
Extracting knowledge patterns with a social network
analysis approach: an alternative methodology
for assessing the impact of power inventors

Massimiliano Ferrara1,2,4 • Roberto Mavilia2,3 •

Bruno Antonio Pansera1,4

Received: 28 April 2017 / Published online: 16 October 2017
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Abstract This paper proposes a new, alternative analysis of patent data in order to extract

knowledge patterns from inventors’ collaboration networks. Indeed, moving from a basic

network analysis, we provide new developments to map and study co-inventorship. The

goal of this research is to provide an overall understanding of the dynamics concerning

knowledge flows in inventive activities. We show how the network of inventors is, on

average, increasing in size: more and more inventors are contributing to technology

innovations and they are more connected to each other. We also show to what extent

inventors from different countries tend to cooperate with their local peers or internation-

ally. Furthermore, an analysis of the clustering of inventors is carried out to show dif-

ferences across countries in the structure of inventors’ communities, with a particular focus

on the dynamics of collaboration for power inventors (i.e. star inventors).
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Introduction

This paper proposes a new, alternative approach for the analysis of patent data based on

social network analysis (SNA). Our quantitative assessment allows us to fully exploit the

richness of patent data as well as to extract knowledge patterns from patent inventors’

network of collaborations. Furthermore, our approach describes a methodology in order to

address several issues related to inventive activities and it ultimately provides a more

complete understanding of the patterns that characterize the geography of innovation.

In particular, the study proposes a new SNA-based approach (with simple and infor-

mative empirical applications) to extract knowledge patterns about patent inventors and

their structure of relationships. Indeed, in our network, nodes represent inventors while

edges denote co-inventorship relations. Moving from a basic network analysis, we provide

new developments to map and study co-inventorship.

The advent of SNA has provided an important tool that helps researchers to better

understand the impact of scientific contributions to the existing body of literature.

Specifically, the analyses developed using citations data provide meaningful metrics for

gauging the impact of scholars’ contributions in a certain field (Griffin et al. 2016).

Wasserman and Faust (1994) emphasized that the usefulness of SNA lies in the successful

recognition of the existing relationships between social entities, models, and the associa-

tions between the two. From its introductory developments in sociology in the early 1970s

(Wellman and Whitaker 1974) the use of SNA has increased significantly in popularity

throughout the social sciences (Otte and Rousseau 2002). Since then, SNA has been

applied in many disciplines, ranging from anthropology (Boissevain 1979) to zoology and

animal biology (e.g., dolphin social networks; Lusseau 2003).

Recent advances in citation indexing and bibliometric studies provide new tools for

network analysis methods and their applications across social sciences as well. For

instance, communication researchers have widely relied on SNA to understand publica-

tions’ patterns and trends in specific content areas such as health communication (Kim

et al. 2010). Scientific publications have also been used to predict job placements in the

communication sector (Feeley et al. 2011). As the current study illustrates, SNA is a tool

that can be meaningfully incorporated into tailored methodology in order to rank authors.

As an example, Griffin et al. (2016) chose to use eigenvector centrality rather than simply

tally up the number of publications to create a ranking of authors. Kim et al. identify the

structural patterns of theoretical relationships in communication sciences by using both

webometric and SNA methods. In particular, they analyzed the networked structure of

theories in social sciences represented by co-occurrences on the World Wide Web. To do

so, co-occurrences in communication science theories were retrieved from the Web and

analyzed using SNA tools. Although relational bibliometric usually examines relationships

within science mainly through the Institute for Scientific Information (ISI), it has under-

gone a revolutionary change through the wide diffusion of new important sources of

scientific communication such as scholars’ webpages and online article databases (aka

Google Scholar) (Delgado and Repiso 2013; Lee et al. 2009; Park 2010; Thelwall 2009).

On the one hand, the use of webometrics as a new type of bibliometric source has flatly

emerged. Webometrics is widely understood as the study of web-based contents and web

phenomena through quantitative methods (Thelwall 2009). SNA methods, on the other

hand, constitute a set of analytical techniques for understanding the structure of scholarly

communication across many academic disciplines (Chung et al. 2013). More precisely,

SNA is used to identify structural properties based on relationships or patterns of rela-

tionships among interacting components (Wasserman and Faust 1994). The intuition
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behind such methodology is that the social ties among which actors are embedded in has

important consequences for such actors indeed (Freeman 2004). Several scholars have

argued that the combination of the SNA methods and bibliometric tools can provide a

richer picture of the status of a given field (Leydesdor 2007). On top, webometrics offers

interesting analytical developments to provide a more comprehensive understanding of the

status of communication sciences. (Anderson 1996: 8).

Before going back to specific content of the current paper it is appropriate to very

quickly review the notion of gatekeepers. Following Le Gallo and Plunket, we can adopt

two different definitions: Giuliani and Bell (2005) and Morrison (2008) consider gate-

keepers as local actors with strong connections outside their cluster and with a central

position within their cluster, enabling them to exploit externally produced knowledge

within their local context; instead Gould and Fernandez (1989) consider gatekeepers as

individuals with unique and non-redundant ties to external actors (Breschi and Lenzi 2015;

Graf and Kruger 2011).

Le Gallo and Plunket have further explored whether and how gatekeepers contribute to

the performance of innovations within clusters. Using patent data and inventor networks in

genomic they analyzed whether gatekeepers affect the quality of patents produced both by

the teams which they belong to as well as by the teams which they are socially connected

to, within regional networks. Hence they were able to separate for each individual its intra

and inter-regional connections. This micro-level approach can help us to understand how

the embeddedness within regional and global networks might influence inventive

performance.

As a matter of fact, the analysis of patent data through SNA methods can represent a

building block in investigating scientific developments and understanding the nature of

innovative processes of a country. In addition, such analysis can lead policymakers to

make better and more efficient investment choices. Finally, investigating inventions via

patent data allows decision makers to monitor the evolution of R&D activities over time

among different organizations, institutions and countries. By looking at patent networks,

indeed, we may also provide a precise and detailed picture of cooperation occurring among

different entities and/or countries in the R&D sector, an indicator of geopolitical devel-

opments and possibly a forecast of future patterns of innovative activities.

In several fields the amount of data available to researchers and scholars has rapidly

increased over the last few years. Patents data have been growing as well. To deal with this

huge quantity of information, scientists have been relying more and more on a wide range

of statistical methods that belong to the domain of data science and big-data analytics.

Despite new statistical approaches are starting to spread, most of the analyses in the patent

literature still rely on classical methodologies.

In fact, approaches based on classical statistical methods present several difficulties for

the investigation of phenomena that involve large amount of data and where variables are

strictly related to each other (Tsvetovat and Kouznetsov 2011); whereas SNA appears

particularly adequate to it.1

Bearing in mind such methodological issues, differently from most other studies, we try

to exploit methods drawn from data science to provide a meaningful and comprehensive

elaboration of such large quantity of data. In particular, we propose a new, general

approach to the extraction of knowledge patterns by looking at patent inventors and their

relationships.

1 See, for example, (Wasserman and Faust 1994; Barabási et al. 1999, 2002; Barabasi and Albert 1999;
Albert and Barabási 2002; Clauset et al. 2004, 2009; Leicht et al. 2006; Newman and Leicht 2007).
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Thanks to this approach we can describe many features of scientific and R&D col-

laboration among different inventors and across countries, characterize new measures and

concepts, such as the notions of ‘‘power inventor’’ and ‘‘clique of inventors’’, as well as

adapting to our analysis some SNA metrics already employed in different domains.

The paper is structured as follows. After reviewing the relevant literature in the fol-

lowing section, ‘‘Data, research questions and methodology’’ Section illustrates our data

and methodology showing how we address several questions about inventors’ networks

and the geography of innovation. Furthermore, we present the results of our measurements

and computations for a set of countries that in our opinion yield the most interesting and

representative outcomes. Then, we briefly discuss our contribution to the literature. Finally,

‘‘Concluding remarks’’ Section concludes.2

Literature review

Since the seventies many researchers have expressed some considerations about the

influence that many companies can have on research and on the fields of expertise. Just

think of what was published by Crawford and Biderman (1970), Blumer (1967a, b), Green

(1971), Horowitz (1967), McCartney (1971), Orlans (1967), Platt (1971), Rist

(1973, 1975), Galliher and McCartney (1973), Furstenberg (1971) where the authors’

relationship between sponsorship by various governmental agencies and commissions, as

well as private foundations, has influenced the ‘‘objectivity’’ of scientific investigations.

Broadhead and Rist (1976) speculated and synthesized the effect of the sponsorship of

the research activity, summarizing this action in three fundamental steps:

1. Through detailed specification of the research issue so that the eventual problem is cast

within a framework congruent with the sponsor’s perspective.

2. Through emphasis upon a positivistic style of research thought more susceptible to

manipulation for the purposes of controlling the results.

3. Through the threat of withdrawing present funding and denying future support should

the researcher move into areas ‘‘not in the best interest’’ of the sponsor.

They point out that: ‘‘The actual manifestations of social control over social research

can be shown as they appear within organizational frameworks. A key component of that

control organization is the small group of managers and administrators within a formal

organization who screen prospective researchers seeking funding, entering into the orga-

nization itself, or accessing to data already collected. This small group of ‘‘gatekeepers’’

has a central role in deciding the fate of those who desire to conduct social research with

someone else’s money, data, or organization.’’ (Broadhead and Rist 1976)

Recent studies have shown how the situation after forty years has not changed much. In

Zsindely et al. (1982a, b) it was showed that, at least in chemistry, the editorial bodies of

international journals are tree gatekeepers and their professional status is positively cor-

related with the scientific quality of the international journals in this discipline. The person

of the editor-in-chief alone seems to have a much lesser in influence. They lead back this

gap by the lower participation of scientists of certain countries in the editorial boards of

2 There are also two appendixes in the additional material: Appendix A includes formal definitions of
several concepts introduced in the main text, whereas Appendix B presents statistical facts about patents and
inventors’ collaboration in relation to technological sectors (which in our dataset are captured by IPC
classes), not discussed in the main text due to space limitations.
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international chemistry journals is frequently compensated by the high citation frequency

of the editors coming from these countries. The higher than average citation frequency of

editors from countries with scientific life of a more closed character shows that in order to

receive an invitation to the editorial boards of international chemistry journals scientists

from such countries must acquire a higher than average international prestige.

In Zsindely et al. authors point out the significant correlation between the number of

science journal editors from different countries and the number of scientists. They argue

using ‘‘the extent of participation in the editorial hoard of international science journals as

a new science indicator. The deviations from the regression lines between the new pub-

lication indicator and other indicators allow one to assess the ‘‘open’’ or ‘‘closed’’ character

of the scientific life of a given country’’. They also considered that the critical mentality

and decisions of the editors have so far protected and will also warrant in the future the

social and intellectual integrity of science. Moreover Crane (1965) rightfully considers the

members of such boards the publication gatekeepers of a given field.

In the field of economics and management of innovation (EMIT) there is a strong

evidence that research collaborations across firms and regions are a key factor for the

acquisition of external knowledge (Singh 2005), as well as for promoting innovation

(Miguélez and Moreno 2013).

Several papers analyze various aspects connected to researchers’ professional rela-

tionships and their impact on innovative activities. With this regard our work aims at

providing an original approach for the analysis of these relationships and for the extraction

of knowledge patterns exploiting patent data. As already mentioned, the base of our

analysis is on inventors and not applicants, as in Lissoni (2012). Differently though from

Hingley and Bas (2009) for instance who investigate the evolution of both the number of

applicants and the distribution of applicant size.

Patent data and innovation

Economic studies of innovation have for long made use of patent data (Griliches 1990;

Nagaoka et al. 2010). Assisted by digitalization of records and increasing computational

power economists and other social scientists have extracted increasing quantities of

information from patent documents: the applicants’ identity and location, the technological

contents of the invention, or the latter’s impact, as measured by citations. More recently

information on inventors has attracted a good deal of attention. Identifying inventors

allows studying their mobility patterns, both in space and across companies (Agrawal et al.

2006; Marx et al. 2009) as well as their social capital, as measured by their position in co-

inventor networks (Fleming et al. 2007; Breschi and Lissoni 2009; Lissoni et al. 2010).

Inventor data can also be matched to additional information at the individual level, ranging

from professional identities (does the inventor appear also on a list of R&D employees or a

list of academic scientists?) to other type of archival data on knowledge related activities

(such as scientific publications; see Azoulay et al. 2009; Breschi et al. 2008; Lissoni et al.

2008). Identifying inventors within any given set of patent data, as well as matching them

to any other list of individuals, requires the elaboration of complex disambiguation

algorithms. They are necessary to analyze in a non-trivial way the text strings containing

the inventor’s names, surnames, and addresses. Yet, it is only of late that users of inventor

data have started discussing openly about the disambiguation techniques they employ and

examine their implications in terms of data quality and reliability of the evidence produced

(Raffo and Lhuillery 2009; Li et al. 2014).
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Over the past decade universities and public research organizations have devoted

increasing attention to the issue of Intellectual Property (IP), as part of a general trend

towards a greater commitment to work with industry, market their research results and

promote entrepreneurship based on science. The Academic Patents in Europe (APE-INV)

coordinated the collection of data on micro- inventors, scientists and patents. Moreover, it

promoted the production of studies on a national basis across Europe. APE-INV has also

promoted an operational notion of ‘‘Patent academia’’, centered on the identity of the

inventor (the academic researcher) rather than that of the assignee (the Researcher

University). Most academic patents are assigned to be commercial companies, both as a

result of the search sponsorship or market transactions. APE-INV has also actively pro-

moted a debate on the economic value of academic patents, the role of IP law and uni-

versity autonomy in determining the propensity of universities to invest in patents, or

relationship between the productivity of scientists and their activities related to patents.

Miguélez and Moreno (2013) document the existence of a positive correlation between

cross-regional networking and innovation in Europe. Similarly, Breschi and Lissoni (2009)

find that network activity across firms and locations is in large part responsible for the

localization of knowledge flows. Nicholas (2009) analyses the relationship between

inventors and the locations of R&D laboratories of firms, identifying a strong positive

effect of distance from a laboratory where the average quality of externally available

inventions is high.

Thelwal (2014) explores the relationship between geographic distance and triadic clo-

sure, which represent two important forces driving the evolution of collaboration networks.

By analyzing the dynamics of inventor networks in German biotechnology sector she is

able to show—both theoretically and empirically—that inventors increasingly rely on

network resources, forming links with partners of partners. On the other hand, the direct

impact of geographic distance on the formation of ties is decreasing: initially the triadic

closure reinforces the effect of geographic distance by closing triads among proximate

inventors, then it becomes an increasingly powerful vehicle to generate longer-distance

collaboration ties, and so the effect of geographic proximity decreases.

Guellec and Pottelsberghe de la Potterie (2001) present three new patent-based indi-

cators of technology internationalization that reflect international cooperation in research

and the location of research facilities of multinational firms. Exploiting these indicators,

they find that there is an increasing trend towards technological globalization in the OECD

area and that Nordic countries have a particularly high propensity to collaborate together.

Ponds et al. (2010) investigate the effect of knowledge spillovers from academic

research on regional innovation. They found that this effect is mediated not only by

geographic proximity, but also by network stemming from university-industry collabora-

tion. They also show that this type of collaboration is not limited to a regional scale.

Patent data and international collaboration

The importance of knowledge spillovers is well known in the literature (see, for instance,

Griliches (1992). Especially at the international level they can play an important role in

reducing the growing technological gap among the most and the least sophisticated

economies. To investigate the impact of international knowledge flows and their effects

many studies focused on international R&D collaborations, cross-border inventions (i.e.,

inventions involving people coming from different countries) and on their impact on

innovation quality.
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At the theoretical level, there are some authors who argued that these collaborations

could induce higher-quality innovations thanks to the combinations of different skills and

knowledge (Levinthal and March 1993; March 1991). Other authors suggest instead that

international collaborations may be not efficient due to high coordination costs and diffi-

culties in integrating knowledge coming from different research teams, Furman et al.

(2006); Grant (1996); Singh (2008).

At the empirical level, results are mixed. Branstetter et al. (2014) investigate Indian and

Chinese inventors and finds that cross-border inventions receive more citations - and,

hence, are more valuable—than patents filed by inventors of only one country. Montobbio

and Sterzi (2011) show that innovative activities of Latin American countries have largely

benefited from R&D performed on some OECD countries. Recently, Giuliani et al. (2016)

find that cross-border inventions between BRICS firms and EU actors are growing and are

more valuable than domestic ones, representing an opportunity to accumulate technolog-

ical capabilities. Alnuaimi et al. (2012) also finds that patent quality is positively influ-

enced by international collaborations. However, it also evidences the difficulties of

research teams in the absorption of external knowledge. Hence it is not clear whether such

collaborations may enhance the accumulation of technological competencies in developing

countries.

As for developed countries Kim et al. (2009) investigates the international transmission

of knowledge in USA. It finds that the number of US firms that collaborate with researchers

having foreign experience has increased. It also shows that these firms have an easier

access to non-US technological know-how than firms not collaborating with inventors

characterized by foreign research experience.

Menon (2014) also analyses the US scenario, and in particular the effect of top

inventing companies on local inventors. His aim is to check whether the patenting activity

of the most inventive companies have any causal effect on other local inventors: his results

show that this effect is not bounded within narrow technological categories. Developing an

original approach based on SNA, our work goes in this direction.

Patent data, international collaboration and SNA

The literature that studies patent data and dynamics of innovative activities using SNA is

still small yet rapidly growing, indicating that it may be a promising and insightful

approach. In an early study, Balconi et al. (2002) show that both classical and advanced

contributions to the economics of knowledge—as well as most of the empirical research on

contributions of universities to commercial innovation—can be investigated using SNA.

Lissoni and Miguelez (2014) study the geography of innovation analyzing patents. They

show how localized knowledge flows are largely mediated by labor and technology

markets and how social distance among inventors, along with inter- and intra-national

borders, affects the diffusion of knowledge. Lubango (2015) finds that both the links and

the H-indexes of co-inventors and co-authors highly enhanced the flows of academic

knowledge into industrial patents in South African firms, as well as the diffusion of

knowledge in large R&D and innovation clusters. Hsueh and Wang (2009) also propose a

network-based analysis of patent data, applying it to the field of Liquid Crystal Display.

They aim at understanding how knowledge flows spread among institutions and countries.

In particular, their approach identifies the key influential players, knowledge spillovers

patterns among them and the overall knowledge spillover efficiency. Wagner and Ley-

desdorff (2005) hypothesize that international collaboration is a self-organizing network,

exploiting SNA to show that growth of international co-authorship can be explained on the
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basis of the organizing principle of preferential attachment, even if the attachment

mechanism deviates from an ideal power-law.

Furthermore, Chen and Guan (2016) use patent citations data and SNA to show that

linkages among core and peripheral nodes are sparse, more so for linkages between

peripheral nodes only. Linkages between core and peripheral nodes though are reported to

be important to building innovation capabilities and technological catch-up.

Forti et al. (2013) analyze academic inventors’ neighbors to investigate the contribution

of social networks to the generation of inventive ideas within university. They show that

the ego-networks of inventors are more cohesive than the ones of non-inventors. This is

probably due to higher climate of trust. They also find that both inventors and non-

inventors extend their network and become more central over time, as well as no evidence

that after patenting inventors close their networks. Ejermo and Karlsson (2006) study the

structure of interregional inventor networks in Sweden, showing that several factors

influence the spatial affinity of regions. In particular, they show that spatial affinity extends

beyond a region if it has less own R&D-related resources, it is close to the other region and

it is relatively small.

Similar to our work, Sternitzke et al. (2008) analyze cooperation networks between

inventors and applicants—in the field of optoelectronics—emphasizing bibliometric

measures and network theoretical ones. Furthermore, they investigate ‘‘boundary spanner’’

inventors and, in a general way, the role played by applicant position within citation

networks.

Another notable work using SNA was carried out by Cammarano et al. (2017). They

focused on bio-pharmaceutical companies and point at a relationship between network

structure and innovation strategies3 In particular, their research finds a rationale behind

R&D international collaborations with SNA validating the technique for innovation

studies.

Wang et al. (2014) use patents data to show how inventor’s network structure affects

researchers’ exploratory innovation. In particular, their study reveals a U shaped rela-

tionship between the average degree centrality of inventors and their exploratory attitude.

Building upon Wang et al. (2014), Tseng et al. (2016) focus on semiconductor patents

data to investigate the relationship between inventors’ network properties and their inno-

vation capabilities. They show that firms that are more central in the network and have

more linkages within the network are more likely to generate new knowledge.

Data, research questions and methodology

In this section, we present our approach, along with its support data structures and metrics,

showing how it can address several questions related to patents and inventors and how it

can ultimately provide an understanding of patterns about the geography of innovation.

An output of a EU-funded project (Id: 506022 under FP6-2002-CITIZENS-2 call) called

Knowledge-Based Entrepreneurship: Innovation, Networks and Systems (KEINS) leaded

by the Invernizzi Center for Research on Innovation, Organization, Strategy and

Entrepreneurship at Bocconi University (ICRIOS) was the EP-INV database produced by

ICRIOS which implemented the so called Massacrator algorithm (Pezzoni et al. 2014),

containing all EPO applications, reclassified by applicant and inventor; and from three lists

of university professors of all ranks (from assistant to full professors), one for each

3 We thank an anonymous reviewer for pointing at this important reference.
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countries (PROFLISTs). Academic inventors have been identified by matching names?-

surnames of inventors in the EP-INV database with those in the PROFLISTs and by

checking through the e-mail and phone the identity of the matches in order to exclude

homonyms. This data-base was largely used world-wide, and in particular the methodology

used to build a database on academic inventors from France, Italy, and Sweden

(1978–2004), which was delivered to the European Commission as part of the KEINS

project (Knowledge-Based Entrepreneurship: Innovation, Networks and Systems) and

which will provide the basis for future publications was described in Lissoni et al.

(2006a, b). It provides an overview of the database contents, as well as information on

access rules and on related datasets by CESPRI-Università Bocconi. The database is the

result of joint efforts by CESPRI—Bocconi University (IT) and other European univer-

sities; in Pezzoni et al. following Raffo and Lhuillery (2009) the authors described dis-

ambiguation as a three step process: cleaning & parsing, matching, and filtering. Based on

Monte-Carlo simulations, by means of sensitivity analysis, we show how various filtering

criteria can be manipulated in order to obtain optimal combinations of precision. They also

show how these different combinations generate different results for applications to studies

on inventors’ productivity, mobility, and networking and discuss quality issues related to

linguistics. The criteria are sensitive to data quality, while those based upon co-inven-

torship networks are always effective. Details on data access and data quality improvement

via feedback collection are also discussed. In Lissoni et al. (2008) the authors described

networks of inventors and the position of academic inventors in France; in particular, they

built upon Balconi’s methodology in order to map the networks of inventors in France.

They also exploited the French section of the KEINS database complemented with the

novel dataset on CNRS inventors collected following the KEINS methodology.

Patents have been one of the main topics investigated in several fields,4 as they provide

a wealth of useful information on the dynamics of innovative processes, on the state of art

of the Research & Development (R&D) in different sectors and its main characters, i.e.

researchers and inventors (Balconi et al. 2002; Breschi and Lissoni 2009; Guellec and

Pottelsberghe de la Potterie 2001; Hingley and Bas 2009; Hsueh and Wang 2009; Singh

2008).5 As a matter of fact, patent submission is usually the first public claim of a new

invention that could become an innovation (Garcia and Calantone 2002).

The data used in this research comes from the PATSTAT-ICRIOS database. Hence, we

have access to a large amount of information: the priority, the number of applications and

publications and the related dates, the title and abstract, the designated states for protection,

the status of application, the main and secondary International Patent Classification (IPC)

codes, the applicants’ and inventors’ names and addresses, and the references (citations) to

prior art patents and to non-patent literature.6 As Lissoni (2012), we use data regarding

inventors rather than applicants.

Thanks to the wealth of details about patents and inventors present in our dataset we can

provide a first, intuitive answer to several questions:

4 See, for example, Abbas et al. (2014), Lissoni and Miguelez (2014), Lubango (2015), Wagner and
Leydesdorff (2005), Forti et al. (2013), Ejermo and Karlsson (2006), Sternitzke et al. (2008).
5 See also the more recent contributions of Lissoni (2012), Landini et al. (2015), Miguélez and Moreno
(2013) and Lubango (2015).
6 We also have access to File Index (FI) concordance tables to convert IPC codes into more aggregated and
manageable technological classes or Nomenclature of Units for Territorial Statistics (NUTS3).
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(a) What is the degree of cooperation among inventors coming from different countries?

(b) Does it evolve over time?

(c) Are there groups of inventors that cooperate intensively with each other?

(d) Do countries maintain research collaborations with specific other countries?

(e) Are some inventors more ‘‘important’’ than others?

(f) Which is the distribution of patents against inventors and IPC classes?

To address these issues we consider a social network whose nodes and edges represent

respectively inventors and co-inventorship relations. We use the universe of data, including

all inventors filing for patent applications between 1980 and 2010 in all technology fields

represented by the 2-digits technology classification according to WIPO (2011).7 On top of

that we define other support data structures and accompanying metrics—both establishing

new ones and adapting those already existing to make them suitable for this type of

analysis.

For instance, among those structures we introduce and characterize the concept of

‘‘power inventor’’, which aims at capturing those inventors that display a high impact in

terms of both number of patents and number of collaborations—including at the interna-

tional level—and hence have the potential to favor further developments and improve-

ments of R&D activities within their countries. As another example we define a new metric

to quantitatively understand how much inventors tend to cooperate—intensively—within

compact groups.

In the rest of the paper we introduce several metrics and additional data structures in the

additional material (more formally characterized in Appendix A), addressing different

questions about inventors and patents and coming up with a series of statistical facts about

knowledge patterns among the countries in our dataset.

Distribution of patents and inventors’ network

Here we provide a characterization of patents and inventors present in our dataset, showing

how patents are distributed among inventors for a large number of countries and how the

inventors’ network has evolved over time.

Distribution of patents among inventors

Given a node ni in a social network G where the nodes correspond to inventors,8 we define

the metric M1 such that M1i denotes how many patents were filed by inventor ni; this metric

coincides with the classical weighted degree centrality (Hanneman and Riddle 2005). We

measure M1 for all countries in the European Union, all Mediterranean and North African

countries, BRICS (Brazil, Russia, India, China, South Africa), South Korea, Japan, Viet-

nam and Taiwan.

For most of these countries M1 follows a power law distribution, implying that there is a

low number of inventors filing a high number of patents and large number of inventors

filing a very low number of patents. Some other countries—i.e., Greece, Croatia, Principate

of Monaco, Slovenia, Turkey and the BRICS—show a slightly disturbed power law dis-

tribution, as the highest number of inventors and filed patents is quite low. Other

7 For more detailed information on inventors disambiguation and the Massacrator routine used in this
research please see http://ideas.repec.org/p/grt/wpegrt/2012-29.html.
8 See Appendix A, Sections A.1, A.2 and A.3, in the additional material.
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countries—i.e. Egypt, Lebanon, Malta, Morocco and Tunisia—present a disturbed power

law distribution. Again, this is due to the low number of inventors and filed patents in the

corresponding countries. Finally, for some countries—i.e. Albania, Algeria, Libya and

Montenegro—the distribution of M1 is totally different from a power law. In some cases,

even a linear distribution can be observed, as in the case of Algeria.9

Figure 1 displays the distribution of M1 for France, Greece, Egypt and Algeria, each one

representing the distribution of the different aforementioned categories of countries.

Fig. 1 Distribution of M1 for selected countries

9 For all those countries whose distribution of M1 is totally different from a more or less disturbed power
law the number of inventors and filed patents is so scarce to make any investigation about them unreliable
and not really meaningful.
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Evolution of inventors’ networks over time

With the supports of social network Gk,
10 we now present the temporal evolution of the

number of nodes Nkj j, which is the set of inventors of a given country k, the number of

Fig. 1 continued

10 See Appendix A, Section A.4. in the additional material.
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edges Ekj j, which corresponds to collaborations established by inventors in country k, and

the density11 Dk.

Generally, all countries into consideration present a growing number of nodes and edges

over the years. Some countries—e.g. those of BRICS, South Korea, Taiwan, Turkey and

Israel—present an exponential growth. The majority of EU countries instead show an

increasing linear trend, although there are countries that with the North African ones show

a growing but irregular trend over time.

As an example, Fig. 2 displays the temporal evolution of these variables for China and

for Italy. In case of China notice that for both nodes and edges the rate of growth starts

growing exponentially in 2002, whereas in case of Italy we can see that both nodes and

edges show an increasing trend until 2008 and that thereafter both numbers have sub-

stantially remained constant.

As for density Dk, it generally decreases, as the density of a network is inversely

proportional to the square of the number of nodes. To obtain a constant trend against time it

would be necessary that the number of edges grows proportionally to the square of the

number of nodes, which is unthinkable in real scenarios.

In Fig. 2 we also show the trend of Dk for China and Italy. Observe that the decrease is

more pronounced in China than in Italy: this is due to the fact that the increase of the

number of nodes is exponential for China and linear for Italy.

Fig. 2 Trends of jNkj, Ekj j and Dk for selected countries (China and Italy)

11 Recall that in SNA the density of a network is equal to the ratio of actual connections and all potential
connections in the network.
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Cooperation patterns among inventors

We now address the issue of cooperation among inventors. As a first step into our

investigation, we define a new metric M2, such that M2i indicates the dimension of the

neighborhood of ni.

This is useful to understand how much the inventors of a given country k tend to

cooperate for filing patents. We measure M2 for all Mediterranean and North African

countries, the BRICS and some EU member states. For most of them it follows a quite

disturbed power law distribution.

For instance, in Fig. 3 we show the distribution of M2 for Brazil that presents a peak in

the value of M2 between 0 and 10. The only country presenting a perfect power law

distribution is Austria, as shown in the same Figure.

Fig. 3 Distribution of M2 for Brazil and Austria
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Cliques of inventors

To understand the dynamics of inventorship relations, and hence how cooperation occurs

among inventors, we resort to the concept of clique. In SNA clique corresponds to a sub-

graph where every node is adjacent to all the others. In our scenario it indicates the

presence of a compact group of inventors who cooperate intensively with each other. We

compute the distribution of the cliques’ dimension for the social network Gk.

Since in a clique all nodes are totally connected to each other its dimension can be

considered a valid metric to quantify inventors’ tendency, in a given country, to form more

or less large working groups. The general trend we find for this phenomenon is the one of a

power law distribution, where the dimension of the largest clique being different from

country to country.

For instance, in Fig. 4 we report the distribution of cliques for Japan and United

Kingdom. In both cases we can observe a power law distribution, with a different maxi-

mum number of cliques: although Japan has far more nodes than the UK the dimension of

its largest clique is lower than the one of UK. A case of particular interest is represented by

Israel (Fig. 4), which presents a maximum dimension of cliques equal to 7. This is a very

Fig. 4 Distribution of clique size for selected countries
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high value considering that the number of Israelis inventors (30,358) is much lower than

the one of Japan (924,554) and the UK (231,128).

To capture and quantify this last observation we define a parameter that indicates how

much the inventors of a country k are aggregated in cliques. The previous result suggests

that the difficulty to have larger and larger cliques grows exponentially. Hence, to define a

corresponding index, we deem appropriate to consider only the cliques of maximum, sub-

maximum and sub–sub-maximum dimension, as well as assigning an exponentially

decreasing weight to these cliques.

Specifically, the aggregation index Aggk of inventors on cliques for country k is defined

as:

Aggk ¼
1

Nkj j �
X2

l¼0

2 Ckj j�lð Þ � m Ckj j�lð Þ

where Ck indicates the largest clique of country k, jCkj denotes its dimension and vx is the

number of cliques having dimension x.

In Table 1, we report the dimensions of the maximum, sub-maximum and sub–sub-

maximum cliques for several (selected) countries, along with the corresponding aggre-

gation index. We have chosen to split the table in three parts, grouping countries that share

a similar number of inventors: the first includes countries with 35,000 inventors, the second

those having a number of inventors between 40,000 and 65,000, and the third countries

having more than 110,000 inventors.

In the first group of countries, Taiwan has the highest Aggregation Index, since, despite

displaying a number of nodes quite low compared to the other countries in the same group,

it has a high number of cliques of maximum, sub-maximum and sub–sub-maximum

dimension. In the same group, India has the lowest value of Aggk: notwithstanding the high

Table 1 Values of Aggk for several countries

Country Nkj j Ckj jm Ckj jð Þ Ckj j � 1m Ckj j�1ð Þ Ckj j � 2m Ckj j�2ð Þ Aggk

Brazil 7721 5 (1) 4 (8) 3 (118) 0.143

Russia 12,813 7 (2) 6 (5) 5 (16) 0.085

Taiwan 18,729 7 (7) 6 (20) 5 (118) 0.317

India 26,516 6 (1) 5 (0) 4 (101) 0.063

Israel 30,358 7 (8) 6 (12) 5 (42) 0.103

Denmark 30,762 9 (1) 8 (0) 7 (22) 0.108

Finland 31,903 7 (1) 6 (17) 5 (72) 0.110

Austria 40,734 7 (7) 6 (20) 5 (118) 0.146

Spain 43,131 9 (6) 8 (13) 7 (41) 0.270

Belgium 48,073 8 (1) 7 (4) 6 (33) 0.059

China 54,419 8 (5) 7 (17) 6 (37) 0.107

Sweden 63,593 9 (10) 8 (5) 7 (6) 0.113

South Korea 115,272 9 (2) 8 (16) 7 (58) 0.109

United Kingdom 231,128 9 (4) 8 (11) 7 (7) 0.025

Japan 924,554 6 (26) 5 (244) 4 (2294) 0.049
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number of cliques of sub-maximum dimension, there is only one clique of maximum

dimension and no clique of sub–sub-maximum dimension.

Analogous reasoning can be made for the second group of countries, where the highest

lowest value of Aggk belongs to Spain and the lowest to Belgium. As for the third group

reported in Table 1, the values of Aggk are generally small. The highest value is observed

for South Korea that, in spite of having less inventors than the UK and Japan, display a

dimension of maximum clique equal to the one of UK and even higher than the one of

Japan.

Foreign collaborations

We are now interested in the international dimension of inventorship relationships. We

start looking at the level of cooperation with foreign colleagues for inventors of a given

country k.

Fig. 5 Temporal evolution of M3 for selected countries
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For this purpose, we define a metric M3 such that M3k represents the average fraction of

foreign collaborations established by investors of k. M3 ranges between 0 and 1 and allows

us to understand how much the inventors of k tend to work with foreign colleagues: the

higher M3 the higher the tendency to establish scientific collaborations abroad.

We compute M3 over a large period of time for several countries to understand their

degree of internationalization and how it has evolved over time. We consider some EU

member states, some countries of BRICS, some North African countries, as well as South

Korea and Taiwan.

Findings are heterogeneous. Some countries—such as Spain, Taiwan, South Korea,

China and Brazil—present a generally decreasing trend. Others—such as Austria, Italy and

South Africa—display an increasing trend for this measure. There are also countries that

show quite an irregular trend for M3, characterized by the presence of peaks and decays

over time.

In Fig. 5 we report the trend of M3 for South Korea, Austria and Romania. We can

observe that, while South Korean inventors have cooperated more and more with each

Fig. 6 Distribution of foreign collaborations for Algerian, Moroccan, Tunisia and Egyptian inventors
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Fig. 7 Distribution of foreign collaborations for selected countries
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other within South Korea over the last years, Austrian inventors have grown their number

of foreign collaborations, becoming more internationalized. In case of Romania, we can

see that no clear trend emerges.

After the characterization of inventors’ tendency to cooperate with foreign colleagues,

we now aim at understanding the states a given country mostly cooperates with—as far as

patents are concerned.

Given a country k, for each node ni 2 Nk, we consider the set nbhFi , which is the set of

direct neighbours of ni that belong to a country other than the one of ni, and then we

compute—for all Mediterranean and North African countries, BRICS and for some EU

member states—the distribution of countries to which the nodes associated with these

neighborhoods belong to. In particular, we focus our attention on some past colonies. In

Fig. 6, we show the results obtained for some former French colonies—e.g. Algeria,

Morocco and Tunisia—and for a former British colony—e.g., Egypt.

As one would expect, a large fraction of inventors in Algeria, Morocco and Tunisia

mainly cooperate with French inventors. However, for both Morocco and Tunisia, there is

a notable degree of cooperation with Germany as well; on the other hand, Algeria does not

show significant inventorship relations with any other country. Looking at Egypt, which is

a British past colony, we do not observe such high degree of cooperation with its former

motherland, the United Kingdom. In fact, the highest number of collaborations can be

found with inventors of United States, Germany and France. Interestingly, there is a good

contribution with inventors coming from Saudi Arabia.12

In Fig. 7, we show the results obtained for Israel, Austria, Slovenia and Taiwan. In case

of Israel, we can observe a strong cooperation with US inventors and with German ones as

well. Germany is also an important source of scientific collaborations also for Austria and

Slovenia.

Fig. 7 continued

12 These results are in line with Landini et al. (2015), who observe how Egypt is one of the most active
Northern African countries in terms of amount and variety of international collaborations and research
output.
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In addition, for Slovenian inventors we can observe a high concentration of links with

Austrian ones—as evidence of the very strong links between Slovenia and German-

speaking countries dating back to the Austro-Hungarian Empire period—and, to a lesser

extent, with Croatian inventors. The same figure displays also the foreign collaborations

entertained by Taiwanese inventors. Somehow unexpectedly, given the controversial

political relations between the two countries, Taiwan has a high degree of scientific

cooperation with China.

To gain additional insights on the international collaborations existing among countries,

we compute the variety level of the countries inventors of a country k cooperating with.

Drawing on the measure of biodiversity introduced by Simpson (1949), we build an

indicator of the internationalization level of inventor teams, which we exploit to conduct an

explorative empirical analysis of the trends and features in research groups’ internation-

alization level by using cross-patent data from the Worldwide Patent Statistical Database.

It also allows us to measure the size of firms in relation to the industry and the degree of

competition among them. This is known as the HI, and in this context tells us if inventors

of a given country privilege collaborations with inventors of one or more foreign countries.

The higher the HIk of a country k, the more concentrated the external collaborations of k.

Table 2 reports the value of the Herfindahl Index (HI) for several countries. Among the

North African countries, the highest value of HI is obtained by Algeria. This result is due to

the fact that Algerian inventors cooperate mainly with inventors of one country, France. An

analogous observation can be drawn for Tunisia and Morocco.

Differently from these three countries, Egypt has a much lower value of HI, because the

collaborations of Egyptian inventors are more distributed among several countries. An

Table 2 Values of HI, HI Top
80% and HI� Top 80% for North
African countries

Country HIk HIkTop80% HI�kTop80%

Egypt 0.144 0.148 0.147

Morocco 0.358 0.367 0.365

Tunisia 0.434 0.442 0.441

Algeria 0.502 0.527 0.521

Libya 0.180 0.250 0.143

Spain 0.138 0.138 0.137

Estonia 0.128 0.130 0.129

Poland 0.118 0.119 0.119

Austria 0.343 0.343 0.343

Bulgaria 0.176 0.179 0.179

Romania 0.173 0.175 0.175

Slovenia 0.095 0.096 0.095

Croatia 0.132 0.135 0.134

Brazil 0.138 0.138 0.137

India 0.128 0.130 0.129

China 0.118 0.119 0.119

South Africa 0.159 0.160 0.160

Israel 0.369 0.370 0.370

Taiwan 0.415 0.442 0.441

Turkey 0.253 0.255 0.254

Bosnia-Herzegovina 0.176 0.187 0.156
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analogous reasoning can be drawn for EU countries—where the highest value of HI is

obtained for Austria.

As for the BRICS, the value of HI is generally small, since Brazil, South Africa, China

and India tend to cooperate with several countries. High values of HI can be observed also

for Taiwan, Israel and Turkey.

However, it should be noted that there is one caveat that applies to the HI as we defined

it: its value could be strongly distorted by the presence of a large number of extempora-

neous collaborations between an inventor of country k and a foreign one who cooperated

for one or two patents only.

Fig. 8 Distribution of M4 for selected countries
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Considering the power law trend, usual for the measures in our reference scenario, we

use a modified version of the HI, limiting the countries into consideration to the top 80%.

In this way the main cause of the distortion—the tail of the power law distribution—is

removed. The results obtained with this new measure of the HI are reported in the third

column of Table 2.

Fig. 8 continued
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Power inventors

Before characterizing the notion of ‘‘power inventor’’, we define another metric, namely

M4, which is analogous to M2 with the difference that it considers only the neighborhood of

foreign inventors rather than the whole neighborhood,13 since we are now interested in

collaborations with foreign countries.

We measure M4 for Euro-Mediterranean and North African countries, and the BRICS.

For many of them M4 follows a power law distribution even if some, such as Greece,

Turkey and Principate of Monaco, present a slightly disturbed power law distribution.

For other countries, such as Morocco, Slovenia, Tunisia, Croatia, Cyprus and Egypt, M4

follows a more disturbed power law distribution.

Finally, for other countries such as Syria, Albania, Algeria, Bosnia-Herzegovina,

Lebanon, Libya and Malta, M4 does not follow a power law distribution.14 Figure 8

displays all the different cases. Hence, M1, M2 and M4 generally follow a (potentially

disturbed) power law distribution.

We are now ready to introduce the concept of ‘‘power inventor’’, which indicates an

inventor with the following characteristics:

• C1: filing of many patents;

• C2: many collaborations;

• C3: having an international stature, which implies that she cooperates a lot with

inventors of foreign countries.

To evaluate these conditions, we can use, respectively, M1, M2 and M4.15

Then, the set PX
k of power inventors of a country k is the set of those inventors

simultaneously belonging to the top X% percentile of the distribution of M1, M2 and M4 in

each country k.

Since available data are huge, and since the power law distributions characterizing M1,

M2 and M4 are generally steep, we choose a low value for X and we set X ¼ 5.16

With regard to this definition of power inventor we would like to point out that our aim

is not proposing a new concept characterized by a precise supporting mathematical

foundation.

Instead, we would like to introduce an informal and empirical, yet reasonable, concept

that can capture the presence of inventors more important than others along several

dimensions and that can support the extraction of knowledge patterns about this

phenomenon.

The notion is similar to the one of ‘‘star scientist’’ employed in several studies that

analyze the dynamics underlying the generation of new ideas and the value that some elite

scientists and researchers bring to these processes, as well as their impact on other

researchers.17

The idea behind the concept of power inventor is that of an inventor that has a

notable scientific productivity (demonstrated through the filing of many patents) that can

13 Essentially, nbhi is substituted by nbhFi .
14 This last case refers to countries that have a very low number of collaborations with foreign countries,
which makes any analysis for them unreliable.
15 Interestingly, M2 and M3 are equivalent to E-I index Hanneman and Riddle (2005).
16 In the following, when X is not specified, we intend it to be equal to 5.
17 Appendix A, Section A.7, in the additional material, includes a discussion on our notion of power
inventor and the concept of star scientist.
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catalyze the growth of innovative activities and help the internationalization process of his

own country.

Hence, all the aforementioned criteria are necessary in order to be considered a power

inventor. On the one hand, if an inventor filed very few patents, even if all of them were in

cooperation with foreign inventors, he could not have enough weight to influence the R&D

scenario of his country.

If an inventor filed many patents, but all of them were in cooperation with few

inventors, she would not manage to stimulate through collaborations other inventors to file

patents.

Finally, if an inventor filed many patents, but all of them were in cooperation with

inventors of his country, he would certainly play a prominent role in his country but he

would not have the capability to stimulate contacts with foreign countries.

Characteristics of power inventors’ networks

After having established what power inventors are, we are now interested in understanding

the features of the networks they operate within.

We construct another support data structure, the power inventor’s social network, and

two related metrics rAggk and rfk, which are useful in that they allow us to understand

whether power inventors tend to cooperate more or less intensively among each other

compared to other inventors in the same country, i.e. whether there is a backbone of power

inventors or not in a given country.18 Values for the two metrics are reported in Table 3.

Looking at Table 3 we can see that, for countries like Austria and Italy, power inventors

are much more aggregated in cliques than all other inventors—they display the highest

value of rAggk. As for rfk, the values are quite homogeneous across countries and range

between 3 and 7.

Since both rAggk and rfk present values higher than 1, we can conclude that there exists

a backbone of power inventors in each of these countries.

To expand our inquiry about this issue, we consider a new data structure, the clique

social network.19 In Fig. 9, we plot the clique social network of Spain and Israel. We can

see in case of Spain the network is characterized by a particular dense core implying that in

this country there is a group of particularly active inventors who often cooperate with each

other. In case of Israel there are instead several nodes whose dimension is generally

smaller than those belonging to the core of Spain.

In Table 4 we report some characteristics of clique social networks, namely the number

of nodes and edges, and density.

Looking at it, we can see that, for instance, France and Italy have the lowest values for

density. The reason is that both these countries have many nodes that are only partially

connected to each other. By contrast, Brazil has a very low number of nodes and edges but,

at the same time, the highest density among the countries under consideration, implying

that Brazilian power inventors are strongly connected to each other.

The impact of power inventors

Underlying the notion of power inventor there is the idea that these inventors have the

ability of stimulate further inventions and improve also the scientific production of their

18 See Appendix A, Section A.4, in the additional material.
19 See Appendix A, Section A.6, in the additional material.
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colleagues. To quantitatively assess this intuition, we compute two different measures of

scientific activity, namely the average number of patents filed by the neighbors of power

inventors of a country k, denoted with AvgPatNumNbhPk , and the average number of

patents filed by neighbors of generic inventors in the same country, denoted with

AvgPatNumNbhk. The values of these metrics are reported in Table 5.

A comparison between the two sets of values can support us in quantifying the benefit

induced by cooperating with a power inventor, since high values of AvgPatNumNbhP
k

Table 3 Values of rAggk and
rfk for selected countries

Country rAggk rfk

Brazil 5.595 6.763

Taiwan 29.012 6.541

China 23.483 5.846

Austria 44.084 4.193

Italy 47.472 5.100

Israel 22.583 3.674

Russia 10.034 5.149

Spain 25.498 6.624

Table 4 Number of nodes,
number of edges and density of
the clique social networks of
some countries

Country Number of nodes Number of edges Density

Brazil 19 23 0.135

India 209 417 0.019

China 577 1299 0.008

Israel 336 744 0.013

France 3452 8615 0.001

Italy 2125 5763 0.003

Spain 618 1672 0.009

Fig. 9 Visualization of the clique social network (left) and a zoomed portion of it (right) for two countries
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relative to AvgPatNumNbhk indicate that being in the neighbourhood of a power inventor

stimulates patent filings.

From the Table it is evident, as we would expect, that being in the neighborhood of a

power inventor is associated with an increase of filed patents. To sharpen our under-

standing we also define the following ratio:

rPatNumNbhk ¼
AvgPatNumNbhP

k

AvgPatNumNbhk

A value of rPatNumNbhk higher than 1 indicates that belonging to the neighbourhood of

a power inventor is beneficial for filing patents. These values are reported in Table 5, and

we can observe that values for this ratio are greater than 1 for all countries, in some cases

even greater than 3—Brazil and Spain. Thus, we can conclude that cooperating with power

inventors is beneficial for other inventors.

We now focus on the dimension of the neighborhood of power inventors. We already

know, by definition, that a power inventor has a lot of scientific collaborations, but we

would like to quantify its magnitude. We exploit the metrics AvgDimNbhP
k , which is the

average dimension of the neighbourhood of a power inventor, and AvgDimNbhk, which is

the average dimension of the neighbourhood of a generic inventor. A comparison between

these two measures can tell us about the importance and centrality of a power inventor. We

compute their variation over time for the same countries as in Table 3. Figure 10 displays,

as an example, the time series of AvgDimNbhP
k and AvgDimNbhk for Spain. Note that the

former measure remained almost constant from 1990 to 2003 and, then, had an increase,

whereas the latter show an increasing trend.

Finally, we also report the values of the following ratio:

rDimNbhk ¼
AvgDimNbhP

k

AvgDimNbhk

When rDimNbhk is higher than 1, the average dimension of neighbourhoods of power

inventors is higher than the corresponding one of generic nodes. In Table 6 we report the

values of rDimNbhk for several countries in the year 2013, and we can observe that the

values obtained for all the countries into consideration are always higher than 1 and range

from 1.597 (for Brazil) to 2.870 (for Taiwan).

Table 5 Average number of
patents of the neighbours of a
power inventor, of a generic
inventor and values of the
parameter rPatNumNbh

Country AvgPatNumNbhP
k

AvgPatNumNbhk rPatNumNbhk

Brazil 10.979 3.329 3.299

Taiwan 3.437 1.344 2.557

China 6.554 2.680 2.445

India 3.876 2.264 1.712

Italy 7.210 3.397 2.122

Spain 7.668 2.639 2.906

South Africa 2.986 1.466 2.037

Israel 4.675 3.153 1.482
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Discussion

With respect to the existing literature, our study allows to characterize inventors’ rela-

tionships from a quantitative standpoint and understand the cooperation patterns within

inventors’ networks in an innovative way. To this end, we have developed several new

metrics and introduced new concepts, such as the notion of ‘‘power inventor’’, the

aggregation coefficient as well as the parameters based on the modified HI for the com-

putation of both the variety of external collaborations entertained by a given country and of

the variability of IPC classes.

We have also redefined concepts already existing in SNA, such as the ‘‘internal’’ and

‘‘external neighborhood’’ of a node or the ‘‘clique’’ of nodes, adapting them so that they

can be useful to gain insights on research collaborations and their dynamics. As in other

studies, we exploit SNA to analyze relationships among inventors within and across

countries. While we are not the first to employ an approach based on SNA, the originality

of our contribution consists in presenting a general methodology for the extraction of

several knowledge patterns with a reference to the geography of innovation. The suggested

approach can then be applied to any country or to any sector of interest.

Table 6 Values of rDimNbh for
several countries in the year 2013

Country rDimNbh

Austria 2.214

Italy 2.249

Spain 2.454

South Korea 2.360

Russia 2.561

Brazil 1.597

China 2.579

India 2.135

Poland 2.235

South Africa 2.311

Taiwan 2.870

Israel 1.974

Fig. 10 Temporal evolution of the average neighbourhood dimension for Spain
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Concluding remarks

The goal of this research was to provide an overall understanding of the dynamics con-

cerning knowledge flows in inventive activities. We show how the network of inventors is

on average increasing in size, more and more inventors are in fact contributing to tech-

nology innovations and they are more connected to each other. We also show to what

extent inventors from different countries tend to cooperate with their local peers or

internationally. Furthermore, an analysis of the clustering of inventors is carried out to

show differences across countries in the structure of inventors’ communities, with a par-

ticular focus on the dynamics of collaboration for power inventors (i.e. star inventors).

From a methodological standpoint, new and alternative approaches to the extraction of

knowledge patterns about the geography of innovation based on a SNA of patent data are

proposed. These approaches are extremely general and can be exploited to analyze patents,

inventors and their relationships within and among countries. First, an indicator of the

internationalization proposed by Simpson (1949) to measure biodiversity is applied here to

investigate trends and features in inventive teams’ internationalization. Second, an index

that measures the dimension of the neighborhood of power inventors is proposed to see

how power inventors differentiate themselves from a generic inventor. Third, the benefits

of cooperating with a power inventor are quantified with an appropriate index that high-

lights the expected increase in productivity that such a collaboration would mean for

inventors in different countries. Finally, a parameter that indicates how much the inventors

of a country are aggregated in cliques is proposed.

This research has implications for policy makers and R&D managers. Firstly, it pro-

vides an understanding of how inventive activities are carried out in different countries in

terms of openness to cooperation. Secondly, the dynamics of knowledge flows for power

inventors are distinguished from the dynamics of knowledge flows when a power inventor

is not involved. This provides insights on how to nurture national innovation systems that

can help generate more knowledge. Finally, insights on innovation cliques in different

countries have implications for new market entry strategies definition and R&D interna-

tionalization endeavors organization.

It is important to stress that our work is aimed at providing a first, intuitive charac-

terization of some patterns related to innovations and inventors’ collaborations dynamics,

since no causality statements can be made on the basis of our analysis; yet, many facts can

be deduced from the data we have. Furthermore, even if the quality of the dataset used

reduces the concerns about disambiguation of inventors, still different optimization algo-

rithms may produce different results, a further effort carried out proved those results not to

be significantly different from the ones presented here. More rigorous analyses and more

precise answers will be object of future research, as well as providing a taxonomy of all the

countries in our database depending on nodes and cliques, but this requires more time due

to the vast amount of data to be analyzed. However, this work represents a promising

starting point.

Deepening our understanding of power inventors could be a promising line of research,

given their importance within the innovation system and the inventors’ network of a given

country. For instance, it would be possible to construct the profiles of power inventors of a

given country using some classification methodology, as well as applying techniques of

information diffusion to understand how much the mobility from one country to another of

power inventors can impact on the filing of new patents in these two countries. Moreover,

it would be interesting to inquire on the main causes that lead power inventors to leave
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their homeland, or the reasons that induce power inventors to file patents in another

country.

Answering these questions could give important strategic suggestions to policymakers

for the definition of strategic actions aimed at retaining inventors in their country and to

favor the arrival of new ones from abroad.

In conclusion, forthcoming research will focus on how the structure of innovation

networks is related to innovation performance and internationalization strategies. This

would help to set guidelines for policymakers that want to better understand how to nurture

national and regional systems that take advantage of global value chains.
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