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� Akadémiai Kiadó, Budapest, Hungary 2017

Abstract Document clustering is generally the first step for topic identification. Since

many clustering methods operate on the similarities between documents, it is important to

build representations of these documents which keep their semantics as much as possible

and are also suitable for efficient similarity calculation. As we describe in Koopman

et al. (Proceedings of ISSI 2015 Istanbul: 15th International Society of Scientometrics and

Informetrics Conference, Istanbul, Turkey, 29 June to 3 July, 2015. Bogaziçi University

Printhouse. http://www.issi2015.org/files/downloads/all-papers/1042.pdf, 2015), the

metadata of articles in the Astro dataset contribute to a semantic matrix, which uses a

vector space to capture the semantics of entities derived from these articles and conse-

quently supports the contextual exploration of these entities in LittleAriadne. However, this

semantic matrix does not allow to calculate similarities between articles directly. In this

paper, we will describe in detail how we build a semantic representation for an article from

the entities that are associated with it. Base on such semantic representations of articles, we

apply two standard clustering methods, K-Means and the Louvain community detection

algorithm, which leads to our two clustering solutions labelled as OCLC-31 (standing for

K-Means) and OCLC-Louvain (standing for Louvain). In this paper, we will give the

implementation details and a basic comparison with other clustering solutions that are

reported in this special issue.
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Introduction

Topics, sub-fields, specialities build the core in the self-organised process of scientific

knowledge production (Bruckner et al. 1990). There is a lot of ambiguity how to define

these units of cognitive and social organisation (Sugimoto and Weingart 2015), and an

ongoing debate about how to extract them in an automatic, algorithmic way (Gläser et al.

2017). Still, one way to identify topics is to cluster documents. There are different ways to

determine if two documents address a related subject matter. Some well-known signals for

a topical relatedness include citations (if one document cites another) (Garfield 1983), co-

citations (if two documents are cited by a third document) (Small 1973), bibliographic

coupling (if two documents share a reference in their bibliography) (Glänzel and Czerwon

1996), and co-word linkages (if two documents share certain words) (Leydesdorff 1989).

Each of these signals or traces can be used to construct a different matrix of relatedness or

similarity between documents, based on which clusters of documents or topics can be

identified.

In the bibliometric literature advantages and disadvantages of different methods have

been discussed in abundance. In general, one differentiates between citation-based and

text-based metrics (Boyack et al. 2013). Although words are expected to be less codified

than cited references, we share the belief that words, especially those in titles and abstracts,

do carry a certain amount of a knowledge claim made by a paper (Leydesdorff and

Hellsten 2006). Hence, in accordance to the programme of cognitive scientometrics (Rip

and Courtial 1984) and more recent full-text based bibliometric studies (Boyack et al.

2013), we state that if two documents share enough lexical information, they are consid-

ered to be related.

For the clustering approaches detailed in this paper, we rely on a new semantic rep-

resentation of articles to determine their similarities. Both the underlying method and an

interactive search interface based on it has been named Ariadne (Koopman et al.

2015, 2015). Our approach has great resemblance to methods used in information retrieval,

in as such that it operates in a word space. But in difference to methods based on Salton’s

word space of documents, we use information from all elements of a document (in our

case, an article), and create a word space for all those elements or entities. The motivation

for this is based on the assumption that using information from many different elements of

an article provides a more accurate semantic representation of this article. We conse-

quently assume that this also improves the basis on which the similarity/relatedness

between articles is determined. When we use entities such as authors, journals, subjects-

headings, or references we simultaneously search for semantic similarity/relatedness along

perspectives of a social (authors), communicative (journals as publication venue), or

knowledge exchange (references) organisation of scientific knowledge production.

Our research questions are therefore (a) whether we could reconstruct a valid semantic

representation for articles from all the entities they are associated with and (b) identify

article clusters using standard methods based on such a semantic representation.

In this paper, we first describe how to represent the semantics of articles based on the

entities that are involved with these articles. Then we briefly introduce two standard

clustering methods, K-Means and Louvain community detection algorithm before

reporting the implementation details. At the end, we compare our two solutions with the

other clustering solutions reported in this special issue and conclude the paper.
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From semantics of entities to semantics of articles

For our approach, we adopt the notion of Statistical Semantics (Furnas et al. 1983; Weaver

1955) based on the assumption of ‘‘a word is characterized by the company it keeps’’ (Firth

1957) or in Linguistics the Distributional Hypothesis (Harris 1954; Sahlgren 2008): words

that occur in similar contexts tend to have similar meanings. In Ariadne, we extend words

to entities (such as authors, journals, subjects, citations) so that each entity is indexed by a

vector in a semantic space reflecting their lexical context, i.e., their co-occurrences with

certain terms (including topical terms extracted from title and abstract plus user-defined

subjects) (Koopman et al. 2017).

The resulting entity-term co-occurrence matrix could become extremely big and sparse

which makes any computation on top of it very expensive and impractical. Thanks to

Random Projection (Achlioptas 2003; Johnson and Lindenstrauss 1984), we can dramat-

ically reduce the dimensionality of this semantic space, obtaining a much smaller and

manageable sized semantic matrix yet keeping the semantics of the entities as much as

possible. With all entities represented as vectors in the same semantic space, it is possible

to compute the distance or relatedness between any pairs of entities, no matter which types

they are. Such freedom is a unique feature of Ariadne. It provides a contextual view about

an entity or a query as a start of an exploratory journey. For a more detailed description

please refer to other papers (Koopman et al. 2015, 2017).

In the semantic matrix each article contributes to the semantics of individual entities.

When executed over a big corpus the statistics are reliable to calculate the similarity

between entities, However, from this semantic matrix, we cannot directly calculate simi-

larities between articles.

To be able to cluster articles, and thus be comparable to the other methods, we first

construct an integrated representation of an article from the entities associated with it. To

do so, for each article, we look up all entities associated with this article in the Semantic

Matrix. Consequently we obtain a set of vectors V ¼ fv1; . . .; vng for each article, where n

is the number of entities associated with it and vi is the vector for entity ei. These entities

can be the authors, subjects, journal, citations, topical terms (extracted from its title and

abstract), etc. Each article is represented by a unique set of vectors. The size of the set

n can vary, but each of the vectors inside of a set has the same length, in our case 600

(see Koopman et al. (2017) for more details).

For each article we now build a new vector v0, the weighted centroid of its constituent

vectors:

v
0 ¼

Pn
i¼1 wi � viPn

i¼1 wi

; ð1Þ

where wi ¼ logðN=fiÞ3
, N is the total number of articles and fi is the number of articles

which contain the entity ei. With this specific weighting frequent entities are heavily

penalized to have little contribution to the resulting representation of the article. In the end,

each article is represented by a vector of 600 dimensions.

Feature selection We extend our results published in Koopman et al. (2015) by putting

the citations as additional entities in the Semantic Matrix (see Koopman et al. (2017) for

more details). In order to see which role the citation information plays in terms of clus-

tering, we will experiment by including or excluding citation vectors when computing the

semantic vectors for articles (Eq. 1). So, for each article, we generate 3 vectors, one is a

weighted average of everything but citations (i.e., topical terms, subjects, authors, and
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journals, the same in Koopman et al. (2015)), one is a weighted average of only citation

entities, and one is a weighted average of all types of entities. In Sect. 3.1, we will report

the comparison results.

Standard cluster algorithms

Once the article vectors are generated, the next step is to identify clusters of articles.

Various clustering methods can be applied. We mainly experiment with K-Means because

it is a simple and highly scalable clustering method which directly operate on the vectorial

representations of the articles. Our goal is to check whether such semantic representations

yields sensible clusters.

Network-based clustering methods are well used in the scientometrics community.

Therefore, we also try to solve the clustering problem from a network point of view. As a

further process of such semantic representations, we transform the similarities calculated

based on such vectorial representations to a similarity network of articles from which

communities (clusters) could be detected. We choose to apply the Louvain community

detection method (Blondel et al. 2008) as it is widely used in the scientometrics com-

munity but mostly applied to citation-based data models. We are interested to check

whether the Louvain method could also find communities based on semantic similarities of

the articles, instead of citations between them.

We now briefly describe these two standard algorithms and the implementation details

on our dataset.

Clustering using K-means

The K-Means algorithm is one of the simplest unsupervised learning algorithms that solves

the well defined clustering problem (MacKay 2003; Witten et al. 2011). It scales well to

large number of samples and has been used across a large range of application areas in

many different fields including scientometrics (Boyack et al. 2005).

Given a set of data points or observations (x1; x2; . . .; xn), where each data point is

characterized by a d-dimensional real vector, k-means clustering aims to partition the n

data points into kð� nÞ sets or clusters S ¼ fS1; S2; . . .; Skg so that the Within-Cluster Sum

of Squares (WCSS) is minimized. In other words, the objective of the K-Means algorithm

is to find

argmin
S

Xk

i¼1

X

x2Si

x� lik k2 ð2Þ

where li is the centroid (mean) of points in Si.

This algorithm requires the number of clusters to be specified a priori. It starts with an

initial set of k centroids m
ð1Þ
1 ; . . .;m

ð1Þ
k and proceeds by alternating between two steps

(MacKay 2003):
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Assignment
step:

Assign each data point to the cluster whose mean yields the least WCCS.1

S
ðtÞ
i ¼

�
xp :

�
�xp � m

ðtÞ
i

�
�2 �

�
�xp � m

ðtÞ
j

�
�2 8j; 1� j� k

�
; ð3Þ

where each xp is assigned to exactly one SðtÞ, even if it could be assigned

to two or more of them.

Update step: Calculate the new means to be the centroids of the data points in the new

clusters.

m
ðtþ1Þ
i ¼ 1

jSðtÞi j

X

xj2S
ðtÞ
i

xj ð4Þ

The algorithm converges when the assignments no longer change, which leads to a (local)

optimum while the global optimum is not guaranteed.

The Mini Batch K-Means (Sculley 2010) is a variant of the K-Means algorithm which

uses mini-batches to reduce the computation time, while still attempting to optimize the

same objective function. The algorithm takes small batches (randomly chosen) of the

dataset for each iteration. It then assigns a cluster to each data point in the batch, depending

on the previous locations of the cluster centroids. It updates the locations of cluster cen-

troids based on the new points from the batch. The update is a gradient descent update,

which is significantly faster than a normal Batch K-Means update.

Using mini-batches drastically reduce the amount of computation required to converge

to a local solution, but the quality of the results is reduced. In practice this difference in

quality can be quite small (Béjar 2013). Therefore, we choose to use a Mini-Batch

K-Means implementation provided by an open source machine learning library to cluster

the articles in the Astro Dataset, where each article is a data point in the 600 dimensional

semantic space, as described in Sect. 2.

Clustering using the Louvain method for community detection

We consider each article as a node in a network, and there is a link between two articles

when they are highly similar. Practically in our case, we connect each article to its top 40

the most similar/related articles based on the cosine similarities calculated from their

vectorial representation. This results in an article similarity network where clusters or

communities could be detected. The task is to partition the network into communities of

densely connected nodes, with no or sparse connections between the nodes belonging to

different communities.

The Louvain method (Blondel et al. 2008) is a simple, efficient and well-accepted

method for identifying communities in large networks. It is widely used in many appli-

cations in different domains including scientometrics (Zhang et al. 2010; Glänzel and

Thijs 2017; Zhang et al. 2010). We apply it to see how well it performs on a similarity

network rather than a citation-based network as what the ECOOM team reported in this

special issue.

The method itself is a greedy optimization method that attempts to optimize the

‘‘modularity’’ of a partition of the network. Modularity is a scale value between -1 and 1

that measures the density of edges inside communities compared to edges outside com-

munities. It is defined as Newman (2006):

1 Since the sum of squares is the squared Euclidean distance, this is intuitively the ‘‘nearest’’ mean.
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Q ¼ 1

2jEjRij

�

Aij �
kikj

2jEj

�

dðci; cjÞ ð5Þ

where |E| is the total number of edges in the network, ki is the degree of node i, Aij is an

element of the adjacency matrix (e.g., the weight of the edge between i and j), and ci is the

community to which node i is assigned, and the d function is 1 if ci ¼ cj and 0 otherwise.

The optimization is performed in two steps iteratively. In the first phase, the method

looks for ‘‘small’’ communities by optimizing modularity locally. Each node is initially

assigned to a different community, i.e., there are as many communities as there are nodes.

Then, for each node i the gain of modularity is calculated by moving i from its own

community into the community of each neighbour j of i. After this value is calculated for

all communities i is connected to, i is placed into the community that resulted in the

greatest modularity increase. If no positive gain is possible, i remains in its original

community. This process is applied repeatedly and sequentially to all nodes until no

modularity improvement can occur and then the first phase is complete.

In the second phase, it aggregates nodes belonging to the same community and builds a

new network whose nodes are the communities from the previous phase. Then the first

phase can be re-applied to this new network. This way, it iteratively optimizes local

communities until a maximum of global modularity is reached.

Compared to K-Means, the advantage of using the Louvain method is that the number

of partitions or clusters is decided by the data itself. Similar to K-Means, the Louvain

method is also an approximate method which does not really guarantee a global maximum

of modularity. But it is highly scalable and often produces good approximation of the

optimal communities.

Experiments

We applied the above-mentioned two clustering methods to the Astro dataset, which

contains 111,616 articles in astronomy and astrophysics from 2003 to 2010 (please see -

Gläser et al. (2017) for a full description of the dataset).

Experiments with K-means

Determining K based on a Pseudo-ground-truth

Evaluating clustering results or detected communities is a complex problem. The results

could be presented to experts who decide whether each cluster or community is valid or

not. Alternatively, a ground truth, i.e., a reference cluster or community allocation, could

be used to measure how well the clustering solution fits the ground truth. Unfortunately,

either way is extremely labour intensive if not impossible in our case.

This causes a practical problem while applying K-Means. A ground truth, or prior

knowledge of the data, would help to determine one of the most important parameters for

K-Means, the choice of k. The lack of ground truth forces us to determine k pragmatically.

The average silhouette of the data (Rousseeuw 1987) is a measure which could be used

for determining k. The silhouette measures how closely a data point is matched to other

data points within its cluster and how loosely it is matched to data points of the neigh-

bouring cluster, i.e. the cluster whose average distance from the data point is lowest. The

silhouette ranges from -1 indicating a wrong assignment to 1, an appropriate one while
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scores around zero indicating overlapping clusters. We calculated the average silhouette of

a sample of 20,000 data points with k from 10 to 100. As shown in Fig. 1, although slowly

climbing the average silhouette scores are still around zero. This means that any numbers

of clusters from this dataset are highly overlapping and a clear boundary between clusters

seems not possible. This may reflect the intrinsically intertwined scientific communications

between different topics. Another possible reason is that these articles may focus on

different topics of the astrophysical domain, but they might still use the overlapping

vocabulary which makes a clear distinction based on lexical information difficult to detect.

Since there are already a couple of clustering solutions on the same dataset from

different research teams, we could build a pseudo-ground-truth based on the consensus of

the available clustering solutions. We collected four clustering solutions, namely CWTS-

C5, UMSI0, ECOOM-BC13 and STS-RG. Across all these four solutions, there are

93,986,261 pairs of articles, involving 96,072 articles (86% of the whole dataset), are

always in the same clusters. We use these shared pairs as the pseudo-ground-truth. It is by

no means the real ground truth, but a consensus we could use to tune our k to make a best

guess.

As Table 1 shown, CWTS-C5 clusters provide the least number of article pairs while

has the biggest proportion which is shared with the other three solutions. While the STS-

RG clusters are quite the opposite: producing more than 940 K article pairs but only 10%

of which are shared with others. It is mainly due to its largest 3 clusters which already

contain 61% of the whole data set. They produce a large amount of within-cluster article

pairs. But because these articles are in the same clusters, the total amount of shared pairs is

not reduced much by including the STS-RG clusters. Note that the STS-RG clusters are

generated using a rather different method from those used by the other three (Velden et al.

2017). Without the STS-RG clusters, there are 140M shared pairs and 100 K articles

involved. However, as we find that including them does not have much effect on the choice

of k, we decided to include the STS-RG clusters to build our pseudo-grounth-truth.

This simple comparison presented in Table 1 also suggests there might be a core set of

articles whose cluster assignments are rather stable no matter which clustering method is

used. Therefore, we argue that this set of 93 million shared pairs involving 96 K articles

could be used to evaluate new clustering solutions, such as our own Louvain results.

With this pseudo-ground-truth, we are looking for an optimal k. On one hand these k

clusters agree the most with the other four solutions, i.e., reproducing the most shared

pairs. On the other hand large clusters are penalised if they put irrelevant articles into the

same clusters. Formally we measure the precision (p) and recall (r) as follows:

p ¼ #article pairs in common

#total produced pairs
; r ¼ #article pairs in common

#total shared pairs
ð6Þ

where #total shared pairs is the total number of the article pairs in the pseudo-ground-

truth, i.e. 93 million, #total produced pairs is the total number of within-cluster article

pairs produced by the k clusters, and #article pairs in common is the number of article

pairs which are produced by the k clusters and also shared by the other four solutions. A

high p means a large proportion of produced article pairs are agreed by the other four

solutions, while a high r indicates that a large proportion of the shared pairs in the pseudo-

ground-truth are produced by the k clusters. A recall of 100% can be reached by putting all

articles in one cluster, but that would give a very low precision, as majority of the within-

cluster article pairs are not agreed by the other four solutions. Many small clusters could

improve the precision as they only contain the articles which are considered to be in the
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same cluster by the other four solutions, however, many potentially related articles are

distributed in different clusters which damages the recall.

To balance between p and r, we calculate the F1 measure2 as widely used in the

Information Retrieval community:

F1 ¼ 2 � p � r

p þ r
ð7Þ

Furthermore, under the similar situation with respect to F1, we are aiming at a reasonably

higher level of abstraction, i.e., the larger clusters the better, provided that a reasonable

number of irrelevant articles are included. Therefore we reward bigger cluster by adding a

parameter of the average size of the clusters into the calculation. Therefore our final score

for a set of clusters is calculated as:

adjustedF1 ¼ F � logðavgSizeÞ ð8Þ

We therefore choose the best k which gives the highest adjustedF1 score. As mentioned

before, we will later use the adjustedF1 score to evaluate the clustering results from the

Louvain method as well.

2 https://en.wikipedia.org/wiki/F1_score.

Fig. 1 Average Silhouette over 20,000 random chosen samples, with k from 10 to 100

Table 1 Statistics of the four clustering solutions for the pseudo-ground-truth

#Cluster #Total pairs Of which are shared
with the others (%)

CWTS-C5 22 337,151,232 28

UMSI0 22 453,492,311 21

ECOOM-BC13 13 498,846,580 18

STS-RG 556 940,553,592 10
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K-means clustering results

As mentioned in Sect. 2, we build for each article three vectorial representations: one

averaging the semantic vectors of all entities, one with all entities except citations and one

with only citation entities. We now search for the best k for these three representations of

articles.

The K-Means algorithm is sensitive to the initialization step, i.e. where the k centroids

are initially positioned. Therefore, for k from 10 to 60, we ran 10 times the Mini Batch

K-Means algorithm provided in the scikit-learn python library3 and chose the best solution

which has the minimum WCSS. Then we used the adjustedF1 measure to evaluate our

solutions against the pseudo-ground-truth. The adjustedF1 scores are plotted against k in

Fig. 2.

If using all entities, the score climbs up until k is around 30 then decreases, with k ¼ 31

giving the highest score. Therefore, we chose k ¼ 31 as the best k if all entities are used for

article semantic representation. Similarly, we found the best k ¼ 28 if only citations are

used and k ¼ 24 if no citations are used. However, Fig. 2b presents, if using no citations,

there are much bigger fluctuations when a similar up and down curve could be observed.

While if using only citations, such curve is hardly seen.

Table 2 gives the detailed quality scores of these three clustering solutions based on the

pseudo-ground-truth. The last column gives the average Adjusted Mutual Information

scores (AMI) Vinh et al. (2010) between this solution and the other four solutions, namely

CWTS-C5, UMSI0, ECOOM-BC13 and STS-RG. We see that if using only citations, the

resulting clusters agree with the other clustering solutions more than those if no citations

are used whose adjustedF1 score is also the lowest. It is not surprising as the other

clustering solutions rely heavily on the citation information. So, even if the ways of using

citations are different, the citation information still brings enough agreement between

them. Using all entities to represent articles has the highest adjustedF1 score and agrees

with the others the most.

Table 3 gives the AMI scores between these three solutions and the clusters based on

the Louvain method. Again clusters based on only citations agree with the Louvain results

almost to the same degree as those using all entities do. According to these measures, we

decided to use all entities as the final selection of features, and keep these 31 clusters as our

final K-Means results, labelled as OCLC-31. The size distribution of these 31 clusters is

shown in Fig. 3a.

Community detection using the Louvain method

Different from the standard application of the Louvain method, whose input is a citation-

based network, we apply the Louvain method on a semantic similarity network where each

node is an article and there is an edge between two articles if they are highly similar/

related. Based on the experiments with K-Means, we again use all entities to compute the

semantic representation of articles. For each article, we calculated the top 40 most similar

articles whose similarity values are higher than a certain threshold (in this case 0.6) and

consider this article and its top 40 closest peers are connected. Once every article is

connected to its peers, a similarity network is formed and then it becomes rather

straightforward to apply the Louvain method to detect communities or clusters in this

network.

3 http://scikit-learn.org/.
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Fig. 2 Looking for the best
k based on adjustedF1, using
different sets of entities a all
entities, b no citations, c only
citations
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We use the python library networkx4 and its community detection module which

implements community detection using the louvain method.5 This results in 32 best par-

titions (clusters), labelled as OCLC-Louvain, with the largest partition containing 9646

articles, the smallest 86 articles and in average 3488 articles, see Fig. 3b. Its quality against

the pseudo-ground-truth is given in Table 2.

The Louvain clusters perform similarly to the K-Means clusters, and actually agrees

more with the other clustering solutions. However, the disadvantage of using the Louvain

method is that it is not scalable for a bigger dataset as the similarity network is expensive to

generate using a distance metric, even if the Louvain algorithm itself is relatively scalable.

Consensus checking

Now we can use standard consensus measures such as Adjusted Mutual Information

(AMI) (Vinh et al. 2010) to check how much these two clustering solutions agree with

each other. Table 4 gives the consensus score between these two solutions and the other

five solutions reported in this special issue.6 The last row gives the average AMI between

one clustering solution and all the other solutions.

These numbers suggest that the data model has more impact on the solution than the

algorithm chosen because OCLC-31 and OCLC-Louvain have the second highest value in

terms of agreement with each other (the highest agreement is between CWTS-C5 and

UMSI0, which also use the same data model). Comparing to STS-RG and ECOOM

4 https://networkx.github.io/.
5 http://perso.crans.org/aynaud/communities/.
6 The CWTS-C5 and UMSI0 are the clustering solutions generated by two different methods, Infomap and
the Smart Local Moving Algorithm (SLMA) respectively, applied on the direct citation network of articles.
The two ECOOM clustering solutions are generated by applying the Louvain method to find communities
among bibliographic coupled articles where ECOOM-NLP11 also incorporates the keywords information.
The STS-RG clusters are generated by first projecting the small Astro dataset to the full Scopus database and

Table 2 Quality comparison among different feature selections

#Clusters r p f1 AdjustedF1 Average AMI
to others

No citations 24 0.53 0.17 0.26 2.16 0.44

Only citations 28 0.58 0.18 0.28 2.29 0.47

All entities 31 0.56 0.23 0.33 2.69 0.47

OCLC_Louvain 32 0.61 0.21 0.31 2.57 0.49

Table 3 Adjusted mutual information between solutions

No citations Only citations All entities Louvain

No citations 1.00 0.59 0.63 0.56

Only citations 1.00 0.69 0.65

All entities 1.00 0.67

OCLC_Louvain 1.00
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solutions, our two solutions agree more with CWTS-C5 and UMSI0, which indicates that

Footnote 6 continued
collecting their cluster assignments after the full Scopus articles are clustered using SLMA on the direct
citation network. More detailed account can be found in Velden et al. (2017).

Fig. 3 The size distribution of our two clustering solutions a OCLC-31, b OCLC-Louvain
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even with a different data model, the results are still highly comparable. More detailed

comparison can be found in Velden et al. (2017).

Conclusion

In this paper, we applied two clustering methods to identify clusters in the Astro dataset.

Different from the other methods presented in this special issue, we built semantic rep-

resentation for articles and tried to detect clusters of articles based on their semantic

similarity. We gave technical details and the decision path towards our two clustering

solutions, one based on K-Means and one based on Louvain community detection method.

The semantic representation of articles is built on a semantic matrix to which these

articles contribute. Each entity (topical terms, subject, author, journal, citation) is repre-

sented by its lexical environment extracted and highly reduced from the corpus. We

integrated the semantic vectors of all entities involved in one article as the representation

of this article. Our experiments show that such integration of the semantics of the indi-

vidual entities reflects the semantics of articles and the clustering results are competitive

with other clustering solutions which are mainly based on citation information.

We would like to emphasise that the two clustering methods used in this paper are only

two options we tried on such semantic representation. K-Means is highly scalable and

produces results with high agreement with other solutions. One advantage is that it is

applicable when citation data is missing. It could be a first step of clustering to separate

articles based on their lexical information, before diving into relevant subsets with more

delicate and complex clustering methods.
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