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Abstract Peer review is an integral part of science. Devised to ensure and enhance the

quality of scientific work, it is a crucial step that influences the publication of papers, the

provision of grants and, as a consequence, the career of scientists. In order to meet the

challenges of this responsibility, a certain shared understanding of scientific quality seems

necessary. Yet previous studies have shown that inter-rater reliability in peer reviews is

relatively low. However, most of these studies did not take ill-structured measurement

design of the data into account. Moreover, no prior (quantitative) study has analyzed inter-

rater reliability in an interdisciplinary field. And finally, issues of validity have hardly ever

been addressed. Therefore, the three major research goals of this paper are (1) to analyze

inter-rater agreement of different rating dimensions (e.g., relevance and soundness) in an

interdisciplinary field, (2) to account for ill-structured designs by applying state-of-the-art

methods, and (3) to examine the construct and criterion validity of reviewers’ evaluations.

A total of 443 reviews were analyzed. These reviews were provided by m = 130 reviewers

for n = 145 submissions to an interdisciplinary conference. Our findings demonstrate the

urgent need for improvement of scientific peer review. Inter-rater reliability was rather

poor and there were no significant differences between evaluations from reviewers of the

same scientific discipline as the papers they were reviewing versus reviewer evaluations of

papers from disciplines other than their own. These findings extend beyond those of prior

research. Furthermore, convergent and discriminant construct validity of the rating
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dimensions were low as well. Nevertheless, a multidimensional model yielded a better fit

than a unidimensional model. Our study also shows that the citation rate of accepted papers

was positively associated with the relevance ratings made by reviewers from the same

discipline as the paper they were reviewing. In addition, high novelty ratings from same-

discipline reviewers were negatively associated with citation rate.

Keywords Peer review � Inter-rater reliability � Construct validity � Criterion

validity � Interdisciplinary research � Citation rate

Introduction

Scientific progress is a fundamentally social process. Research not only always builds on

the work of others, their ideas and findings (Hardwig 1985), but it also particularly benefits

from different viewpoints and strategies (Kitcher 1990), as well as from empirical

investigation and critical discussion (Popper 1968). Peer review has introduced the social

element into the publication process (Fiske and Fogg 1990). That is, examination and

discussion of a researcher’s work by colleagues has already been carried out before it is

made accessible to the whole scientific community. Today, most scientific disciplines trust

in this kind of quality control (Hemlin and Rasmussen 2006). The underlying rationale of

this procedure was to avoid errors and to ensure a certain quality of the publications (Bailar

and Patterson 1985; Church et al. 1996; Cornforth 1974). In order to meet the challenges of

this responsibility, a certain shared understanding of what characterizes quality seems

necessary. Much research has already examined inter-rater reliability, also called inter-

rater agreement, and provided a rather pessimistic picture.

In an effort to expand upon prior research, the paper presented here has the following

three major research goals: First, we investigate whether prior findings of poor inter-rater

reliability are generalizable to the interdisciplinary context. Our second major goal is to

discuss and apply adequate methods for ill-structured measurement designs and thereby

take reviewer discipline into account. The third major goal is to examine the underlying

structure of the ratings of specific paper characteristics and to explore their potential to

predict the citation rate of published papers.

To accomplish these goals, the paper is structured as follows: First, we outline previous

research on inter-rater reliability. Second, we turn to methods of analysis used in prior

research, with their limitations and possible solutions. Third, we summarize research on

dimensionality and construct validity of peer-review ratings. In addition, we also consider

prior research into criterion validity with regard to the predictability of the citation rate by

reviewer recommendations. Then, we describe the data on which our analyses are based.

Finally, we report our results, which we subsequently discuss in the light of previous

research and practical implications.

Inter-rater reliability in interdisciplinary peer-review processes

To date, numerous studies have examined inter-rater reliability among reviews of different

scientific products, such as abstracts (e.g., Blackburn and Hakel 2006; Cicchetti and Conn

1976; Rubin et al. 1993), grant proposals (e.g., Cole et al. 1981; Jayasinghe et al. 2003;

Marsh et al. 2007) and scientific papers (e.g., Gottfredson 1978; Marsh and Ball 1981;

Wood et al. 2004), as well as applications to scholarships (Bornmann and Daniel 2005).

Research clearly indicates that evaluations of the same scientific manuscript differ
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substantially among reviewers. That is, the level of inter-rater reliability is quite low

(Bornmann et al. 2010; Campanario 1998; Cicchetti 1991; Lindsey 1988). Accordingly,

and consistent with previous literature reviews (Cicchetti 1991; O’Brien 1991), a recent

meta-analysis based on 48 studies (and 70 reliability coefficients) concluded that inter-rater

reliability ‘‘is quite limited and needs improvement’’ (mean ICC = .34, mean Cohen’s

Kappa = .17; Bornmann et al. 2010, p. 1; for a critical view on the Kappa coefficient, see

Baethge et al. 2013).1

Although different scientific disciplines have been investigated (e.g., medicine, psy-

chology, and sociology) and partially compared with each other (e.g., Kemper et al. 1996;

Mutz et al. 2012), research on inter-rater reliability in an interdisciplinary field is scarce.

One notable exception was the study by Langfeldt (2001). This study, however, applied

mainly qualitative methods and did not provide quantitative indices of inter-rater relia-

bility. In some other studies it is not entirely clear whether their analyses involved different

disciplines (e.g., Herzog et al. 2005; Marsh et al. 2007). In any case, none of them has

examined whether a match or a mismatch between reviewer discipline and paper discipline

mattered with regard to the inter-rater reliability. This is, however, highly relevant with

regard to the rapid increase of interdisciplinary research (Qiu 1992; van Noorden 2015).

The corresponding challenge is that different disciplines may utilize different method-

ological approaches (e.g., quantitative vs. qualitative methods; hypothesis guided experi-

ments vs. explorative descriptions; Platt 1964). Ultimately, such different approaches may

be reflected in different standards for the evaluation of scientific contributions. Therefore,

it was the first main objective of the present paper to investigate inter-rater reliability in an

interdisciplinary scientific context. To this end, we analyzed proceedings submitted to an

international interdisciplinary conference at the interface of social sciences (e.g., educa-

tion), natural sciences (e.g., psychology) and technological sciences (e.g., information

technology).2

Methods for assessing inter-rater reliability

Complex data structures are typical for the analysis of inter-rater reliability in peer-review

contexts. The second major goal of our study was, therefore, to discuss and apply an

adequate method for dealing with such highly complex data structures. Prior research has

mainly relied on the classical multitrait-multimethod (MTMM) approach by Campbell and

Fiske (1959). In such designs, each target needs to be measured by each method. In

reviewing papers, that means that each paper submission should be rated by every

reviewer. Consequently, papers and reviewers had to be fully crossed (see Putka et al.

2011). Such fully crossed designs, however, are rare in peer-review contexts.

1 With regard to dichotomous nominal data (e.g., ‘‘accepted’’ vs. ‘‘rejected’’), it should be noted that
Cohen’s Kappa (Cohen 1960), although often used, is by far not a reliable measurement of agreement,
especially in cases of imbalanced marginal totals (e.g., see Baethge et al. 2013; Feinstein and Cicchetti 1990;
Gwet 2008, 2014; Uebersax 1982–1983). Accordingly, Baethge et al. (2013) applied the agreement coef-
ficient AC1 for two raters proposed by Gwet (2008) to dichotomized reviewer evaluations and found a
chance-corrected agreement estimation of .63. Cohen’s Kappa statistic reached only a value of .16 in the
study of Baethge et al. (2013).
2 The investigated international conference took place within the last two decades. All of the reviewers were
aware of the fact that others could access their evaluations of the papers. For the present study, the reviewers
and their evaluations were fully anonymized and were analyzed in an aggregated way. Moreover, in order to
protect the reviewers’ privacy and anonymity as far as possible, we have omitted the mentioning of the name
and the year of the conference. The same is applied to the conference proceedings.
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Studies in which submissions to scientific journals have been analyzed are common

(e.g., Bornmann and Daniel 2008b; Howard and Wilkinson 1998; Kirk and Franke 1997;

Petty et al. 1999; Scarr and Weber 1978; Scott 1974). In such scenarios, editors typically

prefer reviewers that are experts in the field of a submitted manuscript. As a consequence,

the overall design is far from a fully-crossed design. Nested designs, in which ‘‘each target

is rated by a unique, non-overlapping set of raters’’ (Putka et al. 2008, p. 960) might come

closer to reality. However, even this is more an exception than the rule. In most cases,

some reviewers evaluate more than one submission. This is especially true for conferences

where a limited number of reviewers typically evaluate a subset of all submissions (e.g.,

Rubin et al. 1993). Thus, many practical scenarios only provide ill-structured measurement

designs (ISMDs) in which ‘‘ratees and raters are neither fully crossed nor nested’’ (Putka

et al. 2008, p. 960). Similar problems associated with ISMD are also known with regard to

traditional nominal scale agreement coefficients (Cohen 1960; Fleiss 1971; see also

Baethge et al. 2013; Uebersax 1982–1983).

Some previous studies have tried to solve the ISMD problem by randomly selecting a

certain number of reviewers per target and ‘‘arbitrarily identifying those raters as ‘Rater 1’

and/or ‘Rater 2’ for each ratee’’ (Putka et al. 2011, p. 506; e.g., see Marsh and Ball 1989,

p. 157; Petty et al. 1999, p. 192). This procedure is associated with various problems,

however, such as possible identification problems, inappropriate solutions, and data loss

(e.g., see Brown 2015; Eid 2000). Moreover, it raises the question about the meaning of

‘‘Rater i’’ and ‘‘Rater j’’ in such models. Most critical, however, is that researchers can

subsequently come to different findings and conclusions simply as a result of differences in

the rater selection and assignment (Putka et al. 2011).

There are also drawbacks with more traditional estimators of inter-rater reliability when

it comes to ISMD scenarios. Putka et al. (2008) showed that for Pearson correlation

approaches as well as for conventional intraclass correlation coefficients (ICCs; e.g.,

McGraw and Wong 1996; Shrout and Fleiss 1979), each of these methods may system-

atically underestimate inter-rater reliability in ISMD scenarios. The magnitude of this bias

depends on the specific design conditions (Putka et al. 2008).

With reference to the generalizability (G) theory (e.g., Brennan 2001) and as an

alternative to the strategies described above, Putka et al. (2008) offer the G-coefficient G(q,

k) as a ‘‘new interrater estimator that can be used regardless of whether one’s design is

crossed, nested, or ill-structured’’ (p. 977). Parameter k is the number of reviewers per

paper. In ISMD scenarios, k can be estimated by the harmonic mean (HM) of the number

of raters per rate. Parameter q scales the variance proportion that is related to the rater main

effects (Putka et al. 2008, p. 963). In fully nested designs, parameter q equals 1/k, in ISMD

scenarios it is always smaller than 1/k, and in fully crossed designs it equals zero. With

regard to the average ICCs (see Shrout and Fleiss 1979; McGraw and Wong 1996),

G(q = 1/k, k) equals ICC(1, k) and G(q = 0, k) equals ICC(C, k). All these coefficients

estimate the reliability of target scores which are derived by aggregating the ratings of

k raters.

Analogously, setting k to the value of one in the equations described by Putka et al.

(2008, p. 963), G(q, 1) allows for estimating a single-rater reliability (D. J. Putka, personal

communication, December 15, 2015). Single-rater coefficients refer to the reliability of a

target score that is derived from only one rater. Such single-rater ICCs were used in

Bornmann et al.’s (2010) meta-analysis for inter-rater reliability of journal peer reviews.

Usually, a single-rater reliability should be smaller than G(q, k C 2). This is analogous to

the phenomenon that adding items to a test can, if certain assumptions are met, improve the

test reliability (e.g., Raykov and Marcoulides 2011; Wirtz and Caspar 2002; Yousfi 2005).
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Putka et al. (2008) recommend, however, that coefficients G(q, 1) and G(q, k C 2) should

be separately estimated, that is, without using the Spearman-Brown prophecy formula.3

Based on a Monte Carlo simulation, Putka et al. (2008) conclude that ‘‘traditional

estimators are either inappropriate or do not provide the most accurate result’’ (p. 980).

They recommend the G-coefficient as ‘‘an attractive option relative to traditional methods’’

(Putka et al. 2008, p. 978). In our paper we therefore made use of this method, which

perfectly applies to our ill-structured data set (see below).

Validity of peer-review ratings

Despite the fact that several studies have assessed inter-rater reliability for various different

measures of paper quality (e.g., originality and relevance), little research has addressed the

dimensionality of the quality judgements itself. This is important with regard to two major

aspects. On the one hand, there are questions about the paper characteristics that should be

considered in peer-review processes. On the other hand, it tackles the issue of whether

reviewers are able to differentiate among different aspects of paper quality or whether they

are instead driven by an overall, general impression (e.g., a halo-effect, Thorndike 1920;

see also Pulakos et al. 1986). Despite the practical relevance and the fact that many

journals (and conferences) provide multiple rating dimensions for peer-review evaluations,

the issue of dimensionality itself has received much less scientific attention than inter-rater

reliability (Marsh et al. 2008).

When a scientific contribution is evaluated in terms of quality, the question arises as to

how quality can be defined. This becomes even more important in interdisciplinary con-

texts, as scientific disciplines may differ substantially in what they value. At the same time,

it becomes relevant whether the instruments that are employed (e.g., rating scales) indeed

measure the hypothetical construct that was targeted (e.g., originality). It is also relevant

whether multiple measures actually assess different constructs or whether these overlap to

an extent that they could be subsumed under the same label. This is the matter of construct

validity (Messick 1995; Strauss and Smith 2009), which is the ‘‘overarching principle of

validity, referring to the extent to which a psychological measure in fact measures the

concept it purports to measure’’ (Brown 2015, p. 187).

Two concepts of construct validity are important in this context: convergent validity and

discriminant validity (Campbell and Fiske 1959; see also Brown 2015). Convergent

validity means that measures (different methods or indicators) of the same construct should

be highly interrelated. Discriminant (or divergent) validity means that measures of dif-

ferent constructs should not be interrelated. Hence, an important question is whether the

quality of a scientific contribution is a unidimensional construct that can be summarized in

one global evaluation score. The alternative view would argue that quality comprises

multiple dimensions which should be considered separately. In other words, if reviewers

are asked to rate the quality of a scientific contribution on various dimensions (e.g.,

relevance, soundness, and novelty), the question is, whether these dimensions indeed

represent distinct constructs, which would suggest a multidimensional structure, or whether

they all converge, suggesting a unidimensional structure.

3 The Spearman–Brown prophecy formula can be used to predict the reliability of a test or target score after
increasing (or decreasing) the corresponding number of items, observations, or raters. It can also be used to
determine the necessary number of items, observations, or raters for obtaining a certain reliability value
(e.g., see Shrout and Fleiss 1979, p. 426).
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Naturally, the answer to this question depends upon the rating dimensions employed.

Unfortunately, to date there is hardly any universal consensus on which dimensions a

review should be based (for some elaborations, see Chase 1970; Hemlin and Montgomery

1990). Cicchetti (1991) identified two aspects which are broadly accepted: the importance

of the study to the field and the perceived adequacy of the research design. Journals,

conferences, and funding agencies, however, often ask their reviewers to evaluate papers

on many more rating dimensions, as can be seen in the studies on inter-rater agreement

(e.g., Cicchetti and Conn 1976; Marsh and Ball 1989; Montgomery et al. 2002; Rubin et al.

1993; Scott 1974; Whitehurst 1983).

Unfortunately, however, only one of these studies has examined the dimensional

structure of these ratings as well as other aspects of construct validity. Marsh and Ball

(1989) found modest support for the distinctiveness of the four rating dimensions that they

had extracted from a 21-item instrument (research methods, relevance to readers, writing

style and presentation clarity, and significance/importance). Their analysis favored the

multidimensional model over an alternative unidimensional model. Similarly, Petty et al.

(1999) reported a better fit when a model was based on five dimensions (literature, theory,

methodology, importance, and recommendation) compared to an alternative unidimen-

sional model. On the other hand, Cicchetti and Conn (1976) found that certain single

dimensions (originality, design-execution, importance, and overall scientific merit) cor-

related strongly with an overall score (.55–.96). However, they did not directly compare a

multidimensional model with a unidimensional one.

It is clear there is still little evidence with regard to the question of whether the use of

multiple dimensions in fact adds something unique to a general evaluation. Moreover,

there is no evidence at all when it comes to the interdisciplinary context. In our study, we

have addressed this gap and analyzed reviews of submissions to an interdisciplinary

conference. Here, reviewers provided both an overall evaluation and ratings with respect to

four specific rating dimensions (relevance, novelty, significance, and soundness). These

dimensions have been employed or suggested in previous publications as well (e.g., Beyer

et al. 1995; Campion 1993; Cicchetti and Conn 1976; Gilliland and Cortina 1997; Got-

tfredson 1978).

Another way of investigating the validity of the peer-review ratings is to look at the

potential of the rating dimensions to predict the citation rate of the accepted papers. For

example, Bornmann and Daniel (2008a) showed that papers accepted by a high-impact

chemistry journal would get more citations than papers that were rejected and published

elsewhere. Opthof et al. (2002) showed a positive and significant relationship between

reviewers’ priority recommendations and papers’ citation count for three years after

publication in a cardiology journal. A positive relationship between peer-review scores and

citations rates also exists in the field of research project grants (Li and Agha 2015).

However, in another medical journal, Baethge et al. (2013) did not find a significant

relationship between reviewer recommendations and citation rate. A possible explanation

could be that ‘‘accepted versions of manuscripts differ considerably from submitted ver-

sions’’ (Baethge et al. 2013, p. 6). In any case, it seems worth investigating the predictive

criterion validity of different rating dimensions in an interdisciplinary peer-review context.

For this investigation, we took papers into consideration that had been published in the

conference proceedings (see footnote 2).

Taken together, our paper has the following three major goals: (1) analyze inter-rater

reliability in an interdisciplinary context, across all paper-reviewer-combinations and

separated for same-discipline versus different-discipline reviewers, (2) apply state-of-the-
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art methods of analysis to account for ill-structured measurement design, and (3) examine

the dimensionality and validity of the different rating dimensions.

Methods

Our study analyzed the reviews of conference proceeding papers submitted to an inter-

national interdisciplinary conference (see footnote 2). The conference takes place annually

and is interdisciplinary, with researchers from computer science, education, psychology,

and communication science. It is of medium size (about 200–300 participants, about

100–200 submissions) and has an acceptance level of less than 30%. As such, the con-

ference is a competitive, typically mid-size conference with an interdisciplinary topic.

Papers which are accepted appear in a Springer book series (see footnote 2).

Papers and reviewers

A total of one hundred and seventy-four submissions (including keynotes) were listed in

the conference system. For our analyses, we considered only those n = 145 submissions

which had been rated by at least two reviewers. From these, a total of nap = 82 submis-

sions that had been accepted were later published in the conference proceedings (see

footnote 2). Overall, m = 130 reviewers conducted reviews of the n = 145 submissions.

This resulted in a total of v = 443 reviews.

Due to the fact that reviewers could opt for the papers they would like to review, the

number of reviewers per paper varied. Each selected paper, on average, received M = 3.06

reviews (SD = 0.40), with a minimum of 2 and a maximum of 5 reviews. Each of the

corresponding reviewers (m = 130) reviewed, on average, M = 3.41 papers (SD = 1.90),

with a minimum of 1 and a maximum of 6 reviewed papers.

Papers as well as reviewers were categorized by two independent raters into one of three

different disciplines: (a) psychological-experimental, (b) empirical-social, or (c) information

technological (Cohen’s Kappa = .86, disagreements were solved by discussion). Of all the

papers, npsy.exp = 14 (9.7%) were regarded as psychological-experimental, nemp.soc = 51

(35.2%) were regarded as empirical-social, and nit = 80 (55.2%) were regarded as infor-

mation technological. A similar distribution appeared on the reviewers’ side: kpsy.exp = 13

(10.0%) were considered as psychological-experimental, kemp.soc = 32 (24.6%) as empirical-

social, and kit = 85 (65.4%) as information technological. Altogether, nboth = 93 (64.1%)

papers were reviewed by both same-discipline and different-discipline reviewers, nsame = 26

(17.9%) papers were reviewed only by same-discipline reviewers, and ndiff = 26 (17.9%)

papers were reviewed only by different-discipline reviewers. Again, a similar pattern

appeared on the reviewer’s side: kboth = 72 (55.4%) reviewed both same-discipline and

different-discipline papers, ksame = 31 (23.8%) reviewed only same-discipline papers, and

kdiff = 27 (20.8%) reviewed only different-discipline papers.

Units of analysis

The primary units of analysis were reviews and, on an aggregate level, papers. Review

scores and paper scores were calculated for the following five rating dimensions:

(a) overall evaluation, (b) relevance to the conference (c) novelty, (d) significance, and

(e) soundness. For each paper and each dimension, the paper score was estimated by
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averaging the ratings (a) of all reviewers, (b) only of same-discipline reviewers (same-

discipline paper scores), and (c) only of different-discipline reviewers (different-discipline

paper scores). Thus, the paper score for a certain paper for a certain dimension was the

mean of the ratings over all reviewers who had rated that paper (for the concept of target

and rater scores, see, for example, Hönekopp 2006; Hönekopp et al. 2006).

Measures and variables

A review form guided reviewers in their evaluations. They were asked to provide a detailed

review including justification for their scores. They were urged to be constructive and to

answer first some open-ended questions (see Table 1). More important to the purpose of

this study, reviewers were then asked to fill out several rating scales (see Table 1).

Our analyses focused on the following five variables: overall evaluation, relevance,

novelty, significance, and soundness. The values for the overall evaluation ranging from

-2 to 2 and were recoded by adding the value of 3 to the range from 1 to 5. In order to

analyze only genuine evaluations, we eliminated all of the ratings which fell into the

Table 1 Guide for reviewers’ evaluations

Item Response format

What is the contribution of the paper [to the
conference’s topic]; does the paper make this
contribution clear?a

Open

What are the strong points of this work? Open

What are the weak points of this work? Open

Are the major claims and conclusions substantiated? Open

Is the paper clear, explicit, and well-organized? Can
you suggest improvements (e.g., body, title,
abstract)?

Open

Does the paper adequately refer to related work?
Suggest further references, if appropriate.

Open

Overall evaluation -2 (strong reject) to 2 (strong accept)

Confidence 0 (null) to 4 (expert)

Relevancea 1 = not relevant, 2 = cannot judge relevance,
3 = some relevance, 4 = highly relevant

Novelty 1 = not novel, 2 = cannot judge novelty, 3 = some
novelty, 4 = highly novel

Significancea 1 = not significant, 2 = cannot judge significance,
3 = some aspects can be significant, 4 = highly
significant

Soundnessa 1 = unacceptable—major flaws, 2 = cannot judge
soundness, 3 = good, but some flaws,
4 = excellent

Recommended category 1 = not suitable for the conferencea,
2 = recommend doctoral consortium submission,
3 = recommend workshop submission,
4 = poster, 5 = full paper

Best paper candidate (top 5% of the papers) 1 = no, 2 = yes

aReferences to the conference were removed (see footnote 2)
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cannot judge response category for the variables relevance, novelty, significance, and

soundness. Thus, for these variables, the analyses are based on recoded 3-point scales (e.g.,

1 = not relevant, 2 = some relevance, 3 = highly relevant).4 Due to the resulting missing

values, this step resulted in an even more complicated data structure. Nevertheless, the

analyses we applied were still appropriate for the remaining data.

A further aim of the study was to estimate the relationship between the rating dimen-

sions and the citation rate of the papers published in the subsequent conference proceed-

ings (see footnote 2). From the n = 145 submissions which had been rated by at least two

reviewers, a total of nap = 82 submissions were published. We counted the number of

citations per paper by searching all databases of the Thomson Reuters Web of Science

citation index for each published conference paper for a time frame of roughly three years.

Thus, the citation window includes the first three years after publication (in addition to the

end of the year in which the conference proceedings had been issued). This time frame is

comparable to citations windows which were used in other studies (e.g., see Bornmann and

Daniel 2008a).

Analyses

For estimating the G-coefficients, it was necessary to estimate the following variance

components: (a) the paper main effect, (b) the reviewer main effect, and (c) the combi-

nation of error variance with paper 9 reviewer interaction effects. We used IBM SPSS

Statistics Version 20.0 (2011) for this task. Variance components were estimated with the

restricted (or residual) maximum likelihood (REML) estimator (e.g., O’Neill et al. 2012;

Putka et al. 2008; see also Searle et al. 1992). Estimation of G(q, k) also requires estimates

of the parameters k and q.

All other analyses were conducted with Mplus 7.3 (Muthén and Muthén 2012). With

one exception, models and parameters were estimated with the robust maximum likelihood

(MLR) estimator implemented in Mplus (for advantages of using a sandwich estimator, see

Muthén and Muthén 2012; White 1980; Yuan and Bentler 2000). For significance testing

purposes, several likelihood-ratio tests (LRTs) were also conducted. The reason for this

choice was that, especially in small samples, the LRT is superior to the commonly used

Wald test (e.g., Enders 2010). It must be noted, however, that LRTs based on the MLR

estimator need to be corrected by special scaling factors (www.statmodel.com/chidiff.

shtml; see also Enders 2010, p. 149). Missing data were dealt with by the full information

maximum likelihood (FIML) method. This method uses all of the available information in

the data (e.g., Enders 2001, 2010; Rubin 1976).

Beside the MLR estimator described above, a confirmatory factor analysis (CFA) was

estimated with the Bayes estimator (e.g., see Kaplan and Depaoli 2013; Muthén 2010; van

de Schoot et al. 2014; Zyphur and Oswald 2015). Missing data issues were dealt with in a

similar fashion as with the FIML under the missing at random (MAR) assumption (As-

parouhov and Muthén 2010; Enders 2010). For the Bayes estimation procedure, non-

informative priors were used. The medians of the posterior distributions acted as point

estimates of the parameters. The posterior distributions were estimated with the Markov

4 It seems noteworthy that upon inspection, the ‘‘cannot judge’’ responses did not indicate, at least after the
correction proposed by Holm (1979), that reviewers who came from other disciplines than the paper
(different-discipline reviewers) used this category more often than same-discipline reviewers (all Holm-
adjusted ps[ .085; see Online Resource 1).
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chain Monte Carlo (MCMC) Gibbs sampler algorithm (e.g., see Brown 2015; Kaplan and

Depaoli 2013; van de Schoot et al. 2014).5

Consistent with the Bayesian philosophy, the Bayes estimator does not produce p values

but Bayesian credibility intervals (CIs), which are not necessarily symmetric. A 95% CI

means that there is ‘‘a 95% probability that the population value is within the limits of the

interval’’ (van de Schoot et al. 2014, p. 844). Furthermore, if the CI does not contain the

value zero, the corresponding parameter can be interpreted as significant according to

classical frequentist null hypothesis testing (van de Schoot et al. 2014).

To address the multiple testing problem (e.g., Shaffer 1995), the raw p values for a

given meaningful family of tests (e.g., all coefficients in a correlation matrix) were

adjusted. In almost all cases, this was done by the Holm-procedure (Holm 1979). For such

a test family, the conditional probability of committing a type I error at least once, that is,

the multiple (familywise) significance level, is restricted to .05. With regard to Bayesian

analyses, the multiple testing problem was addressed by using more conservative 99% CIs

instead of 95% CIs.

Results

In the following section, we present our results with regard to the key aspects of inter-rater

reliability and validity. First, we estimated the inter-rater reliabilities of the five rating

dimensions, taking the ill-structured measurement design and the interdisciplinary context

into account. Then, we investigated the dimensionality and the construct validity of the

rating dimensions. Finally, we examined the predictive criterion validity of the rating

dimensions in order to analyze whether the rating dimensions had the potential to predict

the citation rate of accepted papers. In each of these steps, we differentiated between

ratings that came from same-discipline reviewers and those that came from different-

discipline reviewers.

Inter-rater reliability

Here, we primarily focused on the estimation of single-rater reliabilities G(qk, k = 1) for

each dimension. Single-rater reliabilities were chosen, as they are comparable with the

coefficients reported in the meta-analysis of Bornmann et al. (2010). Furthermore, for each

dimension, we differentiated between paper scores that were based on the ratings of all

reviewers and paper scores that resulted as a function of the match/mismatch between the

discipline of the paper and the discipline of the reviewer.

5 Two chains per model were used whereby a minimum of 30,000 iterations and a maximum of 200,000
iterations were specified for each chain. The convergence criterion was repeatedly assessed each time after
100 iterations, based on the final half of all iterations per chain. After reaching the criterion, the first half of
all the iterations were dropped (burn-in phase). The posterior distributions were constructed with the
remaining post-burn-in iterations (Brown 2015; Muthén and Muthén 2012). For determining the conver-
gence, the Gelman-Rubin convergence criterion (Muthén and Muthén 2012; Gelman and Rubin 1992) was
used for determining convergence. The parameter b in the formula of the Potential scale reduction (PSR)
was set at the value of 0.001, which defines a very strict criterion (Brown 2015; Gelman et al. 2013; Muthén
and Muthén 2012; van de Schoot et al. 2014; Zyphur and Oswald 2015).
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Across all reviewers

Table 2 summarizes the data on which the G-coefficient estimations were based. Point

estimates for the variance components are listed in Online Resource 2 and estimates for

q and k are listed in Online Resource 3. Based on these values, the G-coefficients were

calculated by applying the formula described in Putka et al. (2008). The single-rater

reliabilities G(qk, k = 1) based on the ratings of all reviewers are shown in Table 3. As

already mentioned, a single-rater reliability coefficient estimates the reliability of a paper

score as if this score was based on only a single reviewer’s evaluation.

The estimated single-rater reliability of the overall evaluation was .21 and the values for

the other rating dimensions ranged from .17 to .28. Confidence intervals were estimated

based on the Fisher z-transformation and on the corresponding back-transformation for

ICCs (Fisher 1934; see McGraw and Wong 1996; Putka 2002). None of the Holm-adjusted

confidence intervals (Holm 1979; see Altman and Bland 2011; Serlin 1993) contained the

value of zero. Hence, agreement was significantly above chance. Nevertheless, agreement

was low for all dimensions (below .40; e.g., see Cicchetti 1994, p. 286).

To compare our results for overall evaluation with those from Baethge et al. (2013; see

footnote 1), we collapsed the five response categories into two categories: (a) weak or

strong acceptance versus (b) all categories below weak acceptance (borderline, weak

reject, and strong reject). Then, we estimated the AC1 coefficient for multiple raters (Gwet

Table 2 Number of reviews, number of papers, number of different reviewers, and the harmonic mean
(HM) of the number of reviewers per paper

Rating
dimension

Class of
reviewers

Number of
reviews

Number of
reviewers

Number of
papers

k (HM)

Overall All reviewers 443 130 145 3.00

Same-discipline 216 99 119 1.48

Different-
discipline

227 103 119 1.58

Relevance All reviewers 402 128 144 2.63

Same-discipline 203 94 115 1.45

Different-
discipline

199 99 114 1.45

Novelty All reviewers 344 120 143 2.11

Same-discipline 168 86 107 1.35

Different-
discipline

176 89 109 1.34

Significance All reviewers 369 124 143 2.33

Same-discipline 184 89 110 1.39

Different-
discipline

185 96 108 1.41

Soundness All reviewers 325 123 142 1.92

Same-discipline 153 83 102 1.27

Different-
discipline

172 92 109 1.31

k = harmonic mean (HM) of the number of reviewers per paper. Differences in the frequencies between the
rating dimensions and between the reviewer groups are due to the exclusion of the cannot judge responses
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2008, 2014; see Fleiss 1971) as well as AC1 coefficient and Cohen’s Kappa as calculated

by Baethge et al. (2013) for more than two raters. The corresponding values were .14, .15,

and .15, respectively. These chance-corrected estimates underscored the conclusions

already drawn from the G-coefficients.

As a function of the match/mismatch between paper and reviewer disciplines

Table 3 also displays the single-rater reliabilities G(qk, k = 1) based (a) on the ratings of

reviewers from the same discipline as the paper and (b) on the ratings from reviewers from

different disciplines. The estimated single-rater reliabilities for the overall evaluation were

again poor (same-discipline reviewers: .23, different-discipline reviewers: .18). ‘‘Fair’’

agreement (Cicchetti 1994) was found only for some of the single-rater reliabilities, based

on the ratings from the different-discipline reviewers (.35–.46). In contrast, the agreement

for the same-discipline reviewers was rather poor (.13–.20) and even non-significant. In

any case, single-rater reliabilities were generally low—regardless of whether reviewers

matched or did not match the papers’ scientific discipline.

In order to test for significant differences between same-discipline and different-dis-

cipline reviews, we estimated confidence intervals for the differences (a) by the method of

Table 3 Estimated single-rater reliabilities G(q, k = 1) and confidence intervals as a function of the class
of reviewers

Rating dimension Kind of reviewers G(qk, 1) 95% CI Holm-adj. CI

Overall evaluation All reviewers .21 [.10, .31] [.07, .35]

Same-discipline .23 [.00, .46]a [.00, .52]a

Different-discipline .18 [.00, .40]a [.00, .44]a

Relevance All reviewers .21 [.09, .32] [.06, .35]

Same-discipline .13 [.00, .39]a [.00, .46]a

Different-discipline .37 [.10, .58] [.01, .62]

Novelty All reviewers .28 [.13, .42] [.09, .45]

Same-discipline .20 [.00, .48]a [.00, .55]a

Different-discipline .35 [.01, .59] [.00, .63]a

Significance All reviewers .17 [.04, .30] [.02, .32]

Same-discipline .14 [.00, .42]a [.00, .49]a

Different-discipline .46 [.19, .65] [.09, .70]

Soundness All reviewers .21 [.04, .37] [.04, .37]

Same-discipline .13 [.00, .48]a [.00, .56]a

Different-discipline .39 [.05, .63] [.00, .66]a

Variance components were estimated on the base of (a) the ratings of all reviewers, (b) the ratings of
reviewers from the same discipline as the paper, and (b) the ratings from reviewers from different disci-
plines. Estimation of the reliability coefficients is described in Putka et al. (2008). Confidence intervals were
estimated based on the Fisher z-transformation for intraclass correlation coefficients (Fisher 1934; see
McGraw and Wong 1996; Putka 2002). This procedure was conducted three times (see the remarks above).
For each class of reviewers a confidence interval (CI) adjustment was conducted based on the method
proposed by Holm (1979) for m = 5 tests (see Serlin 1993; Altman and Bland 2011). The mean single-rater
reliabilities based on all-reviewers, on same-discipline reviewers, and on different-discipline reviewers were
.22, .16, and .35, respectively (estimated by the procedure of Bornmann et al. 2010, p. 3)
aNegative lower confidence bounds were set to zero
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Donner (1986, p. 76) for independent ICCs and (b) by the method of Ramasundarahettige

et al. (2009, p. 1043, pp. 1045–1046) for dependent ICCs (for another approach:6). All

estimations were based on the Fisher z-transformation and its inverse (Fisher 1934). The

confidence intervals for the differences are presented in Table 4. None of the comparisons

yielded a significant difference, regardless of whether the two coefficients per rating

dimension were defined as independent or as dependent. That is, although all same-dis-

cipline single-rater reliabilities were insignificant, and in most cases descriptively smaller

than the corresponding different-discipline reliabilities, same- and different-discipline

reliabilities did not significantly differ from one another.

In addition to the single-rater reliabilities we also estimated the k-rater reliabilities

G(qk=1, k = HM), which were based (a) on the ratings from all reviewers, (b) on the ratings

from same-discipline reviewers, and (c) on the ratings from different-discipline reviewers

(see Fig. 1). Although the overall picture looks similar, it is obvious that the k-rater

coefficients were larger than their corresponding single-rater counterparts (see Table 3).

This is not surprising, because this phenomenon is analogous to the classical test theory,

where more items usually result in higher reliability coefficients (e.g., see Yousfi 2005).

Based on the ratings of all reviewers, reliability values can be regarded as ‘‘fair’’ (values

above .40; Cicchetti 1994) for overall evaluation, relevance, and novelty. With regard to

the k-rater reliabilities based on the ratings from different-discipline reviewers, coefficients

can be regarded as ‘‘fair’’ for the dimensions relevance, novelty, significance, and

soundness. In contrast, reliability values based on the ratings from same-discipline

reviewers were poor for all dimensions (see Fig. 1). Finally, there was no evidence for a

severity or a leniency bias in either the same-discipline sample or the different-discipline

sample of our study.7

6 We have also compared the variance components (e.g., the paper component) for each rating dimension
between the same-discipline and the different-discipline paper 9 reviewer combinations as suggested by
O’Neill et al. (2012). However, the LRTs based on the REML log-likelihoods in our study yielded several
negative Chi square statistics which cannot be regarded as trustworthy (for a similar phenomenon in another
context, see Satorra and Bentler 2010).
7 We found no significant differences between (a) the paper scores from the same-discipline reviewers and
(b) the paper scores from the different-discipline reviewers (all Holm-adjusted ps[ .147; see Online
Resource 4).

Table 4 Two-sided 95% confidence intervals for the differences between single-rater reliabilities from
same-discipline versus different discipline reviewers constructed (a) by the method of Donner (1986) for
independent ICCs and (b) by the method of Ramasundarahettige et al. (2009) for dependent ICCs

Rating dimension Difference 95% CI (Donner 1986) 95% CI (Ramasundarahettige et al. 2009)

Overall 0.05a [.00, .36]c [.00, .39]c

Relevance 0.25b [.00, .57]c [.00, .63]c

Novelty 0.16b [.00, .53]c [.00, .61]c

Significance 0.32b [.00, .67]c [.00, .73]c

Soundness 0.26b [.00, .66]c [.00, .81]c

Estimations were based on the Fisher z-transformation for ICCs (Fisher 1934) and on the corresponding
back-transformation to the original scale
aReliability coefficient derived from same-discipline reviewers acts as the minuend
bReliability coefficient derived from different-discipline reviewers acts as the minuend
cNegative lower confidence bounds were set to zero
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In sum, the inter-rater reliabilities were generally low. Descriptively, the pattern was

contrary to what we expected. That is, the reliabilities of paper scores based on ratings

from same-discipline reviewers were descriptively lower than those based on ratings from

different-discipline reviewers. These descriptive differences, however, did not reach

significance.

Construct validity

We conducted several analyses to investigate the dimensionality and validity aspects of

reviewers’ evaluations, at the same time taking scientific discipline into account. First, we

estimated the manifest correlations of the paper scores based on different rater subgroups.

Second, we conducted an exploratory factor analysis, which is followed by a more com-

plex confirmatory factor analysis in the CT-C(M-1) framework (Eid 2000; Eid et al. 2003).

Then, we examined whether a multidimensional model or a unidimensional model would

better fit the data. Finally, we assessed the criterion validity of the rating dimensions for

predicting the citation rate of accepted papers.

Manifest correlations

In a first step we determined the correlations between the paper scores based on the same-

discipline reviewers and the paper scores based on the different-discipline reviewers. Such

correlations between different paper scores can reveal, for example, whether different rater

groups applied the same criteria and came to the same conclusions. Large positive cor-

relations would imply that papers with comparatively high (low) positions in the ranking

order based on the ratings given by one rater group should also have high (low) positions in

the ranking order based on the ratings given by the other rater group (e.g., Henss 1992). In

Fig. 1 Estimated k-rater reliabilities G(qk=1, k = HM) for the rating dimensions
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the MTMM approach by Campbell and Fiske (1959, p. 82) such correlations are termed

monotrait-heteromethod values and were used to examine the convergent validity.

As Table 5 reveals, however, only correlations for the overall evaluation and for novelty

reached significance. For the other three rating dimensions there were only small and non-

significant relationships. It is noteworthy that the significant correlations obtained were

only moderately positive (e.g., of medium effect size, Cohen 1988). In other words,

reviewer groups (same-discipline vs. different-discipline) did not agree (much) on paper

quality. This is evidence against a corresponding convergent validity, where the same-

discipline paper scores and the different-discipline paper scores would have been expected

to measure the same construct.

Another picture appears if one looks at the correlations between the different rating

dimensions within each reviewer group (heterotrait-monomethod values; see Campbell and

Fiske 1959) and across all reviewers. Here, it is obvious that all correlations were (mostly)

large, positive and significant (see Table 6). That is, a paper with a high (low) score on one

rating dimension also has relatively high (low) scores on the other rating dimensions. This

is evidence for rather low discriminant validity. Hence, reviewers (same-discipline and

different-discipline alike) did not differentiate much in their assessments of the different

paper attributes.

Exploratory factor analysis

In a next step, we conducted an exploratory factor analysis (EFA) to examine the osten-

sible factor structure of the paper scores that resulted from same-discipline and different-

discipline ratings. Input variables were 10 variables, 5 each in these categories: (a) the

same-discipline paper scores for each rating dimension and (b) the different-discipline

paper scores for each rating dimension (see Table 7). Papers (n = 145) were the units of

analysis. The EFA was estimated by MLR with the full information maximum likelihood

(FIML) method. The Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy of the

correlation matrix, which should not be smaller than .50, reached a value of .77 (Dziuban

Table 5 Correlations between the paper scores based on the ratings of the same-discipline reviewers and
the paper scores based on the ratings of the different-discipline reviewers (monotrait-heteromethod
correlations)

Rating dimension Covariance coverage Estimated correlation SE Adjusted p (raw p)

Overall 93/145 = .64 .23 0.08 .017
(.004)

Relevance 85/145 = .59 .18 0.10 .221
(.074)

Novelty 73/145 = .50 .25 0.08 .008
(.002)

Significance 75/145 = .52 .07 0.09 .866
(.433)

Soundness 69/145 = .48 .05 0.11 .866
(.639)

Papers are the units of analysis. Correlations were estimated by MLR (maximum likelihood with robust
standard errors) with the full information maximum likelihood (FIML) method on the base of n = 145
papers. A p value adjustment was conducted by the method proposed by Holm (1979) for m = 5 tests
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and Shirkey 1974; Kaiser 1970; Kaiser and Rice 1974; see also Field 2009; Hutcheson and

Sofroniou 1999). The measures of sampling adequacy (MSAs) for each single variable

were also greater than .50 (see Table 7).

The number of factors were determined by the scree plot of the eigenvalues (based on

the non-reduced correlation matrix: 3.90, 2.46, 0.77, 0.71, 0.57, 0.54, 0.37, 0.29, 0.20,

0.18) which is shown in Online Resource 5 (Cattell and Jaspers 1967; but see also Cattell

1966). Applying this criterion, the EFA suggests a two-factor structure. This decision was

clearly supported by a more accurate parallel analysis (Horn 1965) and by the criterion that

only those eigenvalues should be considered that lie above the 95th percentile of randomly

generated eigenvalues (see Hayton et al. 2004; 1000 random data sets were generated; see

Online Resource 5). After the extraction of two factors, the oblique Geomin rotation (Yates

1987) was applied. Both factors correlated significantly at .29 (p = .003).

As Table 7 shows, all of the same-discipline indicators only loaded significantly on

factor F-I and all of the different-discipline indicators only loaded significantly on factor

F-II. Therefore, it seems that this two-factor solution was an example of artificial method

factors which, for instance, are typical of applications where positively and negatively

formulated (reversed) items create their own factors (e.g., Brown 2015).

Again, these results provide evidence against the convergent validity of the paper scores

from both reviewer groups, as well as against the discriminant validity of the five

dimensions themselves. After all, the exploratory factor analysis did not reveal rating

Table 6 Correlations between rating dimensions within both reviewer groups (heterotrait-monomethod
correlations) and across all reviewers

Rating dimension Class of reviewers 1 2 3 4 5

1 Overall evaluation All reviewers – .65* .64* .65* .63*

Same-discipline – .53* .54* .58* .67*

Different-discipline – .67* .66* .69* .67*

2 Relevance All reviewers .65* – .50* .57* .44*

Same-discipline .53* – .41* .35* .29*

Different-discipline .67* – .52* .66* .41*

3 Novelty All reviewers .64* .50* – .56* .41*

Same-discipline .54* .41* – .57* .44*

Different-discipline .66* .52* – .68* .45*

4 Significance All reviewers .65* .57* .56* – .40*

Same-discipline .58* .35* .57* – .49*

Different-discipline .69* .66* .68* – .41*

5 Soundness All reviewers .63* .44* .41* .40* –

Same-discipline .67* .29* .44* .49* –

Different-discipline .67* .41* .45* .41* –

Papers are the units of analysis. Correlations were estimated by MLR (maximum likelihood with robust
standard errors) with the full information maximum likelihood (FIML) method on the base of (a) the ratings
of all reviewers (n = 145 papers), (b) the ratings of reviewers from the same discipline as the paper
(available for nsame = 119 papers), and (c) the ratings from reviewers from different disciplines (available
for ndiff = 119 papers). A p value adjustment was conducted by the method proposed by Holm (1979) for
m = 10 tests. This procedure was conducted three times (see the remarks above)

* padjust\ .05, two-tailed, with a multiple (familywise) significance level of .05
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dimensions as distinct factors, as would have been expected if the rating dimensions had

had a high convergent as well as discriminant construct validity. It is also notable that the

overall evaluation indicators had the highest loadings in comparison to the other rating

dimensions (see Table 7), which makes the overall evaluation a marker variable that is

most essential for the interpretation of each factor.

Confirmatory factor analysis

In a next step we tested the dimensionality and method specificity of the ratings in a more

elaborated way with a special kind of confirmatory factor analysis (CFA): a correlated

trait–correlated (method minus one) [CT-C(M-1)] model (Eid 2000; Eid et al. 2003). The

corresponding model structure is illustrated in Fig. 2.

Here, each rating dimension was given an exclusive factor with two indicators: (a) the

paper scores that were estimated by averaging the ratings of same-discipline reviewers and

(b) the paper scores that were estimated by averaging the ratings of different-discipline

reviewers. The usage of two aggregated indicators per factor is comparable to the approach

of using item parcels (e.g., test halves) as manifest indicators (e.g., see Brown 2015).

Additionally, an asymmetric method factor (MF) was specified, as was proposed by Eid

(2000). The MF was uncorrelated with the other factors and only indicators from one

method loaded on the MF. The method without loadings had to be interpreted as the

reference method. That is, one method took on the reference role and acted as a com-

parison standard, whereby the method specificity of the other method was caught by the

Table 7 Measure of sampling adequacy (MSA), communality values (COM), and factor loadings for an
exploratory factor analysis (EFA)

Rating dimension Kind of reviewers MSA COM Factor I Factor II

Overall Same-discipline .72 .75 .87* .00

Relevance Same-discipline .71 .32 .54* .06

Novelty Same-discipline .83 .44 .66* .03

Significance Same-discipline .79 .48 .69* .00

Soundness Same-discipline .67 .54 .77* -.17

Overall Different-discipline .78 .83 .01 .91*

Relevance Different-discipline .83 .56 .12 .71*

Novelty Different-discipline .86 .54 .01 .73*

Significance Different-discipline .75 .64 -.12 .83*

Soundness Different-discipline .74 .45 -.14 .70*

Papers are the units of analysis. Correlations and the EFA were estimated by MLR (maximum likelihood
with robust standard errors) with the full information maximum likelihood (FIML) method on the base of
n = 145 papers with Mplus (Muthén and Muthén 2012). The Kaiser–Meyer–Olkin (KMO) measure of
sampling adequacy of the correlation matrix reached an adequate value of .77 (Dziuban and Shirkey 1974;
Kaiser 1970; Kaiser and Rice 1974; see also Field 2009; Hutcheson and Sofroniou 1999). MSA and KMO
values were estimated with the package psych (Revelle 2016) for R (R Core Team 2016). After factor
extraction, the oblique geomin rotation method (Yates 1987) was performed. Both geomin factors are
significantly correlated at .29 (p = .003). Thus, factor loadings (out of the pattern matrix) in the last two
columns should be understood as partial regression coefficients (e.g., Brown 2015). A p value adjustment
was conducted by the method proposed by Holm (1979) for m = 20 tests

* padjust\ .05, two-tailed, with a multiple (familywise) significance level of .05
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MF. Because such a model is therefore asymmetric and because there was no natural

standard method, two models were estimated in which the roles of the same-discipline and

the different-discipline scores were reversed. For scaling the latent variables and for

identification purposes, one unstandardized loading per factor was fixed to the value of one

(see Fig. 2).

However, such models can be prone to convergence problems (Eid 2000; Eid et al.

2003, p. 60). Therefore, and because of the relatively small sample size, the Bayes esti-

mator was used. This estimator also has the advantage that implausible values (e.g.,

negative variances) are impossible (van de Schoot et al. 2014; Zyphur and Oswald 2015).

Accordingly, the two models were estimated with the Bayes estimator by Mplus (Muthén

and Muthén 2012).

The posterior predictive p value (PPP) was low for both models: .132 (same-discipline

reviews as reference) and .191 (different-discipline as reference). PPPs should be around

.50 and not very much smaller for models with an excellent fit (Muthén and Asparouhov

2011). However, the PPP should be regarded as a fit index and not as a statistical test.

Moreover, the two models were already liberal and could be changed only with fit-reducing

restrictions (e.g., equality constraints). Hence, the results of both models should not be

ignored completely, but should be interpreted with great caution.

The estimated latent factor variances for both models are shown in Online Resource 6. It

shows for each model that both variances for the rating dimension factors as well as the

variance of the method factor were significant. The significant method factor variance

provides support for considering the method factor in our model.

Fig. 2 A correlated trait–correlated (method minus one) [CT-C(M-1)] model (Eid 2000; Eid et al. 2003) in
which the same-discipline paper scores serve as reference method
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Table 8 shows the unstandardized factor loadings for both models (for the corre-

sponding credibility intervals, see Online Resource 7). Interestingly, the indicators with

free estimated loadings had significant loadings only on the method factor (if such paths

were allowed). But in neither case were loadings on the rating dimension factors signifi-

cant. Thus, the method factor seemed to be more important for an indicator variable than

the corresponding rating dimension factor.

This impression was emphasized by examining the coefficients of the CT-C(M-1)

framework (Eid 2000; Eid et al. 2003). The reliability coefficient of an indicator variable

provides information about the proportion of variance that is not attributable to random

measurement error. For indicators which have additional loadings on a method factor, the

reliability coefficient is divisible into the consistency coefficient and the method specificity

coefficient which both sum up to the reliability. The consistency coefficient provides

information about the measurement-error-free proportion of variance that is determined by

the comparison standard component. The method specificity estimates the measurement-

error-free proportion of variance that is method-specific and that is therefore not shared

with the comparison standard (for detailed formula, see Eid 2000; Eid et al. 2003). Both the

Table 8 Unstandardized factor loadings for a confirmatory factor analysis (CFA) correlated trait–correlated
(method minus one) [CT-C(M-1)] model

Rating dimension Kind of reviewers F I F II F III F IV F V MF

Overall Same 1.00a

(0.20)
–
(–)

–
(–)

–
(–)

–
(–)

–
(1.00a)

Overall Different 0.13
(1.00a)

–
(–)

–
(–)

–
(–)

–
(–)

1.00a

(–)

Relevance Same –
(–)

1.00a

(0.13)
–
(–)

–
(–)

–
(–)

–
(0.27*)

Relevance Different –
(–)

0.24
(1.00a)

–
(–)

–
(–)

–
(–)

0.42*
(–)

Novelty Same –
(–)

–
(–)

1.00a

(0.22)
–
(–)

–
(–)

–
(0.37*)

Novelty Different –
(–)

–
(–)

0.15
(1.00a)

–
(–)

–
(–)

0.41*
(–)

Significance Same –
(–)

–
(–)

–
(–)

1.00a

(0.13)
–
(–)

–
(0.41*)

Significance Different –
(–)

–
(–)

–
(–)

-0.04
(1.00a)

–
(–)

0.49*
(–)

Soundness Same –
(–)

–
(–)

–
(–)

–
(–)

1.00a

(0.09)
–
(0.46*)

Soundness Different –
(–)

–
(–)

–
(–)

–
(–)

0.00
(1.00a)

0.38*
(–)

F = factor; MF = method factor (e.g., see Eid 2000). Two models were estimated with Bayes estimator by
Mplus (Muthén and Muthén 2012). For identification purposes the loading of each same-discipline indicator
on its corresponding factor was fixed to the value of one and the loading of the different-discipline indicator
for overall evaluation on the MF was also fixed to the value of one (first model). The values in parentheses
result if the loading of each different-discipline indicator on its corresponding factor and also the loading of
the same-discipline indicator for overall evaluation on the MF were set to the value of one (second model)

* Bayesian 99% credibility interval does not contain the value of zero (significant)
aNo credibility interval is estimated because the parameter was fixed to one
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consistency coefficient and the method specificity coefficient can be defined (a) with the

observed (manifest) variances as divisor or (b) with the measurement-error-free (true-

score) variance as divisor. In the latter case, both coefficients add up to one.

All estimated coefficients for the model in which the same-discipline indicators act as a

reference method as well as for the model in which the different-discipline indicators act as

a reference method are listed in Table 9. As can be seen, particularly in the last two

columns, it was nearly exclusively the method specificity which accounted for the mea-

surement-error-free variance. As in the EFA, the relationships among the variables mea-

sured with the same method, that is, within each reviewer group, dominated the scenario.

The fact that the method-specificity coefficients were much larger than the corresponding

consistency coefficients indicates that the convergent validity was very low in all cases

(Eid 2000; Eid et al. 2003). In other words, as found in the exploratory factor analysis,

same-discipline reviewers and different-discipline reviewers did not agree in their

evaluations.

Likewise, the discriminant validity of all constructs is also in doubt. Although the latent

(measurement-error-free) correlations (see Table 10) hardly ever reached the critical value

of |.80| (or |.85|), which implies poor discriminant validity (e.g., Brown 2015, p. 28), it is

obvious that the discriminant validity, in general, should be regarded as rather small. This

Table 9 Coefficients for the confirmatory factor analysis (CFA) correlated trait–correlated method minus
one [CT-C(M-1)] model

Rating
dimension

Kind of
reviewers

Divisor: observed variance Divisor: true-score variance

Reliability Consistency Method
specificity

Consistency Method
specificity

Overall Same .84 (.73) .84 (.03) – (.69) 1.00 (.05) – (.95)

Overall Different .81 (.89) .02 (.89) .78 (–) .02 (1.00) .98 (–)

Relevance Same .60 (.30) .60 (.02) – (.27) 1.00 (.07) – (.93)

Relevance Different .55 (.79) .03 (.79) .50 (–) .05 (1.00) .95 (–)

Novelty Same .80 (.46) .80 (.05) – (.41) 1.00 (.10) – (.90)

Novelty Different .54 (.83) .02 (.83) .51 (–) .04 (1.00) .96 (–)

Significance Same .78 (.48) .78 (.02) – (.45) 1.00 (.04) – (.96)

Significance Different .65 (.83) .01 (.83) .64 (–) .01 (1.00) .99 (–)

Soundness Same .80 (.54) .80 (.01) – (.52) 1.00 (.02) – (.98)

Soundness Different .45 (.82) .01 (.82) .43 (–) .01 (1.00) .99 (–)

Two models were estimated with Bayes estimator by Mplus (Muthén and Muthén 2012). For identification
purposes the loading of each same-discipline indicator on its corresponding factor was fixed to the value of
one and the loading of the different-discipline indicator for overall evaluation on the MF was also fixed to
the value of one (first model). Coefficients in parentheses result if the loading of each different-discipline
indicator on its corresponding factor and also the loading of the same-discipline indicator for overall
evaluation on the MF were set to the value of one (second model). Same-discipline reviewers constitute the
reference method in the first model and different-discipline reviewers constitute the reference method in the
second model. In each model the method specificity can be estimated only for the non-reference method (see
Eid 2000). Consistency and method specificity were estimated in two forms: (a) by dividing the corre-
sponding weighted factor variance components by the observed indicator variance and (b) by dividing the
factor variance components by the (combined) true-score (measurement-error-free) variance (for more
details, see Eid et al. 2003)
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corroborates the conclusion we reached through the inspection of the manifest correlations

(see Table 6).

However, even though the latent inter-correlations were relatively high, it must be taken

into account that they were based on measurement-error-free variables. Thus, given the

fact that latent correlations were mostly below .80, the results indicated that the rating

dimensions could be empirically separated. That is, the reviewers’ evaluations of the

different rating dimensions were quite similar but not identical. In other words, when

several reviewers, for example, rated the novelty of a submission to be high (low), these

same reviewers were also likely to rate the soundness of the same submission as rather high

(low).

The conclusion about a low but serious discriminant validity was also supported by

model comparisons between a unidimensional CT-C(M-1) model and a multidimensional

CT-C(M-1) model for the dimensions relevance, novelty, significance, and soundness.

Hence, a 1-factor model was compared to a 4-factor model. The deviance information

criterion (DIC; Spiegelhalter et al. 2002) was used as a comparison criterion, whereby the

model with a smaller DIC should be preferred (e.g., see Kaplan and Depaoli 2013). Models

were estimated without considering overall evaluations. Table 11 shows the DIC values for

both (a) models in which the same-discipline scores acted as reference method and

(b) models in which the different-discipline scores act as reference method. In both cases, it

seems clear that the DIC for the multidimensional model was smaller than the DIC for the

unidimensional model. Thus, the supposed distinct dimensions relevance, novelty, sig-

nificance, and soundness seem to be slightly better represented by a multidimensional

model than by a unidimensional model.

Table 10 Factor intercorrelations from the confirmatory factor analysis (CFA) correlated trait–correlated
method minus one [CT-C(M-1)] model

Factor I II III IV V MF

I Overall evaluation –
(–)

.75*
(.81*)

.67*
(.77*)

.72*
(.81*)

.81*
(.78*)

–a

(–a)

II Relevance .75*
(.81*)

–
(–)

.58*
(.65*)

.54*
(.82*)

.46*
(.53*)

–a

(–a)

III Novelty .67*
(.77*)

.58*
(.65*)

–
(–)

.72*
(.81*)

.56*
(.54*)

–a

(–a)

IV Significance .72*
(.81*)

.54*
(.82*)

.72*
(.81*)

–
(–)

.62*
(.50*)

–a

(–a)

V Soundness .81*
(.78*)

.46*
(.53*)

.56*
(.54*)

.62*
(.50*)

–
(–)

–a

(–a)

MF method factor –a

(–a)
–a

(–a)
–a

(–a)
–a

(–a)
–a

(–a)
–
(–)

F = factor; MF = method factor (e.g., see Eid 2000). Two models were estimated with Bayes estimator by
Mplus (Muthén and Muthén 2012). For identification purposes the loading of each same-discipline indicator
on its corresponding factor was fixed to the value of one and the loading of the different-discipline indicator
for overall evaluation on the MF was also fixed to the value of one (first model). Estimates in parentheses
result if the loading of each different-discipline indicator on its corresponding factor and also the loading of
the same-discipline indicator for overall evaluation on the MF were set to the value of one (second model).
For each model the latent correlations resulted from the standardized solution

* Bayesian 99% credibility interval does not contain the value of zero (significant)
aMF has to be uncorrelated with the non-method factors (see Eid 2000)
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Predictive criterion validity: Citation rate prediction

The distinctiveness of the rating dimensions is also relevant for the final analysis, namely

the examination of criterion validity of the rating dimensions. For this purpose, we ana-

lyzed whether the accepted papers’ citation rate was predicable by the rating dimensions.

From the n = 145 submissions which had been rated by at least two reviewers, a total of

np = 82 accepted submissions were published in the conference proceedings (see footnote

2). Altogether, we analyzed citations in a window of about three years. The mean citation

rate was M = 1.24 (SD = 2.02). The lowest citation rate was 0 (nc0 = 40; 48.8%). The

highest citation rate was 11 (nc11 = 1; 1.2%).

The citation rate, as a genuine count variable, was regressed on the five rating

dimensions by applying negative binomial regression models (Hilbe 2011). Parameters

were estimated by MLR with Monte Carlo integration (Muthén and Muthén 2012). All

analyses were conducted for paper scores (a) based on the ratings from all reviewers,

(b) based on the ratings from same-discipline reviewers, and (c) based on the ratings from

different-discipline reviewers. Table 12 summarizes the results of these negative binomial

regressions.

Based on the adjusted p values, it can be stated that significant partial effects on citation

rate appeared only for the two rating dimensions relevance and novelty, and then only if

the scores were based on the ratings from same-discipline reviewers. In addition, a sig-

nificant effect of relevance also appeared when the paper scores based on the ratings of all

reviewers were considered. For a more detailed interpretation, the rate ratio coefficients

(from a multiplicative model) in Table 12 should be inspected. These coefficients were

obtained by exponentiation of the slopes (see Hilbe 2011).

The multiplicative rate ratio coefficient of 4.24 for relevance in Table 12 (same-dis-

cipline paper scores) means that, if all other predictors were held constant, one unit

increase in relevance increased the citation rate by a factor of 4.24. In other words, one unit

increase of relevance ratings made by same-discipline reviewers would result in 324%

more citations. On the other hand, the rate ratio coefficient of 0.28 for novelty (same-

discipline paper scores) means that, if all other predictors were held constant, one unit

increase in novelty decreased the citation rate by a factor of 0.28. That is, a one unit

increase of novelty ratings made by the same-discipline reviewers would result in 72%

fewer citations. Table 12 also shows that several slopes in the regressions with only one

predictor were significant. This different result pattern could be an effect of the high

correlations among the predictors.

In sum, our results demonstrated the predictive power of reviewers’ relevance and

novelty ratings, provided that each reviewer belonged to the same discipline as the paper.

These effects emerged even when the citation window was lengthened to a time span of

seven years (see Online Resource 8).

Table 11 Relevance, novelty, significance, and soundness: comparison between unidimensional and
multidimensional models

Reference method DIC for the unidimensional model DIC for the multidimensional model

Same-discipline reviews 1258.97 1224.13

Different-discipline reviews 1234.19 1231.26

DIC = deviance information criterion (Spiegelhalter et al. 2002)
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Discussion

The study set out to investigate two facets of the quality of reviews in an interdisciplinary

context: inter-rater reliability and validity. Taken together, our findings draw a somewhat

pessimistic and, to some extent, mixed picture. Not only did we find little agreement

among reviewers, our findings also argue for little convergent as well as discriminant

construct validity. However, with regard to predictive criterion validity, we found that the

ratings for relevance and novelty were capable of predicting the citation rate of the

accepted papers which were published in the conference proceedings. These effects were

restricted to ratings made by reviewers from the same discipline as the papers. Let us

address each aspect in detail.

Table 12 Negative binomial regressions (NBRs) of citation rate on the five rating dimensions (with a
citation window of roughly three years)

Rating dimension Kind of reviewers Multiple NBRs Simple NBRs

Slope bi
a exp(bi) Slope b1

b exp(b1)

Overall All reviewers 0.12 1.12 1.01* 2.74

Same-discipline 0.19 1.21 0.44 1.55

Different-discipline 0.15 1.16 0.68* 1.97

Relevance All reviewers 1.64* 5.16 2.18* 8.84

Same-discipline 1.44* 4.24 1.51* 4.51

Different-discipline 0.87 2.38 1.57* 4.80

Novelty All reviewers -0.12 0.89 0.66 1.93

Same-discipline -1.26* 0.28 -0.59 0.55

Different-discipline 0.06 1.06 0.72 2.06

Significance All reviewers 0.39 1.47 1.08* 2.95

Same-discipline 0.47 1.60 0.58 1.78

Different-discipline 0.25 1.28 0.88* 2.41

Soundness All reviewers 0.50 1.66 0.95* 2.57

Same-discipline -0.16 0.85 0.18 1.19

Different-discipline 0.34 1.40 0.76 2.14

Only papers with at least one non-missing predictor value were considered for multiple NBRs (via Monte-
Carlo numerical integration with 5000 integration points; see Muthén and Muthén 2012). The multiple
NBRs were conducted with nboth = 82 papers (all reviewers), nsame = 67 papers (same-discipline), and
ndiff = 70 papers (different-discipline). All predictors were mean-centered by using the means based on all
reviewers. Estimated intercepts were -0.59 (all reviewers, p = .017), -0.31 (same-discipline, p = .218),
and -0.35 (different-discipline, p = .193). Estimated negative binomial dispersion parameters were 0.72
(p\ .05), 0.73 (p = .012), and 0.88 (p = .010) respectively. The multiple NBRs yielded smaller values for
the Bayesian information criterion (BIC; Schwarz 1978) than Poisson regression models: 636.35, 692.20,
and 726.38 versus 651.60, 704.31, and 746.09. Similar conclusions were reached by boundary likelihood
ratio tests (Hilbe 2011). Sample sizes for simple NBRs ranged from 81 to 82 (all reviewers), from 61 to 67
(same-discipline), and from 66 to 70 (different-discipline)

* padjust\ .05, two-tailed, with a multiple (familywise) significance level of .05 (rate ratios were not tested)
a,bFor each class of reviewers a p value adjustment was conducted for m = 5 tests (see Holm 1979)
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Poor agreement among reviewers

Across all reviewers (same-discipline and different-discipline) the agreement among

reviewers was above chance, yet rather poor (Cicchetti 1994). This is a common finding, as

indicated by the most recent meta-analysis (Bornmann et al. 2010; see also Cicchetti 1991).

It seems noteworthy, however, that the average agreement based on all reviewers and

across all five rating dimensions (.22) was even below the mean of ICCs and r2 coefficients

obtained in the meta-analysis (.34).

It would seem plausible to suspect that the interdisciplinary context accounts for these

findings, since most prior studies on inter-rater reliability were conducted within single

scientific disciplines. So, one could expect that shared standards would enhance agreement.

Our results do not confirm this argument, however. A differentiation between intra- and

interdisciplinary reviews even indicates the opposite. Whereas agreement was poor and not

even distinguishable from chance for intra-disciplinary reviews (average single-rater

reliability: .16), it was higher and well above chance for interdisciplinary reviews (average

single-rater reliability: .35). This is interesting in consideration of the fact that the disci-

pline of an ‘‘outsider’’ may not only differ from the paper’s discipline but also from other

reviewers’ disciplines (e.g., when a paper from the psychological-experimental category is

rated by one reviewer with informational-technological background and by another

reviewer with social-educational background). To be sure, ‘‘higher’’ agreement in this case

meant ‘‘fair’’ instead of ‘‘poor’’ agreement, not ‘‘good’’ or even ‘‘excellent’’ agreement

(Cicchetti 1994).

It must also be acknowledged that the differences between interdisciplinary and intra-

disciplinary reviews were not statistically significant. Therefore, the descriptively higher

agreement in interdisciplinary reviews should not be overemphasized. It does make clear,

however, that the overall poor agreement obtained in our study cannot be attributed to the

interdisciplinary context. At the same time, those results throw into question the implicit

assumption that intra-disciplinary inter-rater agreement is, a priori, higher than interdis-

ciplinary inter-rater agreement. It is still far too early to draw any conclusions, since more

research is needed in this area. After all, our study was the first to examine agreement

among reviewers in an interdisciplinary context, so now further studies are needed. And we

strongly recommend appropriate statistics for future studies, as ill-structured designs seem

to be the norm rather than the exception in peer-review data sets (e.g., when analyzing

submissions to scientific journals or meetings).

Even more importantly, however, more agreement is needed. By now, several

researchers have criticized peer ratings as they ‘‘fall short of acceptable standards of

reliability’’ (e.g., Marsh et al. 2007, p. 37). Of course, agreement is relevant and desirable

only if one assumes that manuscripts possess an inherent objective quality (Kirk and

Franke 1997). From the standpoint of rejecting this idea (e.g., Luce 1993) the very notion

of quality control becomes irrelevant, and consequently peer review would not be needed

to serve a gatekeeping function. As long as decisions for or against the acceptance of a

submitted manuscript or grant proposal are based on peer reviews, however, ‘‘appreciable

levels of agreement and a principled, valid basis for agreement’’ are necessary (Whitehurst

1983, p. 78; Burdock et al. 1963). After all, these decisions have an impact on the career of

researchers (e.g., van Dalen and Henkens 2012). Therefore, research should not only tackle

the status quo of interrater agreement but also how to improve it.
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Poor construct validity of the reviewers’ evaluations

The findings of our various analyses regarding construct validity of the ratings draw a

very coherent picture. On the one hand, they show evidence for poor convergent validity.

First, manifest monotrait-heteromethod correlations of the same dimensions between

different groups of raters were low. Second, the exploratory factor analysis yielded two

factors instead of five. The pattern of the factor loadings clearly revealed that these two

factors were not based on content but rather represented two method factors (one for the

same-discipline reviews and one for the different-discipline reviews). Third, the confir-

matory factor analysis also pointed to the differentiation between same-discipline and

different-discipline reviews and revealed that the corresponding indicators did not sig-

nificantly load on common rating dimension factors. Together with a large method factor

variance and a high method-specificity coefficient, this indicates a poor convergent

validity.

At the same time, our findings also suggest a rather poor discriminant validity. First,

manifest correlations between different rating dimensions within each reviewer group

(heterotrait-monomethod correlations) and across all reviewers were rather high (even

if below .80). Second, the exploratory factor analysis yielded high loadings within the

factors of each reviewer group. Third, the confirmatory factor analysis yielded high

latent correlations between factors. However, most latent correlations were not as high

as would have been expected if reviewers’ evaluations had been unidimensional (e.g.,

above .80). Similarly, our comparison between a unidimensional and a multidimen-

sional model suggested that the different rating dimensions were closely related high

but not close enough to suggest a unidimensional model. Rather, the multidimensional

model yielded a better fit. In other words, despite the fact that we found only modest

empirical support for the distinctiveness of the rating dimensions, it might still make

sense to ask reviewers to take (those) different dimensions into account when evalu-

ating a submission.

Obviously, the rating dimensions were similar, but not redundant. Consequently, they

still provided more information than a single global rating would have, but they hardly

reflected independently assessed dimensions. Here, our results are therefore similar to

Marsh and Ball (1989), who concluded that ‘‘although there was support for the conceptual

and empirical distinctiveness of four components, there was little support for their practical

utility’’ (pp. 165–166).

Relevance and novelty as predictors for the citation rate

On the other hand, with regard to the prediction of citation rate, our findings point to a

practical utility of distinct rating dimensions. That is, our findings demonstrate the pre-

dictive criterion validity of relevance and novelty ratings made by reviewers from the same

discipline as the paper.

With regard to highly cited papers, it seems clear that ‘‘in order to get highly cited the

content of the highly cited paper must be useful or of relevance for the research activity’’

(Aksnes 2003, p. 167). Accordingly, highly relevant papers, at least in the eyes of same-

discipline reviewers, were cited more frequently than papers which received low relevance

ratings. This finding is not trivial, as it indicates that same-discipline reviewers are in fact

capable of evaluating the relevance of submissions for their scientific community. This

does not mean, however, that attributed relevance automatically indicates objective quality
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which would later be reflected in the high resonance within the reviewers’ scientific

community. Rather, it means that reviewers seem to have a good sense for which sub-

missions would generate that kind of resonance. And this resonance takes, among others,

the form of countable citations, which is a kind of scientific currency. However, the

implications, shortcomings, and benefits of the resonance metaphor cannot be discussed

and deepened here (for a positively connoted socio-psychological concept of resonance,

see Rosa 2016; for a comparison of theoretical approaches to citation behavior, see

Bornmann and Daniel 2008c).

The observable success or impact of highly relevant papers in terms of citations does

not necessarily imply that especially highly innovative papers generate a lot of resonance.

Quite the contrary, because another important finding was that papers with high (low)

novelty ratings from same-discipline reviewers were cited to a lesser (higher) degree. This

is in line with the findings of Stephan et al. (2017) who concluded that ‘‘more-novel papers

were more likely to be either a big hit or ignored compared with non-novel papers in the

same field’’ and that ‘‘novelty needs time’’ (p. 412; for some remarks on the conservative

bias, see, for example, Benda and Engels 2011; Lee et al. 2013). On the other side, it has

also to be considered that novelty by itself does not guarantee scientific quality.

Limitations

One criticism might be that the ratings per paper should not be aggregated at all due to the

rather low k-rater reliabilities. And the poor reliability for single reviewers and for both

reviewer groups might explain the appearance of the method factors that we observed in

the exploratory factor analyses. Thus, the agreement was simply too low for distinct

content factors to emerge. In this case, however, the conclusion would be even more

negative, as we could not speak of low construct validity but would have to say that the

results of an analysis of validity were difficult to interpret. The implication would be even

more obvious: we urgently need a better agreement in peer reviews. This resembles the

insight from classical test theory that reliability (more precisely, the reliability index)

restricts the possible upper limit for validity (e.g., Raykov and Marcoulides 2011,

pp. 193–194). Here again, it is even more important to not only investigate the peer-review

system, but to try to improve it.

Another limitation which could be discussed regards the nature of our data as well as the

nature of data from review processes in general. Except for the estimations of the inter-

rater reliability, almost all analyses were based on the paper scores, just as analyses in

psychological research have usually been based on participant scores (reviewers and items

become the measurement instruments in both scenarios). These paper scores were con-

structed by averaging the ratings (a) of all raters, (b) of same-discipline raters, and (c) of

different-discipline raters. Thus, these variables could be regarded as quasi-continuous.

With respect to the non-aggregated ratings, the question whether such single-item rating

scales can be treated as continuous variables in the analysis process is still a heavily

debated issue between ‘‘purists’’ and ‘‘pragmatics’’ (Bortz and Döring 2006, p. 181). The

pragmatic strategy seems to be justified for new research questions and for cases in which

important and consistent result patterns are obtained, which are later replicated with more

sophisticated methods (Bortz and Döring 2006, p. 182; see, for example, also Hassebrauck

1993; Rhemtulla et al. 2012). For example, single-item rating scales have been successfully

applied to collect ratings of physical attractiveness of target persons (e.g., Hassebrauck

1983; Hönekopp 2006), to measure self-rated political ideology (e.g., Cohrs et al. 2005), or
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to collect impressions about the persuasiveness of presented material (e.g., Lord et al.

1979).

A further limitation could be that we used only Web-of-Science databases for counting

the citations rates. However, for the time span of our investigations (see footnote 2), Web-

of-Science could be seen as an appropriate interdisciplinary citation index that ensured a

comparatively high accuracy standard when searching for citations in scientific writings

(e.g., de Winter et al. 2014; see also Baethge et al. 2013). A methodical advantage was the

fact that all of the papers we analyzed were published at the same time. An offset cor-

rection for different time spans was therefore not necessary.

Implications and outlook

Despite the limitations of our study, we regard the results to be worrisome. While con-

sequences of low inter-rater reliabilities may be limited with regard to conference sub-

missions, they are more serious when it comes to journal submissions and even more

severe in the case of grants, which ultimately shape careers. Thus, it seems to be time to not

only examine the reliability and validity of the peer-review system, but rather to think of

better ways to assess submissions. Several suggestions have been put forward in the recent

past.

It is possible that critical appraisal tools (CAT; for an overview see Crowe and Sheppard

2011a) could be important in this regard. CATs are standardized instruments that can be

used for the evaluation of scientific documents, and they were designed mainly as a tool for

systematic reviews. They allow for a thorough evaluation of research articles and enable

identification of the best articles on a given topic (e.g., Crowe and Sheppard 2011a).

However, evidence is sparse for the reliability and validity of such tools as these (Crowe

and Sheppard 2011a, b).

Another obvious starting point might be to improve inter-rater reliability by training

reviewers (Oxman et al. 1991). Such training, however, requires a shared understanding of

both the criteria for paper quality and of when and to what extent the criteria are met.

Hence, journal editors, conference organizers, and grant suppliers would need to agree on

these issues in order to be able to provide detailed instructions for reviewers. It might be,

however, that formal training would be less efficient than one would hope (Callaham and

Tercier 2007; see also Houry et al. 2012). Moreover, some reviewers might feel their

academic freedom is threatened by training (e.g., Adams 1991).

A further possibility for enhancing agreement is to avoid reviewers who have been

nominated by the author (Marsh et al. 2007). The numbers of reviewers could also be

increased in order to obtain more reliable results (Wood et al. 2004). Since an increase in

reviewers would increase substantially the effort, this particular solution might be

appropriate mostly for cases with more serious consequences (e.g., grants) in order to

decrease the impact of chance (Cole et al. 1981; but see also List 2017).

Another approach to increasing reliability might be the ‘‘reader system’’, which has

been suggested by Jayasinghe et al. (2006). The most important aspects of this system are

that the same three to four experts of a sub-discipline review all proposals and are asked to

rank them. This proceeding is characterized by a shared frame of reference and eliminates

rater-effects (leniency/harshness). The reader system has been developed with grant pro-

posals in mind, all of which are supposed to be submitted at the same time. To apply this

system to journals, which receive submissions on a continuous basis, however, would

require making some adaptations. Applicability might not be realistic at all in cases where

many submissions have to be evaluated.
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Finally, open peer review has been suggested (Groves 2010). In this system, reviewers

would not remain anonymous but would sign their reviews. Initial evidence suggests that

open peer reviews are of higher quality (Walsh et al. 2000). We are not aware of any study

which examines reliability or validity issues in open peer review, let alone one which

provides a comparison to traditional (closed) peer review (but see DeCoursey 2006 and

Khan 2010 for a discussion of advantages and disadvantages of open peer review).

Apart from thinking of variations of the traditional peer-review system, however, one

might likewise think of alternatives to it. Low agreement is less of a problem, for instance,

if peer review does not fulfill a gate-keeping function (for publication). Imagine a scenario

where everything that was published had passed an initial screening (Wood et al. 2004). In

this scenario, it would be essentially up to the entire scientific community to deal with the

publication. How acceptable the publication proved to be would still be measurable by

citations. Based on prior evidence that the impact in the scientific community is only

loosely linked to reviewers’ evaluations (Akerlof 2003; Gottfredson 1978; Harrison 2004)

such a scenario might be particularly interesting. Moreover, it could be combined with

novel elements that have become possible with Web 2.0 and social media, such as reader

evaluations or post publication peer review (but see Anderson 2012). Of course, we do not

know yet whether such a system would be superior to the traditional peer-review system

(Smith 2003). As long as there are no empirical comparisons, however, traditional peer

review may simply survive because of the lack of good alternatives. This is, however, weak

justification for its implementation.

With regard to validity, our results indicated a rather poor convergent validity, although

the model comparison did favor a multidimensional model with distinct rating dimensions.

Therefore, it seems too premature to conclude that distinct rating dimensions are unnec-

essary. This is especially true with regard to the dimensions relevance and novelty, which

were predictive of the citation rate provided the ratings were made by reviewers from the

same discipline as the papers. Future studies should, therefore, investigate the predictive

criterion validity of different rating dimensions with regard to a broad range of criterion

variables. Criterion variables could be operationalized, for example, by social network

analysis (SNS) methods. Such variables could indicate how central an article is in a citation

network and to what degree an article has linked different disciplines (e.g., Halatchliyski

and Cress 2014). In addition, a simple but perhaps effective method to predict citation and

download rates could be to ask reviewers directly to assess the papers’ potential for

generating many citations and clicks. However, a legitimate question is whether the

citation rate is actually an adequate proxy for scientific quality (e.g., Bornmann and Daniel

2008c; Lindsey 1989; Stephan et al. 2017; Tahamtan et al. 2016). But that is another story

which is also worthy of more attention by future research.
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