorships, recent coauthorships, previous co-participation in groups, citations to coauthored

papers, co-participation in thesis committees, organisational closeness, and topical simi-

larity. The first five factors are related to previous collaborations, i.e. collaborations,

participation, or memberships that have taken place in the past. We consider that these
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collaborations set up a precedent that could impact the construction of current research

groups. With respect to organisational closeness, it has been observed that geographical

proximity has a positive impact on collaboration (Katz 1994; Liang and Zhu 2002; Sun and

Liu 2016); in consequence, it seems relevant to observe whether institutional proximity

(which we refer to as organisational closeness) holds a similar effect by favouring the

creation of intra-institutional research groups. With regard to topical similarity, when there

is a thematic affinity among researchers, it seems feasible that these researchers work

together; in fact, this should be one of the primary reasons for a research group to take

place. Let us note that, for the seven selected factors—unlike for other potential factors—it

is possible to extract reliable information (evidence) directly related to these factors (from

Scopus, for example, or intra-institutional repositories).

Our aim is to observe whether these seven factors—either alone or combined—influ-

ence the formation of intra-institutional formal research groups, i.e. where members have

an explicit adherence to the group. To achieve this goal, we use longitudinal data from a

case study on the reconfiguration of research groups at a multi-campus private university.

We use network analysis with these data to create networks that represent the factors and

their combinations. Via graph clustering techniques, groups of researchers are extracted

from these networks and compared against the formal groups of the case study (i.e. we are

attempting to identify the formal research groups using solely the information provided by

the networks, a task which we refer to as prediction). Different types of analyses (statis-

tical, structural, frequency) allow us to determine the influence of the studied factors. In

that sense, one contribution of this work is to provide evidence on the relevance of

previous collaborations and coauthorships, organisational closeness, topic similarity, and

their combinations on the formation of formal intra-organisational research groups through

the use of network analysis. Another contribution consists of providing a method for

evaluating simultaneously the effect of multiple factors on the formation of formal research

groups.

This paper is organised as follows. ‘‘Related work’’ section presents related work on

scientific collaboration, team formation and performance, and network analysis for

studying groups. ‘‘Background’’ section introduces pertinent notions on graph theory and

network analysis. ‘‘Data and methods’’ section presents the data used for the case study and

the methods used for predicting group formation. ‘‘Results’’ section shows the relevance of

each factor and the respective combinations on the prediction of group formation. Finally,

in ‘‘Conclusions’’ section we conclude with closing remarks and future work.

Related work

Related work has been divided into three main categories: Fostering scientific collabo-

ration, Team formation and performance, and Group studies through network analysis.

The first category covers work that has been devoted towards discovering collaboration

facilitators, such as geographical closeness, author prestige, and government policies; let us

note that this section is not limited to collaboration in intra-organisational research groups,

but covers dyadic, inter-organisational, and inter-regional collaboration. The second cat-

egory views a research group as a team and covers work that has discovered factors for

individuals joining teams and teams having a better performance; this section is not limited

to research groups, but includes work with companies, students, and entrepreneurs, just to

mention some. The third category covers studies related to group formation and evolution
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from a network analysis perspective; these studies include collaboration and other social

networks.

Fostering scientific collaboration

Katz (1994) summarized some of the main reasons that researchers consider for collabo-

rating with another partner. Among these reasons one can find: (1) scientific popularity,

visibility, and recognition of the partner, (2) increasing specialization in science, (3) the

need of training researchers, and (4) a decrease in spatial distance. In the end, researchers

collaborate to improve their productivity and impact (measured in terms of citations).

The effect of scientific popularity, visibility, and recognition has been studied through

the analysis of co-authorship networks (Newman 2001, 2004). For instance, it has been

observed that the citation count of an article is positively correlated both with the number

of authors and the number of institutions involved in its production (Katz and Hicks 1997).

It has also been discovered that centrality of an author in this kind of network positively

influences the citation of the author’s papers and the formation of new scientific collab-

orations (Uddin et al. 2013). Martin et al. (2013) found that researchers cite their coau-

thor’s papers more quickly than other researcher’s work, and that there is a strong tendency

to cite back other authors, specially a previous coauthor. Similarly, centrality of authors in

coauthorship networks has been used for predicting whether an article will be highly cited

5 years after its publication (Sarigöl et al. 2014).

On the other hand, geographical distance is a factor that discourages research collab-

oration. Katz (1994) observed that the frequency of research collaboration between

domestic universities in United Kingdom, Canada, and Australia decreases exponentially

with the distance separating research partners. A similar phenomenon has been reported by

Liang and Zhu (2002) for Chinese inter-regional collaboration, as the probability of col-

laboration between regions dramatically increases when these are geographically close. At

the organisational level, Balland (2011) discovered that geographical, intra-organisational

(being part of the same organisation), and institutional closeness (belonging to the same

type of organisation, e.g. government, education, company, public institution) all favour

collaboration.

Other aspects that have facilitated collaboration at the inter-organisational level are

government policies and inter-regional consortia. With respect to the former, it has been

reported that government policies have contributed to shape over time the network of

collaborations among public research institutes, companies, and universities (Zhang et al.

2016). With regard to inter-regional consortia, these have shown varying degrees of impact

in different countries when it comes to new collaborations (Cho et al. 2013).

Hybrid indicators, introduced by Perianes-Rodriguez et al. (2009), reflect popularity

and prestige. These indicators combine the clustering coefficient of a researcher in a

coauthorship network with the number of papers and citations this researcher has; these

three individual metrics, along with others, are obtained from a single coauthorship net-

work. In our work, we built different networks encoding actual and potential collaboration

factors and then combined them for producing hybrid networks, which are the result of

aggregating and normalizing these factors. Hence, the two approaches are different.

Team formation and performance

Because the members of a research group work together to pursue common goals and their

relationship is based on common values, confidence, and trust, a research group can be
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studied as a team. According to Katzenbach and Smith (1993a), a team is a small number

of people with complementary skills who are committed to a common purpose, set of

performance goals, and approach for which they hold themselves mutually accountable.

Teams, in general, can either be assigned by a competent authority (Reagans et al. 2004),

be formed by voluntary participation (Margolin et al. 2012), or lie within these two

extremes. While there are teams with stable memberships, others are highly dynamic

(Putnam 1992) or are only conformed for completing a specific project (Hahn et al. 2006;

Johnson et al. 2009). A team usually begins with a set of separate individuals, which later

form a coalition, and finally achieve not only a higher performance but are able to care also

for one another (Katzenbach and Smith 1993b). With regard to the process of an individual

joining and staying in a team, it has been reported that individuals search for teams that can

satisfy their needs and vice versa; in the case of a match, the individual joins the team.

Afterwards, the individual attempts to increase the satisfaction provided by the group,

while the group attempts to increase the value provided by the individual; if these attempts

are accomplished, commitment is strengthened and the group enters a phase of mainte-

nance (Levine and Moreland 1991; Owens et al. 1998).

There is a substantial body of work related to team formation and performance, which

has been studied on teams of entrepreneurs (Ruef et al. 2003), students (Hinds et al. 2000),

academic institutions (Rey-Rocha et al. 2006; Martı́n-Sempere et al. 2008), companies

(Casciaro and Lobo 2008), gangs (Johnson et al. 2009), online games, (Zhu et al. 2013;

Johnson et al. 2009), product teams (Ancona and Caldwell 1992), and innovative and

creative teams (Bercovitz and Feldman 2011; Guimerà et al. 2005)—among others. Works

related to team formation are mostly devoted towards discovering the motivations behind

team affiliation and tie construction, while works related to team performance are mostly

devoted towards discovering the factors behind team success, where success can be

measured in different forms, such as effectiveness, throughput, satisfaction, production

volumes, easiness of communication, etc. As we will see, some factors are present both in

formation and performance. Furthermore, some of these studies rely on network analysis to

gather results.

In an early work, Mattessich and Monsey (1992) encompass factors for successful team

performance into six categories: environment, membership, structure (e.g. flexibility and

adaptability), communication, purpose (e.g. shared vision), and resources. Cohen and

Bailey (1997) report that team performance (measured in their work in terms of effec-

tiveness, member attitudes such as commitment, and behavioural outcomes such as turn-

over) was found to be influenced by variables related to team composition, such as team

size and different types of diversity (e.g. functional, tenure); for instance, coupling team

size according to workload has shown to increase effectiveness (Campion et al. 1993).

With regard to member quality affecting team performance, several studies report that

individual expertise is positively related to team performance. Volmer and Sonnentag

(2011) observed this pattern in software design teams, where team experts would intel-

lectually stimulate the rest, and these authors also noted that expertise would enhance

performance in team meetings (Sonnentag and Volmer 2009); in the problem-solving

domain, Bonner et al. (2002) found that teams perform at the level of their best members.

Verbree et al. (2015) studied the organisational factors that influence the scholarly per-

formance of research groups. They found that the group composition and size as well as the

presence of senior staff in the group have a positive influence on productivity and citation.

Several studies agree on the positive impact of previous collaborations for team per-

formance, as these collaborations favour coordination and communication (Bercovitz and

Feldman 2011) and reduce the negative effect of distance (Cummings and Kiesler 2008);
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moreover, familiarity within teams and role experience has been positively related to team

performance (Huckman et al. 2009), and teams composed by friends have shown to out-

perform teams of mere acquaintances (Shah and Jehn 1993). Excessive familiarity, how-

ever, may hinder results, causing teams of strangers to achieve a better performance when

different points of view are required for a task (Gruenfeld et al. 1996). Another factor for

team success, as discovered by other studies, is heterogeneity—i.e. the presence of com-

plementary skills, status, and knowledge in a team—, which encourages communication

and innovation (Ancona and Caldwell 1992) and creates synergy among team members

(Bercovitz and Feldman 2011).

With regard to team formation, previous collaborations (specially successful ones)

have also been regarded as an influential factor (Hinds et al. 2000), since uncertainty is

reduced in the team (Hahn et al. 2006). Heterogeneity, as well, has played a significant

role in team formation (Dahlander and McFarland 2013), as people seek in others

complementary skills to complete difficult projects (Johnson et al. 2009). On the con-

trary, it has also been observed that homophily is a key component in forming teams

(Ruef et al. 2003), as people tend to look for similar teammates, either in age, race,

skills, or organisation (Hinds et al. 2000; Zhu et al. 2013). In the end, a balance between

homophily and heterogeneity seems to be necessary for team formation (Owens et al.

1998). Other influential factors for team formation include affect (Casciaro and Lobo

2008), a good reputation for work (Hinds et al. 2000), and strong relationships such as

marriage (Ruef et al. 2003).

In scientific research, where collaboration has evolved from being mostly dyadic to

being mostly teamwork over the last decades (Beaver 2001), it has been observed that

researchers belonging to consolidated teams have a competitive advantage in terms of JCR

articles (Rey-Rocha et al. 2006, 2007), and committed members in these teams have more

scientific production (articles, supervised theses, projects, patents) than their colleagues

(Martı́n-Sempere et al. 2008). Research groups that collaborate with top-tier universities

have also shown to produce papers with the highest impact (Jones et al. 2008). For research

groups in developing countries, collaboration overseas has benefited scientific production

(Ordóñez-Matamoros et al. 2010).

Group studies through network analysis

Group formation and evolution have also been studied from a purely structural point of

view, i.e. by considering network properties and analysis. For example, based on the

analysis of coauthorhsip and phone call networks, Palla et al. (2007) identify six possible

events in the evolution of a group: birth, growth, contraction, merging, splitting, and death.

Furthermore, depending on group size, there exist different optimal scenarios to ensure

longevity. For small groups, stable membership is desirable, while member fluctuations

favour large groups; not surprisingly, members with a weak commitment are more likely to

abandon the group. In large social networks, the decision of an individual joining a group

has been found to correspond to a diffusion process, where both the number of friends

belonging to the group and the connectivity among these friends are relevant (Backstrom

et al. 2006). Kairam et al. (2012) report that groups where a large clique (structure where

all members are directly related to each other) is present exhibit faster growth and are less

likely to disappear. In contrast, groups with a high transitivity are less inclined to grow.

Furthermore, two types of groups are identified: those formed on common relationships

and those formed on common traits (homophily).
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From the network analysis perspective, research groups have been also studied through

the detection of graph clusters in coauthorship and citation networks. The approach by

Calero et al. (2006), for example, extracts coauthorship and topical networks from the field

of Spanish nanotechnology; while clustering the former aids the detection of actual

research groups, clustering the latter produces potential research groups, which are rec-

ommended as possible future collaborations. Similar works include the use of hierarchical

clustering and multidimensional scaling (Yu et al. 2011), a new journal classification

methodology based on citation network multilevel clustering (Waltman and Eck 2012), and

the creation of clustering algorithms that take advantage of the two-mode (i.e. bipartite)

nature of scientific collaboration networks (Garza and Schaeffer 2016).

Discussion

Works referred in previous subsections study the factors that motivate peer-to-peer sci-

entific collaboration, as well as those factors that promote the growth of teams and improve

their performance. However, they do not evaluate the possible combinations of factors or

whether a factor is occluded by another. In this work we focus on the factors considered by

researchers during the conformation of formal research groups. For this purpose we pro-

pose a method to combine multiple collaboration factors represented through networks,

which are then clustered by automatic methods to determine which factors have a positive

or negative influence in group formation.

Background

In this section, we present some basic concepts of graph theory. We also describe the

network analysis metrics and graph clustering algorithms used in our work.

Graph theory

A network or graph G ¼ ðV;EÞ is a structure that contains a set V of vertices (entities) and

a set E of edges (connections between the entities); we will use n to denote |V| and m to

denote |E|.

The degree of a vertex is the number of edges attached to that vertex, and a graph whose

edges have numerical labels is a weighted graph. A connected component is a subgraph

(portion of a graph) where every pair of vertices is connected, i.e. it exists a path between

them.

The density of a network is the proportion of edges present with respect to the theo-

retical maximum:

d ¼ 2m

nðn� 1Þ : ð1Þ

Graph clustering

Graph clustering, a tool from network analysis, consists of identifying cohesive sub-

graphs in a network; we will use the term clusters to refer to these subgraphs and the

term clustering to refer to the collection of clusters that result from the application of a
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graph clustering algorithm to a network. While there are different definitions for a

cluster (Radicchi et al. 2004; Wasserman and Faust 1994), the commonly accepted

notion implies that the cluster has more (or stronger) edges between its own vertices

and fewer (or weaker) edges between its vertices and the rest of the network. Graph

clustering is also known as cluster analysis or community detection and clusters are also

known as communities. Clusterings with disjoint clusters are commonly known as

partitions.

In this work, we use the following five well-known clustering algorithms that generate

partitions.

The Girvan–Newman method (Girvan and Newman 2002). This classical algorithm

consists of an agglomerative approach that iteratively removes those edges with the highest

betweenness centrality. Betweenness centrality measures the extent up to which an edge

joins clusters.

The Clauset et al. method (Clauset et al. 2004). This algorithm enhances the Girvan–

Newman method by using auxiliary data structures (balanced binary trees, max-heaps).

The Louvain method (Blondel et al. 2008). This is a hierarchical algorithm that consists

of two main phases. At the first phase, every vertex starts in its own cluster, and a vertex is

moved to a neighbouring cluster when a positive increase in modularity (a clustering

fitness measure) is detected. At the second phase, each cluster is collapsed into a super-

vertex and the first phase is then repeated. The algorithm stops when there are no more

changes and modularity has reached a maximum. It is possible to process weighted graphs

with this algorithm.

Label Propagation (Raghavan et al. 2007). This algorithm is based on infectious dis-

ease spreading. Each vertex starts with its own label. At each iteration, each vertex is

assigned with the label that the majority of its neighbours has and ties are broken ran-

domly. The algorithm finishes when all vertices have the label from the majority of their

neighbours. Even though weighted versions of this algorithm exist, we use the original

version for its simplicity and rapidness.

Weighted Graph Local Clustering (Schaeffer 2005; Garza and Schaeffer 2016). This

algorithm is a bottom-up approach where each candidate cluster starts as a singleton; for

each cluster, new vertices are iteratively added (or, alternatively, removed) with the intent

of maximizing a fitness function. The candidate cluster is finally accepted or rejected. The

algorithm finishes when all vertices have been processed (i.e., considered for clustering).

This algorithm is able to process weighted graphs.

Clustering evaluation

There are different forms of evaluating a clustering. One of these consists of external

evaluation, where there exists a pre-established result model and the clustering is compared

(matched) against this model. The result model is represented by a set of reference classes;

these reference classes can be obtained by reporting ground truth groups or by automatic

generation in the case of artificially-generated networks. Let us introduce the three external

evaluation metrics used throughout the present work: the Adjusted Rand Index, precision,

and recall.

The Rand Index is a common metric for comparing partitions. It is based on agreements

and disagreements. Let us consider a set N of n elements and two partitions for this set:

C ¼ fC1; . . .; Crg and L ¼ fL1; . . .;Lsg, where each partition is a set of disjoint groups.
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Additionally, let us consider that C is the clustering obtained from an algorithm and L is

the set of reference classes. The Rand Index RI is then calculated as

RI ¼ aþ b

aþ bþ cþ d
; ð2Þ

where a is the number of pairs of elements that appear in the same group both in C and L, b

is the number of pairs of elements that appear in different groups in C and in different

groups in L, c is the number of pairs of elements that appear in the same group in C but in

different groups in L, and d is the number of pairs of elements that appear in different

groups in C but in the same group in L. As we can see, the numerator accounts for

agreements in the partitions and the denominator accounts both for agreements and dis-

agreements. In fact, aþ bþ cþ d ¼ n
2

� �
.

The Adjusted Rand Index (ARI) is a version of the Rand Index that is corrected for

chance. To calculate ARI, a contingency table between C and L is formed, and each row

and column are respectively summed (elements in the form ai and bj):

where nij is the number of common elements between groups Ci and Dj, ai is the sum of

row Ci, and bj is the sum of column Dj. The ARI index is then calculated as

ARI ¼ Index � ExpectedIndex

Max. Index � Expected Index

¼
P

ij
nij
2

� �
�

P
i

ai
2

� �P
j

bj
2

� �h i
= n

2

� �

1
2

P
i

ai
2

� �
þ
P

j
bj
2

� �h i
�

P
i

ai
2

� �P
j

bj
2

� �h i
= n

2

� � :
ð3Þ

Let us note that, while the Rand Index is bounded between 0 and 1, the Adjusted Rand

Index allows values between �1 and 1. The former indicates that the partitions have

nothing in common and, conversely, the latter indicates that the partitions are identical.

With respect to precision and recall, which correspondingly evaluate correctness and

completeness, let us consider a cluster Ci 2 C and a reference class Lj 2 L. Precision

(denoted by Pi for Ci) is the fraction of cluster elements that actually belong to the

reference class (Eq. 4). Recall (denoted by Ri for Ci) is the fraction of class elements that

was actually placed in the cluster (Eq. 5):

Pi ¼
jCi \ Ljj

jCij
; ð4Þ
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Ri ¼
jCi \ Ljj
jLjj

: ð5Þ

For example, let us assume that the matching class for cluster Ci ¼ a; b; cf g is

Lj ¼ a; b; d; ef g. In this case, Pi ¼ 2
3
¼ 0:6 and Ri ¼ 2

4
¼ 0:5. Let us note that these scores

are bounded between 0 and 1, where 1 is the best score possible. Let us also note that

precision and recall are calculated per cluster Ci; to obtain overall scores for clustering C, it

is necessary to integrate all individual cluster scores. For example, individual scores can be

averaged:

PðCÞ ¼
P

i Pi

jCj ; ð6Þ

RðCÞ ¼
P

i Ri

jCj ; ð7Þ

where PðCÞ is the average precision for clustering C and, likewise, RðCÞ is the average

recall for clustering C.

Data and methods

To determine the influence of the proposed factors in the formation of formal research

groups, we use data from a case study. With this data, we create networks that represent the

proposed factors. We subsequently cluster these networks with the purpose of obtaining

back the formal groups (a task known as prediction). Factor influence is then discovered by

(1) observing if our obtained clusters resemble the existing formal research groups and (2)

analysing which factors and factor combinations were present in the networks whose

clusterings are the most similar to the formal groups (see ‘‘Results’’ section). It is important

to clarify that, even though formal research groups do not always accurately reflect actual

research teamwork, we are using these groups as the reference classes to evaluate our

network clusterings because we are specifically interested in discovering factors that

influence formal research group formation. In that sense, properly obtaining a ground truth

for actual/potential scientific collaboration is considered as a related problem and is left as

future work.

Research groups at Tecnológico de Monterrey

Tecnológico de Monterrey is a comprehensive multi-campus, teaching, and research uni-

versity with its flagship campus in Monterrey, Mexico. In 2003, a model for fostering the

transition from a teaching to a research university was implemented. This model was based

on the organisation of researchers into groups lead by a principal researcher (Cantu et al.

2009). These groups, originally called Research Chairs, were constituted by 20 researchers

in average among researcher professors, graduate students, and postdocs, and were eval-

uated collectively according to a set of indicators that included scientific publications,

grants, patents, and the promotion of researchers in the Mexican Researcher System (SNI

by its initials in Spanish).

Currently, the academic staff is composed of approximately 800 research professors and

1600 graduate students at the doctoral and master level from disciplines in engineering,
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information technologies, social sciences, arts and humanities, natural sciences, and health

sciences.

This program started with approximately 20 research groups and demonstrated that

organisation and collaboration improved the scientific productivity of the university (Cantu

and Ceballos 2012). Ten years later, the number of research groups grew up to 120, but the

number of researchers increased only marginally, provoking the fragmentation of research

lines on one hand and the increase of collaboration among groups on the other.

This motivated an exercise of research focus where researchers were distributed among

five national schools and organised in 41 national research groups. The formation of these

groups was directed by deans who nominated their main researchers and the areas of

interest. All other researchers decided which group to affiliate to.

During the first 10 years of this program the information used for evaluating the groups

was collected in the Current Research Information System (CRIS) developed at the uni-

versity (Cantu et al. 2005). Collected information permitted to identify coauthorship

relationships, co-participation on groups along this time, the journals on which researchers

published, and all of this was associated to personal identifiers traceable across institutional

databases that enabled to identify, for example, the department on which researchers were

employed.

For our case study, we selected a set of 428 researchers that participated in the for-

mation of the first 41 national groups. This set is constituted by 40 leaders, 345 core

researchers, and 43 postdoctoral researchers. The sample had 4 groups from the Medicine

School, 18 groups from the Engineering School, 5 groups from the Humanities School, 9

groups from the Business School, and 5 groups from the Public Policy School.

A summary of the distribution of researchers per group and their productivity, both per

school, is shown in Table 1. As it can be seen, Humanities has the largest groups, followed

by Medicine, whereas the Public Policy School has the smallest groups. Table 1 also shows

the average number of publications made by researchers of every school, where the pro-

ductivity of the Engineering School’s researchers is the largest.

Table 2 shows the breakdown of the number of publications by document type in each

school. Using the full period of time (2003–2014), this table illustrates the difference on

publication patterns per school; for instance, researchers of Humanities and Public Policy

are those who publish books the most, whereas researchers of Engineering and Medicine

Schools are more used to produce journal articles.

Whereas the number of publications in Tables 1 and 2 were obtained from the insti-

tutional CRIS, we also identified the publications of these researchers in the Scopus

Table 1 Indicators of groups, researchers and productivity per school

School Groups Researchers Average researcher
per group

Avg. docs. (2003–2014)
per researcher

Humanities 5 102 20.4 9.5

Business 9 67 7.4 7.6

Public policy 5 24 4.8 6.8

Engineering 18 179 9.9 12.9

Medicine 4 56 14.0 6.4

Total 41 428 10.4 10.3

Scientometrics (2018) 114:181–216 191

123



database. We counted the number of citations to papers published by these authors between

2010 and 2015, using November 11th, 2015 as cut-off date. In the Scopus database we

found all the document types listed in Table 2, as well as citations to these documents.

Table 3 shows the average number of citations received by collaborations between pairs of

researchers from different or the same school (the total number of citations for all papers

written in coauthorship).

Research collaboration networks

From the CRIS, other institutional sources and information obtained from Scopus we

generated seven different weighted networks. In all these networks, vertices represent

researchers and edges represent a particular relationship (e.g. collaboration), where edge

weight represents the intensity of this relationship (for example, frequency, similarity, or

closeness). The absence of an edge between vertices indicates the lack of a relationship

between researchers in that feature. We obtained the following networks:

Past Coauthorships (PC). In this network, weights represent the number of scientific

publications (articles in journals or proceedings, chapters, and books) coauthored by each

pair of researchers between 2003 and 2009.

Recent Coauthorships (RC). In this other network, weights represent the number of

scientific publications (articles in journals or proceedings, chapters, and books) coauthored

by each pair of researchers between 2010 and 2014.

Former Groups (FG). In this network, weights represent the number of research groups

in which each pair of researchers co-participated during the 10 year period prior to the

formation of the new groups. During those 10 years, researchers moved from one group to

another or remained in the same group. In any case, the groups that prevailed at the end of

that period are not necessarily subsets of the new groups. This definition does not take into

account how much time the co-participation lasted.

Citation-weighted coauthorship (CC). This network represents the reward or success of

a coauthorship collaboration, given by the number of citations in the Scopus database to

papers published between 2010 and 2015, accounted by November 11th, 2015. The

Table 2 Average number of
publications (2003–2014) per
researcher in every school

School Articles Books Chapters Inproceedings

Humanities 6.3 5.1 11.1 18.9

Business 6.6 2.9 5.6 15.0

Public policy 4.6 6.8 10.2 5.5

Engineering 10.5 2.8 4.7 26.4

Medicine 7.5 1.7 3.2 7.1

Total 8.2 4.0 7.0 20.4

Table 3 Cites per collaboration
between researchers across
schools

School Humanities Business Engineering Medicine

Humanities 0.5 5 2.5 –

Business 10.3 0 –

Engineering 18.5 9.1

Medicine 17.2
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number of citations received by publications coauthored by any pair of researchers was

normalised in two ways: (1) by discipline, and (2) for linearity. Discipline is represented by

the school every researcher is ascribed to and normalization considers the average number

of cites received by intra and inter-school collaborations (Waltman 2016). In this way,

citations were divided by the average number of cites received by publications coauthored

by researchers of the corresponding combination of schools (see Table 3). Discipline

normalization values range from 0.052 to 14.108 whenever the collaboration produced at

least one citation. Collaborations that received 0 citations were set to 0.005. Then, for

producing a linear distribution we used the formula

normðCÞ ¼ lnðC þ 1Þ= lnðmaxðCÞ þ 1Þ, where C is the discipline-normalised citation

number and maxðCÞ represents the maximum value for C. We added 1 to the number of

normalised citations for having only positive numbers for each normðCÞ. Collaborations

without citations finally obtained a normðCÞ ¼ 0:002, whereas collaborations having at

least one citation had normðCÞ� 0:019.

Co-participations in thesis committees (TH). This network captures the number of thesis

committees in which any two researchers participated between 2000 and 2014. We only

considered the relationship between the committee director and any other member of the

committee, i.e. we did not count committees were both researchers participated as

reviewers.

Topical similarity (TS). This network captures the number of scientific publications

(articles in journal or proceedings, chapters, and books) written by two authors about the

same topics between 2003 and 2014. This network represents potential collaboration since

accounted publications could be written in coauthorship or not. TS edge weight is cal-

culated by:
X

T

niT þ njT ð8Þ

where niT is the number of papers written by author i classified under category T, likewise

njT for author j. Publications were classified by researchers in one or more topics T of an

adaptation of the Hierarchical Interface to the Library of Congress Classification (HILCC)

taxonomy, constituted by 59 categories.

Organisational Closeness (OC). This network represents how close two researchers are

in the university with respect to the organisational hierarchy, i.e. considering the depart-

ment where each researcher is affiliated to. If a pair of researchers are in the same

department (e.g. the Computer Science Department at Monterrey Campus), the edge

between them weighs 1.0; if they both work at sibling departments (e.g. the Computer

Science and Mathematics Departments, both depending from the Engineering Division at

Monterrey Campus), the edge weighs 0.5; and if they both work on departments depending

from sibling departments (e.g. the Computer Science Dept. at the Engineering Division and

the Ethics Dept. at the Social Sciences and Humanities Division, both at Monterrey

Campus), the edge weighs 0.25; otherwise (e.g. the Computer Science Dept. at the

Engineering Division of Monterrey Campus, and the Computer Science Dept. at the

Engineering Division of the Mexico City Campus), there is no edge between the pair of

researchers. Note that researchers working in the same department form cliques which

dramatically increases the density of this network. This network is used as a representation

of both organisational and geographical proximity (Balland 2011), since researchers are

distributed in 31 campuses located in different cities across Mexico.
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Except for the Organisational Closeness (OC) and the Citation-weighted Coauthorship

(CC) networks, all other networks were normalised in the range (0,1] using

wi ¼
lnðoiÞ

lnðmaxiÞ
; ð9Þ

where wi is the normalised weight, oi represents the original weight, and maxi is the

maximum weight found in that network.

The normalised version of these seven networks represents pure networks because a

single relationship is denoted. Table 4 shows a summary of the properties of these net-

works. From these properties, three key points stand out. First, we can observe that the

number of vertices of CC is relatively low, the reason is that not all vertices had edges

(specially since citations were extracted from Scopus and not all researchers had publi-

cations indexed in this database) and isolated vertices were removed from the graph

(isolated vertices cannot be clustered using graph clustering). The second key point con-

sists of the difference in edges, density, and average degree that TS and OC exhibit in

comparison with the rest of the other networks. While both of these networks—strictly

speaking—do not represent collaboration relationships, in a broad sense we can state that

they reflect potential collaborations, since they associate pairs of researchers with a certain

type of affinity that could lead them to collaborate (e.g. topical affinity). Because potential

collaborations reflect what could be—as opposed to what really is—, it seems natural for

these networks to have more edges and, consequently, a larger degree per vertex and a

larger density.

We also generated hybrid networks by combining two or more pure networks. To

combine networks, we take the union of vertices and the union of edges. The weights of

common edges in pure networks are added and every weight wi is normalised by dividing it

by the maximum weight maxi of the resulting network, i.e.

ni ¼
wi

maxi
; ð10Þ

where ni is the normalised weight. We use a binary scheme, where pure networks are either

present or absent from hybrid networks. We use this scheme because it provides a man-

ageable number of combinations to explore, results are clear and easier to interpret, and it

is easier to observe factor influence in formal group formation; using this scheme can be

seen as an initial approach to our problem and employing a real-valued scheme is left as

future work. Considering the binary scheme and the existence of seven pure networks,

27 � 1 ¼ 127 networks (120 hybrid and the rest pure) are possible.

Table 4 Properties of pure
networks

Vertices represent researchers
and edges represent relationships
(e.g. actual/potential
collaboration) between
researchers

Network Vertices Edges Avg. degree Density ðdÞ

PC 178 273 3.067 0.017

RC 257 434 3.377 0.013

FG 302 742 4.914 0.016

CC 141 244 3.461 0.025

TH 256 461 3.602 0.014

TS 315 6943 44.083 0.140

OC 357 8595 48.151 0.135

194 Scientometrics (2018) 114:181–216

123



A hybrid network resulting of combining k pure networks ð1� k� 7Þ has maxi � k as

long as each pure network has been previously normalised ðwi � 1:0Þ. And by normalizing

edge weights in the hybrid network we have a normalised network again where ni � 1:0.

Isolated vertices are removed from both pure and hybrid networks to prevent the

detection of clusters containing a single vertex due to the lack of connections. This

explains the difference on the number of vertices in pure networks shown in Table 4.

Influence determination through graph clustering

To determine the influence of the studied factors in the creation of formal research groups,

we attempt to identify the 41 groups from our case study by clustering each one of the 127

generated networks, a task which is referred to as group prediction. In that sense, we

assume that, the better the clustering predicts the existing formal research groups, the better

that network quality is and—consequently—the more that the factors involved on it are

influential. Alternatively, this could be seen as finding the network (factor combination)

that maximizes the clustering score obtained by external evaluation.

To have a variegated set of clusterings per network, we use the algorithms described in

‘‘Graph clustering’’ section: the Girvan–Newman method, the Clauset et al. method,

Weighted Graph Local Clustering (GLC), the Louvain algorithm, and the Label Propa-

gation Algorithm (LPA). ‘‘Results’’ section discusses our main results.

Results

To discover the extent up to which do previous collaborations, organisational closeness,

and research topic similarity play a role in the formation of formal research groups, each of

the 127 networks was clustered with the aforementioned algorithms. For algorithms that do

not process weighted networks (Clauset et al., Girvan–Newman), unweighted versions of

the networks were prepared. The resulting clusters were compared against the existing

formal research groups using the Adjusted Rand Index (ARI), explained in ‘‘Background’’

section, Eq. (3). For non-deterministic algorithms (Louvain, GLC, LPA), 30 algorithm

repetitions were performed and the best score was taken (we justify this decision in ‘‘Best

and worst networks’’ section). To evaluate the quality of a network, and thus extract

influential factors, we assumed that this quality was reflected by the score of the clusterings

obtained from the network. In other words, the quality of a network was equal to the

similarity between the clustering (produced by the network) and the formal research

groups, i.e. the score of the network’s clustering.

To examine factor influence, we first selected results based on algorithm performance.

We then generated an overview of these results, validated them, and conducted a series of

analysis. Our analyses revealed strong, weak, positive, and negative influence of the dif-

ferent factors, as well as relevant combinations. We discuss the meaning of these findings.

Clustering algorithm selection

Since clustering results partially depend on algorithm quality, our first step for result

analysis consisted on determining if there were significant differences among the scores

obtained by the algorithms. Figure 1 summarizes the ARI scores obtained with each

algorithm when comparing the formal research groups against the clusterings obtained
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from the 127 networks. We conducted a one-way ANOVA using these results, and the test

showed that the difference between these clustering algorithms was significant ðp\0:01Þ.
Since the Louvain algorithm obtained the best scores (see Fig. 1), we selected this algo-

rithm for analysis of the clustering results. We assumed that this selection would mitigate

the effect of algorithm performance and that the selected clustering results would be more

reliable.

Relevance of factors

To validate the relevance of the selected factors (i.e., as a form of control), we generated 30

random clusterings for each one of the 127 networks. Each random clustering was a

modified version of a clustering obtained with the Louvain algorithm; in this modified

version, vertices were randomly reassigned to clusters.

Figure 2 compares the best ARI scores obtained from clustering each network with

Louvain’s algorithm and the best ARI scores obtained by generating random clusterings

from each network (note that random clusterings do not exploit network information);

Fig. 3 summarizes these scores using a box diagram. As you can see in both figures, the

scores achieved using network information and a clustering algorithm are amply superior

to the scores obtained by random clusterings. This indicates that both, selected factors

(pure networks) and their combinations (hybrid networks), are meaningful for identifying

actual formal groups and not a mere act of chance.

Comparison against random clusterings shows, as well, that indeed there exists a cor-

respondence between our networks and the current formal research groups; at the same

time, we could state that the factors involved in these networks match the formal research

groups in varying degrees (i.e., better or worse scores can be mapped to specific factors and

interactions). However, let us also note that the obtained clustering scores (0.5 maximum,

approximately, and 0.3 on average) are still distant from the ideal, which is 1.0. This may

be due to several reasons, including clustering algorithm quality and/or networks with

incorrect or incomplete information; these scores suggest the presence of other factors that

are currently not being taken into account—a topic which will be discussed later (see

‘‘Discussion’’ section).

Louvain Clauset Girvan GLC LPA

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Algorithm

A
dj

us
te

d 
R

an
d 

In
de

x 
( A

R
I s

co
re

)

Fig. 1 Clustering algorithms
comparison

196 Scientometrics (2018) 114:181–216

123



Best and worst networks

Tables 5 and 6 respectively present the networks that obtained the highest and lowest ARI

scores (consequently, we could regard these networks as, respectively, the best and worst

from the 127). In our methodology, the best network is the pure or hybrid network that

obtains the best ARI score (closest to 1) when comparing the clustering that produces the

Louvain algorithm for that network against the configuration of the formal groups; con-

versely, the worst network is the one whose ARI score is closest to 0.

As previously stated, we used the best score obtained out of the 30 algorithm repetitions.

Nevertheless, in the tables, we include both the best and average scores obtained out of the

30 repetitions to show that, with the exception of some of the worst networks, best scores

only vary slightly from average scores. In addition, the best and worst ten consisted of the

same elements (in a slightly different order) regardless of whether the best or average

scores were used, implying that the scores were considerably consistent from one repetition

to another and the best scores were not outliers.

So far, the only clear patterns we can observe are the following: (a) former groups (FG)

appears in all but one of the best networks, (b) FG does not appear in the worst networks,
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(c) topical similarity (TS) appears in all the worst networks, and (d) TS does not appear in

the best networks. Nevertheless, to understand why the networks in Tables 5 and 6 are

among the best or the worst, we performed distinct types of analysis, which range from

factor frequency to formal statistical analysis.

Influence of factors

With the aim of discovering the most influential factors, we performed several types of

analysis over the obtained clustering results. These include structural, frequency, corre-

lation, and statistical analyses. Structural analysis—which is performed at the network

level—relates network quality to topological properties, and serves the purpose of deter-

mining what kind of structure was produced by influential factors. To have an overview on

these factors, we calculate their frequency on the best and worst networks. Alternatively,

correlation analysis (complemented with violin plots) reveals the relationship between

factor presence and clustering scores. Finally, statistical analysis (performed with factorial

ANOVA) reveals significant factors and interactions, which are explored by means of post

hoc tests. Result interpretation and limitations identified in this work are provided in

‘‘Discussion’’ section.

Table 5 Best networks
Rank Network Best score Average score

1 CC 0.516 0.49

2 RC þ FG þ CC 0.436 0.429

3 RC þ FG þ TH 0.434 0.424

4 RC þ FG 0.429 0.421

5 RC þ FG þ CC þ TH 0.427 0.419

6 PC þ RC þ FG þ CC 0.422 0.415

7 PC þ RC þ FG þ CC þ TH 0.422 0.404

8 FG þ TH 0.422 0.399

9 FG þ CC 0.421 0.42

10 FG 0.419 0.416

Table 6 Worst networks (in
descending order)

Rank Network Best score Average score

127 TS 0.212 0.176

126 TH þ TS 0.213 0.189

125 PC þ TS 0.215 0.188

124 CC þ TS 0.227 0.189

123 PC þ CC þ TS 0.234 0.211

122 CC þ TH þ TS 0.235 0.215

121 PC þ TS þ OC 0.247 0.223

120 PC þ TH þ TS 0.248 0.225

119 PC þ RC þ TS 0.249 0.214

118 TS þ OC 0.252 0.226
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Structural analysis

Analysing the structural properties of the best and worst networks reveals the relationship

between topology and network quality. At the same time, it facilitates appreciating factor

influence into clustering results. In this case, we analyse five network structural properties

that varied across the 127 networks: number of vertices (n), number of edges (m), density

ðdÞ, number of connected components (c), and percentage of vertices in the largest con-

nected component (%vc). To observe how these properties vary in the best and worst

networks, we show their values for the top 5, 10 and 20% networks, as well as for the

bottom 5, 10 and 20% networks (see Table 7). We also depict the relative value of these

properties for the aforementioned networks via spider webs (see Fig. 4).

Recurrent properties of the best networks include a small amount of edges (small size),

a low density, and a considerable number of connected components. Networks with these

three properties are normally easier to cluster than networks whose structure is more

intricate, as less partitions are possible with less edges and graphs that are already frag-

mented. Taking the former properties into account, the factors involved in the best net-

works create sparse structures with a few connections; these connections turn out to be the

right ones, which causes high scores. However, it seems that there are also connections

missing, which could be the cause for the scores still not reaching a peak close to the

perfect one. The former can be evidenced if we calculate precision and recall, where the

average precision for the clusterings of the best ten networks (Table 5) is 0.74, while the

average recall is 0.42. This implies that the clusters produced tend to gather researchers

who happen to be together in formal research groups as well (correctness) but are failing to

gather all the researchers of each formal group (completeness). In addition, the clusterings

from the best ten networks produced, on average, 74% more clusters than the amount of

formal research groups, which is another indicator of missing connections. As mentioned

earlier, the presence of other factors or artificial formal research groups could explain this

lack of information. In this sense, the existence of subgroups or non-collaborative members

inside a formal group could be easily discovered by analysing publications or other

research outputs.

Table 7 Structural properties for the best and worst networks (all the presented quantities are averages,
except for the best network and the worst network)

n m d c %vc

Best network (CC) 141.00 245.00 0.02 16.00 67

Top 5% 324.75 1035.25 0.02 9.50 89

Top 10% 329.23 1047.35 0.02 13.53 82

Top 20% 332.03 1055.07 0.02 12.50 86

Bottom 20% 350.08 6928.76 0.11 4.88 96

Bottom 10% 341.84 7090.62 0.12 1.92 99

Bottom 5% 337.00 7058.28 0.13 1.43 100

Worst network (TS) 315.00 6944.00 0.14 1.00 100

While n stands for the number of vertices in the network, m stands for the number of edges, d for the density
of the network, c for the number of connected components, and %vc for the percentage of vertices in the
largest connected component
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For the worst networks, on the other side, the recurrent properties include a relatively

larger amount of edges, a relatively higher density, and a single connected component. The

factors involved in these networks create denser structures with considerably more con-

nections; these structures are more difficult to cluster and, even though there is valuable

information, most of the connections turn out to be spurious. This can be confirmed, once

again, by precision and recall, where the former is 0.52 on average for the ten worst

networks and the latter is 0.64 on average (much better than for the best ten networks, and

surprisingly the TS network—which obtained the lowest score of the 127 networks—has

the best recall out of the 127 networks with 0.73). This implies that clusters tend to have a

higher degree of completeness, but incorporate a higher number of outliers as well (lack of

correctness); this can be appreciated by the number of clusters produced by these networks,

which is on average 50% less than the number of formal research groups.

The network edge overlap matrix shown in Table 8, describes what percentage of a

network is contained in another. It can be observed, for instance, that TS absorbs most of

the other networks (see column TS), but at the same time, the fraction of edges in TS also

present in the other networks is very low (see row TS); boths TS row and column are

marked in bold in Table 8.

In summary, the factors corresponding to the best networks create sparse, precise

structures (having only the necessary or less information); in contrast, the factors corre-

sponding to the worst networks create dense, misleading structures (having information not

taken into account during group formation).

So far, the analysis has been focused at the network level. However, the next analyses

decompose networks into their underlying factors to reveal the relationship between
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quality and factor presence or absence. At the semantic level, this provides an overview on

the factors that help to predict research group formation.

Frequency analysis

Frequency analysis permits to initially discover which factors were present in the networks

with the highest or lowest scores. We obtained factor frequencies for networks whose

scores were above the mean, below the mean, in the top 20, 10 and 5%, and in the bottom

20, 10 and 5%.

Figure 5a and b show factor frequencies for networks whose scores were, respectively,

above and below the mean (66 in the former case, 61 in the latter). As we can see, topical

similarity (TS) is mostly absent in networks above the mean and, on the contrary, very

frequent in networks below the mean, while the rest of the factors are almost balanced in

both cases.

Table 8 Network edge overlap

PC (%) RC (%) FG (%) TS (%) CC (%) OC (%) TH (%)

PC – 48 29 79 34 21 53

RC 30 – 42 82 48 20 41

FG 11 24 – 52 14 23 20

TS 3 5 6 – 3 4 5

CC 38 85 42 77 – 22 43

OC 12 19 38 56 12 – 18

TH 31 39 31 69 23 18 –

Each cell aij is calculated as jEi \ Ejj=jEij (note that the matrix is asymmetrical)
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Fig. 5 Factor frequencies for networks whose score is above or below the mean. a Networks above the
mean, b networks below the mean
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Figure 6a and b show factor frequencies for the top and bottom 20% (26 networks in

both cases). Interestingly, TS is absent from the top 20% and FG is minimally represented

in the bottom 20%. Furthermore, FG—along with CC and RC—appears frequently in the

top 20%, while TS—along with OC appears frequently in the bottom 20%. PC, RC, CC

and TH appear to be balanced.

Figure 7a and b show factor frequencies for the top and bottom 10% (13 networks in

both cases), where the scenario is similar to the previous one. TS remains absent from the

top but has the highest frequency in the bottom, while FG maintains the opposite beha-

viour. RC and CC have relatively high frequencies in the top but keep low frequencies in

the bottom. OC is absent from the top. PC and TH, once again, appear to be balanced.

Figure 8a and b show factor frequencies for the top and bottom 5% (7 networks in both

cases), where we can finally see that FG, RC, and CC are the factors with highest frequency

in the top and TS is the factor with highest frequency in the bottom.

In summary, three factors that are related to former collaborations (FG, RC, and CC)

have showed to appear frequently in the best networks and factors pertaining to other

aspects (topical similarity, organisational closeness) have shown the opposite behaviour.

Two other factors related to former collaborations (PC and TH) have no clear pattern up to

this point.

Correlation analysis

To confirm the results given by the frequency analysis, we calculated the Pearson corre-

lation coefficient between the obtained network scores (Adjusted Rand Index) and the level

(presence/absence, 0/1) of each factor in these. The results, presented in Table 9, indicate a

strong negative correlation for TS, a weak negative correlation for OC, a moderate positive

correlation for FG, a weak positive correlation for CC and RC, and no correlation for PC

and TH. A negative correlation implies that the presence of that particular factor worsens

the scores (scores are better without the factor), and a positive correlation implies the

opposite (scores are better when the factor is present). These results can be visualised in

Fig. 9.
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Fig. 6 Factor frequencies for networks in the top or bottom 20%. a Top 20% networks, b bottom 20%
networks
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The two outstanding factors—once again—are TS (negatively) and FG (positively); see

the violin plot1 in Fig. 10a for a better appreciation. If we eliminate the networks that

contain the TS factor, it is also possible to observe the negative influence of OC (Fig. 10b).
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Fig. 7 Factor frequencies for networks in the top or bottom 10%. a Top 10% networks, b bottom 10%
networks
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Fig. 8 Factor frequencies for networks in the top or bottom 5%. a Top 5% networks, b bottom 5% networks

Table 9 Correlations between scores and factor presence/absence

Factor PC RC FG TS CC OC TH

Correlation - 0.03 0.15 0.39 - 0.74 0.1 - 0.27 0.02

1 In addition to including a box plot, a violin plot visualises data distribution (the distribution is mirrored
and smoothed).
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Statistical analysis

While frequency and correlation analysis have provided a general picture of each factor

(whether it is associated positively or negatively with scores, and whether it has a strong or

weak participation), statistical analysis provides formal tools for testing the significance of

factors and discovering interactions among them. To this end, we performed factorial

ANOVA on the factor combinations and their respective scores. In this case, all factors

except for TH were significant ðp\0:01Þ. We also discovered significant interactions

involving up to five factors (see Table 10), RC being present in each one of them. We

explored these interactions visually using violin plots with partitions and by means of

Tukey post hoc tests. Our main findings include the impact of TS and OC, as well as

positive interactions.

Our first finding, which is consistent with the correlation and violin plots of the previous

section, indicates that when TS is present along with one or more factors, the scores

decline. The same applies to a lesser degree with OC. However, let us note that no factor

combination yields a score lower than the one obtained by pure TS (i.e., the network with

only TS present). This kind of interaction is illustrated by Fig. 11, where we can see that
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Fig. 9 Network scores with factors present and absent. a FG factor ðþÞ, b RC factor ðþÞ, c CC factor ðþÞ,
d TS factor ð�Þ, e OC factor ð�Þ, f PC factor, g TH factor
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the presence of TS hinders the scores of the last four distributions even though FG and RC

are present (this decline is significant with p\0:01Þ. Note also in this figure the difference

between the first and second pairs of distributions (which is also significant); this other

decline results from the presence of OC.

We found, as well, a positive interaction between FG and RC, since better scores are

produced when both factors are present. However, this improvement is significant only

when TS, OC, and PC are present. As structural analysis has revealed, this happens because

the TS and OC networks have more information and links, thus allowing a better synergy

to take place between these factors (unfortunately, spurious links hinder the final results).

Figure 12 illustrates this interaction (see the fourth and last distributions).

Furthermore, when RC, FG, and TH were present at the same time, the scores improved

in comparison to the factors being alone or in pairs. However, the Tukey post hoc test

revealed the improvement as non-significant. However, no factor combination was able to

produce a score better than the one produced by CC alone.

When analysing the effect of PC, there seems to be no clear pattern. In some cases, its

presence improves scores; in other cases, however, scores are worsened. ‘‘Discussion’’

section discusses the implications for this factor.

Best and worst networks revisited

The previous analyses permit to understand the top and bottom ten networks. With respect

to the former, we can find that the CC network (ranked 1st) has the fittest structural

properties, while the FG network (ranked 10th), on the other hand, has an underlying factor

that is positively correlated to the clustering scores; networks ranked 2nd to 9th have
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Fig. 10 Violin plots for the most outstanding factors. a FG and TS, b OC (without TS)

Table 10 Significant interac-
tions ðp\0:05Þ among five
factors

PC: RC: FG: TS: OC

PC: RC: FG: OC: TH

PC: RC: TS: OC: TH

RC: FG: TS: OC: TH
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underlying positive interactions among factors (note how almost all scores are even better

than FG alone, as already stated in the previous section). With respect to the bottom ten

networks, it now comes as no surprise the TS network to be ranked as the worst: its

structure is misleading and its underlying factor is negatively correlated with the clustering

scores.

PC and TH had a balanced presence both in the best and worst networks, this could

explain the presence of networks ranked 3rd, 5th-8th, 119th-123rd and 125th-126th.

However, if we analyse network edge overlapping (see Table 8), we will note that the TS

network (which is the second largest) basically ‘‘absorbs’’ every other network it is

combined with. Taking into account that CC, PC, and RC are respectively the networks

with the smallest amount of edges, it seems reasonable to see combinations of these

networks and TS among the bottom ten.

Discussion

In this section, we first discuss the influence of the selected factors on research group

formation according to our methodology and our case of study. Then we discuss additional

factors, interpret our results, and describe the limitations of our work.
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Analysed factors

Figure 13 shows a summary of the results observed on frequency, correlation and inter-

action analysis. A greener (darker) background reflects a more positive influence on group

formation and a whiter background indicates a more negative influence. On frequency

analysis, factor presence was normalised with respect to the number of networks on the

top/bottom x percentage of networks (see column Norm); likewise, we normalised with the

number of times each factor appeared in interactions.

Among the proposed factors, former groups (FG), citation-weighted coauthorships

(CC), and recent coauthorships (RC) showed a positive influence in our clustering results.

With respect to FG, it seems logical that researchers who have formed groups in the past

tend to keep working together in new groups. A similar phenomenon can be observed with

RC, as researchers who have collaborated through coauthorships apparently also tend to

gather in research groups. Furthermore, if coauthorships have shown to play a significant

role in group formation, it does not come as a surprise that successful coauthorships—such

as those receiving citations (CC)—play an important role as well. In that sense, successful

collaboration seems to be relevant for group formation. In the overall, these three factors

confirm in our case study that former collaborations have an impact on formal research

group formation. RC and CC, however, were weaker than FG. We believe this may be due
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to coauthorships being less prone to drive people into a group in several cases—for

example, when the coauthorship is multidisciplinary but the group needs to be unidisci-

plinary (restriction) or when the coauthorship is merely a sporadic collaboration (this

applies in the case of RC).

Having split coauthorship in two periods permitted to distinguish between the influence

of past and recent collaboration. However it is notable that PC appears in the top 10 best

networks (Table 5) only when accompanied by RC (two times), whereas RC appears in

four additional networks accompanied by other factors (six times in total). Presumably, the

potential of a coauthorship deteriorates over time. With regard to thesis committees (TH),

researchers merely collaborate in this kind of event and perhaps for this reason TH is not

strong enough to influence group formation. Our results indicate that PC and TH are weak

former collaborations and FG, CC, and RC are strong former collaborations, since the

latter have greater influence in formal group formation.

Our results show a negative influence of the Topical Similarity (TS) network on group

formation that can be explained by both structural and cultural reasons. On one hand, the

TS network we used has excessive relationships and despite many of its edges are included

in other networks (see Table 8), it might also contain weak or irrelevant relationships that

do not influence group formation. On the other hand, researchers are either unaware of

whom they share affinities with (and thus do not contact these people to form groups) or

simply prefer to join people they already know regardless of affinity, as opposed to joining

strangers with similar interests; assuming that the first case is true and even though results

were poor using topical similarity, this kind of information has potential for collaboration

recommendation or group reconfiguration.

We also calculated a Topic Similarity network based on Scopus subject categories,

using journal subject categories as disciplines and using the same Eq. (8) for weighting the

network. Nevertheless, 16 authors not publishing in Scopus indexed journals were missed

in this network, and an even more dense network was obtained ðd ¼ 0:779Þ. The ARI score

of this network was 0.1 when compared against formal groups, lower than the score

obtained by the TS network we used (0.171). The advantage of the topic similarity we used

is that authors themselves chose the categories for each paper they registered in our

database, whereas the Scopus subject category is derived from the journal where docu-

ments are published. This effect is accentuated by the fact that Scopus classifies journals

into multiple categories.

With respect to organisational closeness (OC), a negative influence was found as well.

The reason could be again structural or cultural. This network has the greatest amount of

edges and introduces cliques produced by researchers working on the same department,

Fig. 13 Summary of factor’s influence on group formation. (Color figure online)
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division, or campus. On the other hand, the reconfiguration of groups in our case study was

directed by a nation-wide effort, which caused new groups to incorporate researchers from

different campuses. Disciplinary affinity was more important than organisational/geo-

graphical closeness.

Another explanation for the behaviour of TS and OC relies on the fact that the networks

related to both factors reflect potential collaborations. In that sense, perhaps it is not the

structure of these networks that governs their behaviour (influence for team formation), but

the semantics (‘‘potential ties’’) that governs the structure (i.e. causes the excessive amount

of edges, high density, high average degree, amount of connected components) and, at the

same time, has an impact on the behaviour. As a result, we are observing that previous ties

have a greater influence over team formation than potential ties, with different kinds of

previous ties having different degrees of influence.

With respect to interactions, these seem reasonable as well. If FG, RC, and PC have

shown a positive effect, their combination having better results comes as no surprise (we

believe, nonetheless, that CC’s individual score could not be improved because of its

structural properties—more than the factor’s strength itself). In that sense, if a group has

been working together successfully, it is natural for the members of this group to try to stay

together. The same applies to FG and RC, and FG, RC, and TH—even though TH is a

weaker type of collaboration.

Relation with relevant literature. The work by Dahlander and McFarland (2013) states

that, upon reflecting about the (good) quality of a relationship, people tend to keep that

relationship (tie persistence). This agrees with our findings, since researchers who have

successfully collaborated have formed new groups (evidenced by the CC network). Our

findings also support team formation based on previous collaborations, which agrees with

the works by Hinds et al. (2000), Hahn et al. (2006) and Bercovitz and Feldman (2011) for

student, open software, and inventive teams—respectively. Our results, however, differ

from works such as the one by Balland (2011), where institutional proximity showed to

favour collaboration. We believe this could be due to the design of the network. Another

explanation is that this network, as well as the TS network, mostly reflects potential

collaborations. This view matches the work by Calero et al. (2006), where topical network

clustering is admittedly used for potential research group identification.

Additional factors

Our discussion does not end with the studied factors. As previously mentioned, our results

seem to suggest the presence of other factors for research group formation. We believe

these factors include restrictions and policies, acquaintances, and informal work. For

example, even when collaborations can be multidisciplinary, research groups are usually

restricted by discipline. Also, we observed in our case study that research groups did not

have more than one consolidated researcher (SNI 3) despite the existence of other con-

solidated researchers with a high topical similarity in the institution. At other Mexican

universities, there are policies that force all faculty members to affiliate to research groups

with the aim of stimulating research; however, we have observed that professors who are

not researchers sometimes do not publish nor become connected with actual researchers

(hence their representation as isolated vertices in networks). We believe that some of these

policies hinder natural group formation and create structures that are arbitrary up to some

point. As a result, it becomes difficult to predict research groups based on the information

types that we used, which formally evidence natural teamwork and affinities.
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In combination with policies are acquaintances, which are informal (unlike coauthor-

ships or thesis committees, where a solid evidence is created) but could drive researchers

towards gathering when there is a need to. Some examples of acquaintances include

colleagues (not necessarily related with the researcher’s specific area of interest), former

teachers and classmates, people who work in the same building (do not necessarily belong

to the same department), etc. There are also long-term acquaintances: persons working in

the same building for years, researchers being former students of other researchers, being

together in the same faculty for a lengthy period, knowing a researcher for years, etc.

According to Casciaro and Lobo (2008), people tend to form work ties with whom they

appreciate.

Result interpretation

Our first key result is that the CC network obtained the best ARI score. We believe this is

due to the network representing successful previous collaborations, which stand for

security, stability, and—in the case of this particular factor—quality. In that sense,

researchers could feel drawn towards forming groups with colleagues that have helped to

produce cited papers. This is represented in the CC network as a collection of punctual

connections that give rise to specific structural properties that produce accurate clusters.

Our second key result is that hybrid networks surpass the ARI scores of pure networks

(CC being an outlier). At the structural level, this could be due to the combination of

collaboration evidence, which in turn could be interpreted as a multiplied attractiveness for

team formation. For example, if a pair of researchers have been together in a group (FG), it

is more likely for these researchers to be together in a new group if they have coauthored

papers (RC, PC) or papers with cites (CC), or have co-participated in thesis committees

(TH) as well. The previous collaboration simply becomes stronger. Our third key result is

that FG has the most influence in group formation. As we will see in next section, this

could be due to the influence this factor receives from other factors.

We expected TS and OC to have a positive influence on group formation as well, but

this did not happen. As we previously explained, we believe this is due to the nature of

what their corresponding networks reflect: potential collaborations. OC, for instance,

represents the colleagues a researcher can relate to at a departmental level, but perhaps this

is not attractive enough (or not as strong as a previous collaboration) to conform a research

team. Furthermore, network design could also be playing a role in this result. For instance,

despite the definition of Topical Similarity (TS) accounts for the production on all the

topics where two authors coincide, it does not consider how focused or diversified both

researchers’ production is across disciplines or how aligned they are.

We also expected, in general, ARI results to be higher. Hence we attribute current

results to the presence of other factors (which have been previously explained) that have

not yet been taken into account.

Limitations

Derived from the design of our methodology, it can be noted that the factors to evaluate

must have an appropriate network representation that encodes the relationship between

each pair of researchers. In our case study the population of researchers was chosen from a

single institution. However, for an inter-institutional collaboration recommendation, it

would be necessary to delimit the population of researchers in the first place and then select

factors for which information is available.
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In our case study, we focused on identifying groups exclusively constituted by members

of the Institution. We did not include external collaborators in network construction,

despite the fact that there are collaborative links through them because: (1) there would be

missing information for some networks, and (2) the clustering algorithm might produce

partitions where external authors predominate and only a few internal researchers be

represented.

Given that the information we used in our analysis is prior to group formation we can

conclude that the decision of leaders and group members to join a group is a consequence

(effect) of the collaborations they had in the past, their thematic affinity and their organ-

isational / geographical proximity, discarding reverse causality. Nevertheless, the network

representing joint membership on previous formal groups (FG) could be influenced by co-

authorship (PC/RC), citations (CC) and thesis committees (TH) that occurred during the

same period of time. This could explain why the FG network has the greatest influence

over group conformation on the different analysis we made.

As observed by the results of Topical Similarity and Organisational Closeness, our

methodology seems to be affected by the structural properties of the network used for

capturing a given factor. Pure and hybrid networks including TS and OC show a small

number of connected components and a density greater than 0.1.

It is also important to mention that our case study is based on group reconfiguration.

Perhaps group formation from scratch could yield different results.

Finally, we confirmed our initial hypothesis that the combination of pure networks into

hybrid networks would produce better predictions of group formation. In the top 10 net-

works (Table 5) can be found eight hybrid networks containing FG that outperform the

pure network FG. Nevertheless we found a single pure network (CC) that obtained the best

match with respect to the ground truth, but that in combination with other networks (e.g.

five hybrid networks in the top 10) produced a lower fitness.

However, our results are not conclusive to the extent that although we tested all possible

combinations of the selected factors, the weighting assigned to each factor was the same.

For example, hybrid networks made up of two factors only had a weighting of 0.5 each. It

remains to be determined whether there is a hybrid network with a different weighting that

could obtain a better rating. The former can be achieved using bio-inspired computing

methods, such as genetic algorithms or particle swarm optimization.

Conclusions

We introduced a novel methodology to identify the influence of actual and potential

collaboration factors on the formation of formal research groups in an institution. We used

a network representation of each factor, combined them and evaluated how similar par-

titions generated by graph clustering techniques were to actual groups.

After evaluating 127 combinations of factors we found that, in overall, joint member-

ship on previous formal groups (FG) was the factor with the most positive influence on

group formation (or reconfiguration of groups in our case study), followed by recent

coauthorship (RC) and citations received in coauthored papers (CC). This could be

explained by the fact that other analysed factors representing previous collaboration

(coauthorship, co-participation in thesis committees and citations in coauthored papers)

would already influenced this factor (reverse causality).
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We confirmed our hypothesis by finding eight combinations of factors (hybrid net-

works) containing FG that outperformed the pure network. Nevertheless, the network CC,

a novel representation of collaboration success that we introduced in this paper, outper-

formed all the other combinations of factors we evaluated. The efficiency of CC on group

formation makes it worthy of further study.

The main limitation we found in our methodology was that it is susceptible to structural

properties of networks used for capturing actual and potential collaboration factors. Results

showed that potential collaboration networks, highly dense by definition, e.g. Topical

Similarity (TS) and Organisational/Geographical Closeness (OC), occluded sparse net-

works despite they provide more precise information (e.g. FG, CC, RC).

We also found networks with weak influence on group formation. Past coauthorship

(PC) and co-participation in thesis committees (TH) were present in five of the ten net-

works that better predicted group formation, but they were not good predictors overall.

We believe that the results obtained in this study would be very useful in establishing

incentives for intra-institutional research collaboration. University administrators such as

deans, provosts, chairmen, and other officials, could utilise these findings in the confor-

mation of new research groups or the adjustment of existing ones. We believe that, even

though real collaboration is finally a decision for researchers, their behaviour can be

encouraged by appropriate research management policies. For example, by allocating

internal funds to researchers who are organised around a strategic research line for the

institution and whose funding depends on their joint performance (Ceballos et al. 2017).

Likewise, by shedding light on group formation, evaluating agencies (which grant public

funds, resources, and awards) can direct their assessment towards factors that reflect actual

teamwork.

Future work

The set of factors used in the case study can be extended to detect additional factors that

produce a better match with formal research groups. For instance, academic excellence of

researchers, quantified through the number of papers, citations and weighted degree in

coauthorship networks (Balland 2011), could be used through a proper representation in

terms of homophily/heterophily networks. We could also introduce a network that counts

the number of articles written in co-authorship with external authors to consider these

collaborations even though the latter are not represented in the network. On the other hand,

networks with anomalous structural properties could be reformulated to validate if this was

actually the cause of the negative influence obtained in the results.

Additionally, an optimization algorithm could be used for finding a hybrid network with

a combination of weights for each factor that produce a better match with formal groups.

For instance, a combination aCC þ bFG, with ða; bÞ 6¼ 0:5, that outperforms CC, where

coefficients a and b would indicate to what extent each factor was taken into account.
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Ordóñez-Matamoros, H. G., Cozzens, S. E., & Garcia, M. (2010). International co-authorship and research
team performance in Colombia. Review of Policy Research, 27(4), 415–431.

Owens, D. A., Mannix, E. A., & Neale, M. A. (1998). Strategic formation of groups: Issues in task
performance and team member selection. Research on Managing Groups and Teams, 1, 149–165.

Palla, G., Barabási, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136),
664–667.

Perianes-Rodriguez, A., Chinchilla-Rodriguez, Z., Vargas-Quesada, B., Olmeda-Gomez, C., & Moya-
Anegon, F. (2009). Synthetic hybrid indicators based on scientific collaboration to quantify and
evaluate individual research results. Journal of Informetrics, 3(2), 91–101.

Putnam, L. L. (1992). Rethinking the nature of groups in organizations. Small Group Communication: A
Reader, 6, 57–66.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying com-
munities in networks. Proceedings of the National Academy of Sciences of the United States of
America, 101(9), 2658–2663. https://doi.org/10.1073/pnas.0400054101.

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community
structures in large-scale networks. Physical Review E, 76(036), 106. https://doi.org/10.1103/PhysRevE.
76.036106.

Reagans, R., Zuckerman, E., & McEvily, B. (2004). How to make the team: Social networks vs. demog-
raphy as criteria for designing effective teams. Administrative Science Quarterly, 49(1), 101–133.

Rey-Rocha, J., Garzón-Garcı́a, B., & Martı́n-Sempere, M. J. (2006). Scientists’ performance and consoli-
dation of research teams in Biology and Biomedicine at the Spanish Council for Scientific Research.
Scientometrics, 69(2), 183–212.
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