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Abstract Increasingly complex competitive environments drive corporations in almost all

industries to conduct omnibearing innovation activities to enhance their technological

innovation capability and international competitiveness. Against this background, we

propose subject–action–object (SAO) based morphological analysis to identify technology

opportunities by detecting prioritized combinations within the morphology matrix. SAO

structures emphasize the key concepts with provision of diverse technology information

based on semantic relationships. The combination of SAO semantic structures can support

the establishment of matrix, which consists of two dimensions: compositions and prop-

erties of technology. Later, novel indicators are used to evaluate the subsequent techno-

logical feasibility of each new configuration under a customized analysis and prior

combinations aided by a high score can be identified. We apply this method to the case of

dye-sensitized solar cells (DSSCs) in patents documents. The approach holds promise to

strengthen information support systems for commercial enterprises in technical innovation

and market innovation activities. We believe the analysis can be adapted well to fit other

technologies, especially in their emerging stage.
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Introduction

In the knowledge-oriented world economy, acquiring and maintaining competitive

advantages, a key element for survival of commercial enterprises, is largely driven

through information technology, which is a paramount venue for technological inno-

vation. Mining of patent documents, scientific and technological journals publications,

other resource analyses, etc., could help assess development paths that could synergize

the support for such technical innovation. These technological innovation activities have

potential to exploit the enterprises with a better competitive edge than ever before and

it is vital to have a keen observation to spot the drift and development trends in the

commercial sector (along with smart decisions for the exploitation of competitive

advantage). Moreover, such innovational activities could be utilized to secure tech-

nology opportunity analysis (TOA), which could strengthen critical decision making to

synergize the information support systems for commercial enterprises, non-profit sci-

entific research institutions, and government departments of scientific and technological

management.

Technology opportunity is a set of prospective technological advancements, which

hint at some movement toward research and development aimed to achieve better

performances (Klevorick et al. 1995). It brings innovations in the given field of

knowledge and also reflects the cost of achieving some normalized unit of technical

advancement (Yoon et al. 2014). According to most studies, technology opportunities

can be an exploration of a new vacuum area (Lee et al. 2009; Geum et al. 2013) or

indication of existing promising technology based gaps with inherent potential (Shibata

et al. 2008; Yoon 2008). Likewise, there are also attempts to use bibliometric indicators

including publications counts (Albert 1991), citations (Kim et al. 2014) and patent

claims (Lee et al. 2015) from technological documents. These indicators are useful

even though they mainly focus on basic information of patents or papers; there is also

probably oversight on some heuristic and specific points that can only be identified

through text. In order to overcome these limitations, some researchers have combined

bibliometrics with other methods including text mining (Porter and Cunningham 2005),

network analysis (Furukawa et al. 2015), and semantic analysis (Sitarz and Kraslawski

2012). These past data extrapolation mainly rely on judgment and expertise levels of

humans to monitor the direction and focus of given technological strategy for devel-

opment (Yoon et al. 2013). In addition to their resemblance with exploration inside the

black box, these techniques lack explicit detection orientation to some extent and

instead lean more toward experts. Nevertheless, these tools have potential to provide

sufficient background information to shadow the latest developing technologies such as

the latest functions or new materials. Still, their projections lack pertinence and gen-

erative capabilities to be utilized in the applied areas market and in product designs.

To deal with this, we propose a technique that combines subject–action–object (SAO)

semantic analysis and morphology analysis (MA) designed to identify technology

opportunities. For a given system, Morphology Analysis is used to detect a full feasible

range of combinations of selective variables. Among those combinations, utilized and

unutilized combinations of technology can be estimated so that the analysis can give the

direction of detecting novelties in aspects of promising technologies and vacuums.

However, in conventional Morphology Analysis, construction of the kernel morphology

matrix is largely dependent on the experts; the matrix describes compositions of tech-

nologies, but remains limited to its properties. As a remedy, our study prescribed
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morphology matrix1 building that is based upon a combination with SAO semantic anal-

ysis. It offers inclusion of SAOs that provide synergy through two types of structures:

‘‘Partitive SAO structures’’, used for identifying the composition of technologies and

‘‘Attribute SAO structures’’ that attempt to identify properties of technologies. The com-

bination with SAO is considered to be quantitative as well as pave the way for mining

potential and detailed knowledge of technology. Moreover, from the professional or

comprehensive point of view, the resultant functional matrix of technology analysis can be

supposed to distinguish the probability of prospective practical alternatives to fulfill market

demands. Resultant high priority combinations, appraised by specific indicators, are the

nominated opportunities to fulfill the niche of a market over one or multiple problems. In

accordance, the case of Dye-Sensitized Solar Cells (DSSCs) illustrates the detailed pro-

cedure and technique of the proposed method, combining SAO semantic analysis and

Morphological Analysis.

The rest of the paper is organized as follows: second section, the theoretical background

of research framework is presented; third section , a detailed description of the SAO-based

MA methodology; fourth section, an illustration is proposed to approach the development

of SAO-based MA (keeping DSSCs in view as a case study); and finally fifth section, the

concluding remarks with a summary, discussion, and further research ideas.

Theoretical background

Morphological analysis (MA)

Morphological Analysis is a problem-solving and quantification oriented scheme that

recognizes a system’s known parameters by reducing the solution space of integrated

consequences of all feasible combinations of a variable that define a given system (Zwicky

1969; Sharif and Irani 2006). It is a systematic approach that combines distinctive

advantages with prime informative content and an incredible visualization of solutions to

follow techniques to model intricate problems rather than solutions (Pidd 2009). Hence, the

morphological box allows a broad range of probable and prospective solutions to a

problem.

Such techniques have captured attention recently for having practical usefulness in

fields such as forecasting, scenario planning, engineering, product design, and strategy

formulation. The MA technique has demonstrated utilization of a functional-technology

matrix for color television set circuitry, supported by a systematic procedure and tech-

niques using quantitative data in technology forecasting (O’Neal 1970). Usually, the

application of scenario analysis is combined with MA to exploit risk management in

developing or assisting in choosing and deciding both quantitatively and qualitatively

regarding selection and the magnitude of technological configurations to be utilized in

scenario modeling (Rhyne 1995). A pioneering engineering firm, the Norris Brothers in

Sussex, England, in a historical milestone of an engineering design, applied MA in the

development of the Bluebird hydroplane and cars (Norris 1963). This highly contributed to

product optimization, ensuring minimum design cost, and time constraints in Computer-

Aided Design (Belaziz et al. 2000). A systematic approach aided by MA and an

1 Our matrix consists of rows and columns. Later on, rows represent shapes or problems, while columns
would represent components/dimensions/subsystems. Later, each column is further divided, called ‘‘level of
respective columns’’.
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application-oriented New Business Model Development (NBMD) helped business prac-

titioners to develop, evaluate, and choose superior business models to meet their business

objectives (Im and Cho 2013).

Two noteworthy elements in MA are systematic analysis and the inventive selection of

alternatives (Glenn and Gordon 2003). However, MA’s dependence on experts’ intuition is

a limitation, as there is no systematic approach to differentiate among dimensions and

shapes—a core step in MA. Efforts are utilized to establish a morphological matrix by

identifying the relationship between two noun phrases in SAO structures. Further, quali-

tative alternatives play crucial roles in the identification of technology opportunities in

MA, which is the last step in the selection of the best and most attractive solutions (Zwicky

1969). Conventional MA has some limitations, such as the hindrances to prioritizing

alternatives, which can no longer be overcome (Yoon et al. 2014). For a forward step

towards a solution, it is necessary to evaluate every combination and choose the most

suitable one.

Subject–action–object (SAO) semantic analysis

SAO semantic analysis is a fact-oriented modeling technique based upon the theory of

Inventive Problem Solving (Russian acronym: TRIZ). S and O denote the components, and

A denotes the effect or relationship between components in the invention. That is, S

denotes the ‘‘means’’ and A–O denotes the ‘‘end.’’ For example, in the simple sentence,

‘‘The computer has a keyboard,’’ ‘‘computer’’ is the subject, ‘‘keyboard’’ is the object, and

‘‘has’’ means that the keyboard is part of the computer (i.e., indicating the relationship

between the subject and object).

SAO structures can be visualized to depict a variety of technology information. Finding

similar SAO structures to establish a similarity matrix is a creative technique to solve

problems, such as by forming an inventor competence map (Moehrle et al. 2005),

exploring technological competition trends (Wang et al. 2015; Yoon et al. 2013), and

identifying patent infringement (Park and Yoon 2014).

Analyzing the relationship between subject and object to explore solutions to certain

technological problems is another trend in SAO methodology. Building the cause-and-

effect function network utilizing the expression ‘‘AO’’ as a function to find inventive

principles and discover innovative functions aided in generating a system leading to

technology innovations (Kim et al. 2010). The Function-Oriented Database is an SAO-

based patent retrieval system to support Function-Oriented Search as a tool for capitalizing

in searching patent databases to capture existing solutions to new problems (Choi et al.

2012a). Accelerating open literature based discovery from An to Bn and from Bn to Cn

with the help of identifying meaningful links between two SAO structures results in more

accurate assessments for logic evidences (Vicente-Gomila 2014).

To computationally extract SAO structures from patent textual descriptions, the use of

natural language processing (NLP) is essential in part-of-speech tagging (Sekimizu et al.

1998). SAO structure shows Partitive (Cascini et al. 2001) and Attribute relationships

among products or technologies (Choi et al. 2012b). If the action word is a Partitive verb

such as ‘‘have,’’ ‘‘composed of,’’ ‘‘include,’’ or ‘‘be made of,’’ the subject may include the

object as a component. If the action word is an Attribute verb such as ‘‘reduce,’’ ‘‘im-

prove,’’ ‘‘increase,’’ or ‘‘protect,’’ then the subject could affect the object as a problem.

Therefore, we propose establishing a morphological matrix as paramount in Morphology

Analysis aided by identifying specific SAO relationships.
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Methodology for SAO-based morphology analysis

In this paper, we offer a systematic approach to identify new technology opportunities. The

framework is illustrated in Fig. 1. The process involves five distinctive steps: (1) selection

of patent documents; (2) Identification of key technical problems and core technology

components; (3) Extraction of SAO semantic structures; (4) Generation of a technological

morphology matrix; and (5) Technology opportunity analysis.

Selection of patent documents

The first step is the selection of patent documents. The main objective of this step is to

select relevant patent documents with minimum irrelevant ones. The range of disciplines

and continuous rapid development makes the selection process for patents even more

ambiguous due to many hidden pitfalls and choices in the selection. One major concern in

bio-research with respect to basic research is making the criteria too broad. To collect

quality data, a patent retrieval query is used. Search strategy is obtaining, analyzing,

classifying, and refining the related terms through mutual involvement of data mining

scientists, field experts, and databases to better recall and precision (Porter et al. 2008;

Huang et al. 2015). The approach is split into two major steps: quantitative and qualitative

based upon customized knowledge (Zhang et al. 2013). The quantitative method involves

the extraction of high frequency words and their classification into subsystems through the

clustering method using natural language processing techniques. Qualitative methods base

term evaluation against predefined cluster criteria and the extension of term scopes uti-

lizing field related experts and their experiences. Later, technology analysts again refine the

terms while the recall and the precision potential of terms for a respective dataset remain

the priority and finally downloading the required data. It is important to note here that there

is tradeoff between the extension of accurate focus and the chances of errors in precision

with respect to recall. For the final selection of terms to be used in the query, the retrieval

of record measurements and their assessment play a key role in different methods

Selection of Patent Documents

Technical Components Technical Problems

Type of SAO 
Semantic Structures

Partative
SAOs

Attributive 
SAOs

SAO Extraction 
Software

Generation of Morphology Matrix
Comonent 1 Component 2 … Component m

Problem 1
Problem 2
…
Problem n

Technological Opportunity

Morphology Combinations

Technology 
Hotspots

Technology 
Vacuum

Requirements from 
Market

Fig. 1 Framework for identifying new technological opportunity
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regarding matching with the target technology scope and the comparison of their

applications.

Identification of core technology components and key technical problems

In this phase, core technology components and key technical problems of a particular

field through tech mining and comprehensive document surveys are required for the

construction of a morphological matrix. That abstract and title are to extract the terms

(single words or multiple-word phrases) using automated semantic analysis tools like

NLP, which has gained significance due to terms diversity and varying incidence fre-

quencies that offer serious challenges to human natural expertise over certain ranges.

Moreover, it is valuable to evaluate every item with higher accuracy, so as to produce

the desired results with less ambiguity. Therefore, we identify the core technology

components and key technical problems based on term clumping and principal compo-

nents analysis (PCA) using the professional desktop text mining software, VantagePoint

(see References). Term clumping is a step used to manipulate these terms and topical

phrases in the corpus by cleaning, combining, and grouping them. There are various

statistical methods that can gain synergy when used in combination with term clumping,

like PCA—a basic mode of turning terms into various relatively synonymous term

groups to better represent the data and reduce the dimensions.

Extraction of SAO semantic structures

An SAO semantic structure can be extracted from any description in the textual format

including the title, abstract, claims, etc. In general, titles and abstracts are precise and have

been regarded as the most meaningful parts; considering this, we extracted SAO semantic

structures from abstracts. For this process, the software tool, GoldFire from Invention

Machine (see References) is used. GoldFire is a problem–solution oriented technique and it

relies on semantic search technology to extract scientific and technical information.

Ensuring this, we exploited core components and key problems that have been identified in

the last section to extract the SAOs structures. Isolation of two types of SAO structures

include: ‘‘Partitive SAOs,’’ the core components; and ‘‘Attribute SAOs,’’ the key problems.

On one hand, Partitive type indicates an inclusion linkage among its component for

respective technology. For example, in a given technology, the action word ‘‘contains’’

means there is an inclusion relationship where the subject phrase includes an object phrase.

Technology components are occasionally subject-phrase, while object-phrase are constant.

Besides, in extraction of Partitive SAOs, the technology or core components of technology,

are used as Subject and Partitive verbs are used as Action. On the other hand, Attribute type

is a demonstration of AO (Action–Object), showing how the subject word reforms the

technology attribute, referring to problems. For example, the action word ‘‘increase’’

means that the technology component can improve the linking technology problem. This

gives rise to extract Attribute SAOs, where technical problems present as AOs. Thus, for

GoldFire, two kinds of queries were prepared: (1) Partitive SAOs under the input, ‘‘What

technology/component does it contain?’’ and (2) Attribute SAOs under the input, ‘‘How do

we solve the problem?’’
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Generation of the technological morphology matrix

The main objective of this step is to build the framework for the technological morphology

matrix consisting of key technology components (dimensions/column) and key technical

problems (shapes/rows). To achieve quantitative features, a morphological matrix was

constructed, as shown in Table 1. We clustered valid subjects and objects from Partitive

SAOs to obtain morphological information (composition) of the technology. In clustering,

co-occurrence of subjects and objects in the same SAO structure depicts closeness. In each

component, subjects and objects are clustered into different levels for respective compo-

nents. Clustering of the terms in Partitive SAOs can be observed from the network picture

although help from experts guided the way for identifying each cluster to obtain an

accurate result. Accordingly, fuzzy matching to compare the subjects in Attribute SAOs

with terms in the clustering is the next activity. The matching terms with respective levels

(in the components) in clustering are marked with various problems to obtain the basic

constitute of functional morphological matrix. In addition, in order to deal with impure

data, cleaning is needed for these terms before clustering and matching. Hence, the

effective data filtration to efficiently describe components and subcomponents of tech-

nology is preconditioned for superior results. For instance, common and basic words,

which do not instruct a particular technology, such as ‘‘layer,’’ ‘‘material,’’ etc. are nor-

mally needed to clean; a similar act is needed as a merging of some terms with the same

meaning in a field of technology, such as ‘‘organic dye’’ and ‘‘organic pigment.’’

Technology opportunity analysis

In the functional morphology matrix, each level can be multiplied with other levels for

each component in a given problem to make a combination, which describes the structures

of the given technology. For selection of prospective combinations among all combina-

tions, the value of respective configurations can be decisive to find vacuums and highly

feasible technology opportunities; it can also be calculated as sums of values of each level

in respective combinations (Yoon and Park 2007). Three indicators have been described to

evaluate the value of each level (shown in Table 2). In these indicators, MI proposes the

popularity of the level during the respective time period by using numbers of patents, while

GTI shows the developmental future potential of the level. In mathematics, the slope or

gradient of a line is a number that describes both the direction and the steepness of the line.

Thus we use the slope of the last part of the curve to show the growth trend of the next

period of the curve. To remove the deflection of these two quantitative indices, II, a

qualitative analysis, can balance the value of a level under specific demands. Scores in

10-point-scale can be allocated by experts to each level of a component to evaluate their

contribution and importance level against specific problems in the form of higher scores

than others; then we can define means of all scores from experts as II.

Table 1 Framework of mor-
phology matrix

Component 1 Component 2 … Component m

Problem 1 S11, S12,… S21, S22,… … Sm1, Sm2,…
Problem 2 S11, S12,… S21, S22,… … Sm1, Sm2,…
: : : … :

Problem n S11, S12,… S21, S22,… … Sm1, Sm2,…
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For final values of the level, we use the entropy weight method, which accounts for the

quantity and quality of the data (Hung and Chen 2009), to calculate the weight for each

indicator.

In the decision matrix X ¼
x11 � � � x1n

..

. . .
. ..

.

xm1 � � � xmn

2
64

3
75, the entropy weight of the j-th index is

w�
j ¼

1 � ej

n�
Pm

j¼1 1 � ej
� � ; j ¼ 1; 2; . . .;m

where fij ¼ xij
�Pn

i¼1 xij
; ej ¼ � 1

lnm

Pm
j¼1

fij ln fij

The ej represents entropy of the j-th index and fij indicates probabilities of a random

variable computed from a probability mass function. For w�
j ;

Pm
j¼1 wj ¼ 1;wj 2 0; 1½ �. The

more diversity as well as the less entropy Xij shows, the more influence and quantity of

information the criterion has, and thus more weight it has. In this way, the ultimate value of

each level equals the sum of the index value multiplied by the corresponding weight. The

value of each combination can be calculated by the sum of the ultimate value of the

respective levels.

In real life scenarios of marketplaces, consumer preferences in decision making about

products and services are a function of the number of features per product with cus-

tomization. There are always continuous effects to trace unique solutions that have the

inherent capability to effectively solve a broader range of problems. Keeping this in mind,

developers and decision makers prefer to generate technology opportunities with relatively

broader target areas of solution. Building on this platform and keeping track of all the

component technologies with the respective weight of problem solving, prior combinations

were classified based on their high value in solving different kinds of problems. These prior

combinations, including unused combinations and utilized combinations, are taken in our

analysis to segregate prospective technology opportunities. On one hand, utilized config-

urations can be considered as promising technology, in which there is a technical popu-

larity and extreme competition for short or long periods of time. On the other hand, unused

combinations can be considered as technology vacuums, in which there could be a big

breakthrough that could lead to a significant opportunity. Above all, technology oppor-

tunities can be identified and better applied in different scenarios from the viewpoint of

multifarious requests.

Table 2 Indicators for evaluating the values of levels

Indicators Evaluation index Type Explanation

MI Magnitude index Quantitative Patent productivity for respective level

GTI Growth trend index Quantitative Slope of last year in curve-fitting

II Importance index Qualitative Mean scores from experts’ grading method
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Case study: dye-sensitized solar cells (DSSCs)

Generation of the technological morphology matrix based on SAO structures

In this current study, patents were collected from the Derwent Innovation Index (DII),2 a

database in the Web of Science based on a multi-step Boolean search algorithm. The

selected field is DSSCs, a third-generation photovoltaic technology (Wang et al. 2014).

The timespan from 1991 to 2014 was selected with consideration of the time lag behind the

application date by an average period of 18 months. The retrieval query for DSSCs has

been researched by Guo et al. (2012), and our study retrieves literature shown in Table 3

that is referred to in their studies. Also, a total of 7003 patent documents including titles

and abstracts were downloaded from DII.

A morphological matrix, consisting of dimensions as columns and shapes as rows, is the

basis for determining the maximum possible combinations for technology components.

Empirically, in 2014, the field of DSSC was classified into four subsystems: ‘‘Photoan-

ode,’’ ‘‘Sensitizer,’’ ‘‘Electrolyte,’’ and ‘‘Counter-Electrode’’ (Zhang et al. 2014). In con-

sideration of cost-efficiency and accuracy to build the matrix, we directly utilized these

four major components (subsystems) as dimensions of the matrix and later put them into

the query for extracting Partitive SAOs to construct core levels of components.

For finding problems in the DSSC field, the data was taken from the ‘‘ADVANTAGE’’

part of the abstract, which mostly describes the purpose of the invention and which

problems it can solve. We put all patents into VantagePoint and used term clumping to

clean and group the data. Table 4 shows the top 15 terms we got through the NLP section

of VantagePoint. Accordingly, three problems—efficiency, low cost, and durability—are

presented as core technical problems.

After defining core components and problems in DSSC, SAOs are extract for building a

morphological matrix. In the current article, we used GoldFire software as the main tool to

extract the SAO structure from the abstracts of the patent documents. By using components

and problems as the search query in GoldFire, we got 12,002 Partitive SAOs and 4014

Attribute SAOs to gather 2717 ‘‘efficiency’’ data, 759 ‘‘low cost’’ data, and 538 ‘‘dura-

bility’’ data. Search query and Partial SAO structures of DSSC technology patents utilizing

GoldFire software is shown in Table 5. Noticeably, GoldFire can automatically identify

most synonyms and other forms of words. i.e., word ‘‘contain’’ in search strategy can find

patents with synonyms like ‘‘comprise,’’ ‘‘compose,’’ and other forms of words like

‘‘containing,’’ ‘‘contains,’’ ‘‘contained,’’ and etc. Hence, human expertise is only needed

for relevant knowledge information, which is limited to the NLP, to control the input of the

software. For example, in the main search strategy ‘‘What can photoanode contain?’’, NLP

can find relevant information about composition of photoanode. However, other terms like

‘‘optical electrode,’’ ‘‘first electrode,’’ ‘‘anode’’ which have same meaning as ‘‘photoan-

ode’’ in field of DSSCs will be ignored by machine. These professional terms only can be

identified by field experts. Thus main search strategy should be accompanied with several

relevant search strategy aided by experts to complete the searching.

2 Derwent Innovations Index� is capable of advance, accurate, and detailed patent databases, especially in
the field of chemical, electrical, and mechanical engineering. It is enhanced by Derwent World Patents
Index� and Derwent Patent Citation Index�. The abstract of patents includes USE, ADVANTAGE,
NOVELTY, DESCRIPTION OF DRAWINGS, and DETAILED DESCRIPTION. http://thomsonreuters.com/
en/products-services/scholarly-scientific-research/scholarly-search-and-discovery/derwent-innovations-index.html.

Scientometrics (2017) 111:3–24 11

123

http://thomsonreuters.com/en/products-services/scholarly-scientific-research/scholarly-search-and-discovery/derwent-innovations-index.html
http://thomsonreuters.com/en/products-services/scholarly-scientific-research/scholarly-search-and-discovery/derwent-innovations-index.html


From Partitive SAOs, morphological structure can be detected for each components

through a network of subjects and objects that co-occurred in the same SAO structure.

Clusters of the subjects and objects in each component is shown in Fig. 2 and the data

filtration and clustering were completed under the expert assistance. In the clustering,

component ‘‘Potoanode’’ has four clusters: TiO2 film(P1), ZnO film(P2), SnO2 film(P3),

and other metal oxide film(P4); component ‘‘Sensitizer’’ has two clusters: metal complex

dye(S1) and organic dye(S2); component ‘‘Electrolyte’’ has three clusters: solid elec-

trolyte(E1), liquid electrolyte(E2) and gel electrolyte(E3); component ‘‘Counter Electrode’’

has four components: metal counter electrode(C1), carbon counter electrode(C2), polymer

counter electrode(C3), and inorganic compound counter electrode(C4). By fuzzy matching

the subjects of Attribute SAOs with the terms in the clustering (matched more than 80%),

we can detect the obvious relationship i.e., which cluster the subjects belong to and what

kind of properties the components own.

After these initial preparations of the DSSC technology, the final morphological matrix

was built (see Table 6). The matrix columns reveal the composition of technology, while

the rows are an indication of properties of technology. The relationship of the morpho-

logical structure to understand the technological configuration is interesting: patents can be

described as combinations of levels in each component. For instance, the feature of pho-

tovoltaic devices or cells (U.S. Patent 2011005589) can be described by the combination:

titanium oxide film (P1), organic dye (S2), liquid electrolyte (E2), and metal (platinum)

Table 3 Retrieval query for DSSCs technology

Set Description in web of science

#1 TS = (((dye-sensiti*) or (dye* same sensiti*) or (pigment-sensiti*) or (pigment same sensiti*) or
(dye* adj sense)) same ((solar or photovoltaic or photoelectr* or (photo-electr*)) same (cell or
cells or batter* or pool*)))

#2 TS = (((dye-photosensiti*) or (dye same photosensiti*) or (pigment-photosensiti*) or (pigment
same photosensiti*)) same ((solar or photovoltaic or photoelectr* or (photo-electr*)) same (cell or
cells or batter* or pool*))) and IPC = (H01G* or H01M* or H01L* or G03C*)

#3 TS = (((dye- optoelectri*) or (dye same optoelectri*) or (pigment- optoelectri*) or (pigment same
optoelectri*) or (dye-opto-electri*) or (dye same opto-electri*) or (pigment- opto-electri*) or
(pigment same opto-electri*)) same ((solar or photovoltaic or photoelectr* or (photo-electr*))
same (cell or cells or batter* or pool*))) and IPC = (H01G* or H01M* or H01L* or G03C*)

#4 TS = ((((dye or pigment) and sensiti* and (conduct* or semiconduct*)) same electrode*) and
electrolyte*)

Final #4 OR #3 OR #2 OR #1

TS topic of patents

Table 4 Top 10 terms of 7003 patents according to VantagePoint

Rank No. of patents NLP/phrases Rank No. of patents NLP/phrases

1 2209 Dye-sensitized solar cell 6 390 Electrolyte

2 1134 Photoelectric conversion efficiency 7 372 Durability

3 620 Method 8 352 Efficiency

4 558 Improved 9 320 Electrode

5 439 Cell 10 294 Low cost
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counter electrode (C1). From the matrix we can know that the cells have the ability to solve

problems like improving efficiency and reducing costs (except for durability because the

counter electrode is weak for maintaining durability of cells). The composition and attri-

bution of patents in the field of technology can both be observed from this functional

matrix. Moreover, for improving efficiency, reducing costs, and providing durability, the

permutation knowledge can be used to compute the total combinations: 96 (i.e.,

4 9 2 9 3 9 4); 24 (i.e., 3 9 2 9 2 9 2) and 18 (i.e., 3 9 2 9 3 9 1), respectively.

Table 5 Search query and partial SAO structures of DSSC technology patents utilizing GoldFire software
(relevant search information are used to substitute italicized words of main search query)

Type of
SAOs

Main search
query

Relevant search
information

No.
of
SAOs

Examples: abstract Examples:
patent number

Partitive
SAOs

What can
photoanode
contain?

Optical electrode,
first electrode,
anode, film, etc.

3060 The dye-sensitized solar cell
has a photoanode that
contains titanium dioxide
nanoparticles and plasmon-
forming nanostructures

WO
2014058861

What can dye
contain?

Pigment,
sensitizer, etc.

1192 INDEPENDENT CLAIMS are
included for: (1) a pigment or
dye which contains the
ruthenium complex;

JP
2005255992

What can
electrolyte
contain?

– 1372 An electrochemical and/or
optoelectronic device
comprises an electrolyte
comprising an organic cation
and tetracyanoborate-
containing ionic liquid.

EP 1819005

What can
counter
electrode
contain?

Second electrode,
transparent
electrode,
cathode, etc.

1789 The counter electrode has a
conductive carbon layer (5)
consisting of carbon particles,
binder resin for binding
carbon particles, and a
conductive polymer.

WO
2012121264

Attribute
SAOs

How to
improve
efficiency?

Have efficiency,
etc.

2717 The dye-sensitized solar cell
formed using the organic dye
has improved stability,
permeability, and
photoelectric conversion
efficiency.

KR
2013062234

How to
reduce cost?

Have mass
production, be
cost effective,
reduce expense,
etc.

759 Thus, the layers of the titanium
dioxide photoanodes s scan
be reduced, thuimplifying the
processes and lowering the
cost of manufacturing of the
elements.

US
2012296086

How to
provide
durability?

Have durability,
provide
stability, be
stable, etc.

538 The dye-sensitized solar cell
obtained using gel-type
polymer electrolyte has
excellent photoelectric
conversion efficiency,
durability, and visible light-
absorption property at a long
wavelength.

US
2013330873
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Obviously, the problem of efficiency has a wider range of solutions than other problems,

and proportionally a greater amount of patent documents have been dedicated to improve

the efficiency of DSSCs. As a result, it can be assumed that efficiency is the main problem

to be solved in the development of DSSCs.

Other Metal Oxide
Film (P4)

ZnO Film (P2)

SnO2 Film (P3)

TiO2 Film (P1)

(a)           

Organic Dye (S2)

Metal Complex Dye
(S1)

(b) 

Fig. 2 Morphology of four components: a photoanode, b sensitizer/dye, c electrolyte, and d counter
electrode
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Identification of technology opportunities

The analysis of technology opportunities depends on identifying prioritized and superior

combinations. Thus, before analyzing all possible combinations, there is a need to evaluate

the levels (the elements of combinations) with three indicators—magnitude index (MI),

importance index (II), and growth trend index (GTI)— in order to judge the priority of

Liquid Electrolyte
(E2)

Solid Electrolyte
(E1)

Gel Electrolyte
(E3)

(c) 

Polymer Counter Electrode
(C3)

Metal Counter Electrode
(C1)

Inorganic Compound
Counter Electrode (C4)

Carbon Counter Electrode
(C2)

(d)

Fig. 2 continued
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each combination over others. Table 7 shows the tabulation of the normalized index of

each level in each problem in DSSCs.

MI is a judgment factor to estimate the popularity of levels while GTI tries to depict the

growth trend of levels. In GTI, data for each year is used to make cubic polynomial fitting

for the graph. Besides, in the growth cycle, trajectories of technologies depict relatively

varied patterns of maturity along the graph. Consequently, the developing trend could vary

from the start to follow the classical s-curve life cycle with four stages: introduction, rapid

growth, maturity, and decline (Park et al. 2013). In cubic polynomial fitting, GTI can be

estimated through measuring the slope of the last part of the curve in a final dependent

variable and a determination coefficient (R2) of curves that are all above 0.5 and have a

highest value achieved at 0.94512. II, which is estimated by experts, can act as a buffer to

minimize the expected deviation raised by the previous two quantitative indicators. In this

intention, experts are invited to gauge the importance through allocating scores (10-point-

scale) to each level of the component, and then the levels with more contribution in solving

specific problems can get higher scores than others. The mean of all scores from experts is

defined as II. In the last, the Entropy Weight Method can calculate weights of the three

indicators for respective problems as sums of the indicators multiplied by the weight. It is

noteworthy that all the indices here added 2 because the index should be greater than 0 in

the Entropy Weight Method.

For specific problem solving, the value of combinations can be directly calculated as the

sum of values of respective levels in each component. In the current case, our intention is

to identify multi-function combinations with the inherent capability to solve diverse

problems at a commercial level. The provision of weight to each problem, as well as the

value of level in each problem, can calculate the comprehensive score of levels, and thus,

the synthetic value of a configuration is the sum of the comprehensive value of levels

(CVL) selected in each component. To find the novelty in accordance with increasing

Table 6 Morphology matrix of DSSCs technology

Photoanode Sensitizer Electrolyte Counter-
electrode

Improve
efficiency

TiO2 film(P1)
ZnO film(P2)
SnO2 film(P3)
other metal oxide

film(P4)

Metal complex
dye(S1)

organic dye(S2)

Solid electrolyte (E1)
liquid electrolyte (E2)
gel electrolyte (E3)

Metal counter
electrode (C1)

carbon counter
electrode (C2)

polymer counter
electrode (C3)

inorganic
compound
counter
electrode (C4)

Reduce cost TiO2 film(P1)
ZnO film(P2)
other metal oxide

film(P4)

Metal complex
dye(S1)

organic dye(S2)

Liquid electrolyte
(E2)

gel electrolyte (E3)

Metal counter
electrode (C1)

carbon counter
electrode (C2)

Provide
durability

TiO2 film(P1)
SnO2 film(P3)
other metal oxide

film(P4)

Metal complex
dye(S1)

organic dye(S2)

Solid electrolyte (E1)
liquid electrolyte (E2)
gel electrolyte (E3)

Carbon counter
electrode (C2)
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efficiency and performance in estimating the appropriate solution for other problems, we

consulted with experts to allocate weight to different problems: weight 1 = 0.6 for

improving efficiency, weight 2 = 0.2 for reducing cost, and weight 3 = 0.2 for providing

durability. Notably, the weight can be changed along with the requirements of the mar-

keting environment. The value of levels in both professional analysis (specific problems)

and comprehensive analysis (different problems) are shown in Table 8.

The four dimensions in the field of DSSCs—‘‘Photoanode,’’ ‘‘Sensitizer,’’ ‘‘Elec-

trolyte,’’ and ‘‘Counter electrode’’ (Zhang et al. 2014) equally affect the selection of unique

combinations. As in morphological analysis, the combination of target objects can reveal

interesting facts (Zwicky 1969) hence, we selected levels in each component as renewed

combinations; the value of the combinations is the sum of the value (CVL) of these levels.

These combinations could provide the full range of customization of product partitioning

involve in product design (Belaziz et al. 2000) although in our case, these combinations are

backed by the synergy of SAO. Table 9 shows the top 20 combinations of value for the

three problems, the 17 combinations utilized, and the three combinations unused. These

combinations are considered as prior combinations after the analysis of proposed

indicators.

Among prior utilized combinations, it was found that for the period of 1991 to 2014,

patents with 17 combinations occupy 68% while the patents, which cite these 17 combi-

nations, occupy 55%. Thus, it can be deduced that these 17 combinations occupy greater

influence than other combinations to demonstrate heat in the form of research activity on

these configurations. To verify this trend for the prior combinations, a total of 576 doc-

uments were downloaded from DII for the year 2015 using the same search query. It was

found that 7 of 17 combinations were available in 2015 and captured 89% of all combi-

nations. Specially, the combination TiO2 film-organic dye-liquid electrolyte-metal counter

electrode (Rank 3) has excellent performance in both occupation (23% of patents) and

influence (11% of citations), and it also performs well (29% of patents) in 2015. Con-

clusively, prior utilized combinations can be regarded as promising research; however, for

short and middle term, these are still considered as technology opportunities. Especially in

the view of enterprises that have intentions to utilize their (first time or diversification)

resources to determine direction or alternative for choosing business model (Im and Cho

2013), selecting existing promising technology (in our case is DSSCs) is always a good

choice, as it not only reduces the cost in the exploring period of a product or service design,

but it also attains high effectiveness in the product itself. Besides consideration of these

combinations as opportunities, they also impose some challenges due to intense compe-

titions and reallocation of resources (e.g., seven combinations survived from 17 combi-

nations in 2015), although which can also be buffered (Yoon et al. 2013). Thus, for a big

company that has already invested huge capital, the sunk cost efficiency can be maximized

by obtaining advantages through exploring these promising technologies when they start to

come into DSSCs. The distribution of these 17 combinations as Numbers of Patents

(1991–2014), Numbers of Citations (1991–2014), and Numbers of Patents (2015) are

shown in Fig. 3.

Numbers of Patents (1991–2014) Numbers of Citations (1991–2014) Numbers of

Patents (2015).

For the prior 3 unused combinations, interestingly the actual technical vacuum exists.

To assure that whether these vacuums are opportunities or not, surveys and consultations

with experts are necessary. Accordingly, it was found that the TiO2 film, as the most

widely used form of photoanode, has the best performance compared to other materials

including ZnO, Nb2O5, SnO2, etc. Coming towards dye sensitizers, metal complex dye
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and organic dye have competitive development in the field of DSSCs. For electrolytes, one

thing we need to consider is that in the past, conventional liquid electrolytes have been the

main focus for the high-energy conversion efficiency in DSSCs. However, liquid spilling is

always the biggest problem for liquid electrolytes. In the wake of the technical break-

through of gel electrolytes and solid electrolytes, the gel and solid forms of electrolytes are

Table 9 Top 20 technology combinations in the DSSC technology and each level is separated by ‘‘-’’

Rank Combination Value Occupied?

1 TiO2 film-organic dye-liquid electrolyte-carbon counter electrode 10.871 Yes

2 TiO2 film-metal complex dye-liquid electrolyte-carbon counter electrode 10.625 Yes

3 TiO2 film-organic dye-liquid electrolyte-metal counter electrode 10.062 Yes

4 TiO2 film-organic dye-gel electrolyte-carbon counter electrode 9.989 Yes

5 TiO2 film-metal complex dye-liquid electrolyte-metal counter electrode 9.816 Yes

6 TiO2 film-metal complex dye-gel electrolyte-carbon counter electrode 9.743 Yes

7 TiO2 film-organic dye-liquid electrolyte-inorganic compound counter
electrode

9.678 Yes

8 TiO2 film-metal complex dye-liquid electrolyte-inorganic compound counter
electrode

9.432 Yes

9 TiO2 film-organic dye-solid electrolyte-carbon counter electrode 9.318 Yes

10 TiO2 film-organic dye-gel electrolyte-metal counter electrode 9.18 Yes

11 TiO2 film-metal complex dye-solid electrolyte-carbon counter electrode 9.072 No

12 TiO2 film-organic dye-liquid electrolyte-polymer counter electrode 9.027 Yes

13 TiO2 film-metal complex dye-gel electrolyte-metal counter electrode 8.934 Yes

14 TiO2 film-organic dye-gel electrolyte-inorganic compound counter electrode 8.796 No

15 TiO2 film-metal complex dye-liquid electrolyte-polymer counter electrode 8.781 Yes

16 SnO2 film-organic dye-liquid electrolyte-carbon counter electrode 8.671 Yes

17 other metal oxide film-organic dye-liquid electrolyte-carbon counter
electrode

8.664 Yes

18 ZnO film-organic dye-liquid electrolyte-carbon counter electrode 8.623 Yes

19 TiO2 film-metal complex dye-gel electrolyte-inorganic compound counter
electrode

8.55 No

20 TiO2 film-organic dye-solid electrolyte-metal counter electrode 8.509 Yes

Fig. 3 Distribution of 17 utilized combinations. a Numbers of patents (1991–2014), b numbers of citations
(1991–2014) and c numbers of patents (2015)
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going to be in the dominant position in sensitizers. Coming towards the counter-electrodes,

as previous platinum electrodes are expensive and have strict conditions for manufacturing,

other new electrodes, especially carbon counter electrode, are increasingly developed to

replace platinum to achieve mass production. Thus, the combination TiO2 film –metal

complex dye –solid electrolyte –carbon counter electrode (Rank 11) could be linked with

higher probabilities of technology opportunities. Other unoccupied configurations also

have possibilities to become opportunities, although they need more refined research

activities with comprehensive industrial survey (Klevorick et al. 1995). For the long term,

these unoccupied combinations were thought to be technology opportunities and could

bring the desired benefits (Belaziz et al. 2000) once there is a big technical breakthrough in

them. Thus, in the DSSC field, professional enterprises that work for years and want to

expand into existing and new markets shared through exploring radical novelty, vacuum

technology opportunity is the attractive choice.

Concluding remarks and future work

In this study, we proposed an SAO-based systematic Morphology Analysis (MA)—rela-

tively a systematic, customized, quantitative, and results-oriented approach that is capable

of unearthing the technology morphology to extract novel technology opportunities. On

one side, semantic SAO structures clearly depict structural relationships against the

technological components and fully reflect specific key-findings in the patent dataset.

Particularly, an added emphasis is given to the relation between Subjects and Objects in

SAOs. We present Partitive and Attribute relationships of SAO semantic structures despite

conventional SAO research of using all SAO combination possibilities with much

redundancy (Yoon and Kim 2011). Furthermore, these kinds of SAOs have potential to

build a morphological relationship matrix that manifests the composition of technologies

from Partitive SAOs and the property of technologies from Attribute SAOs. Consequently,

prescribed functional morphology matrix is conceivable to be rated over conventional

methods of MA, which leans toward the reliance on qualitative and expert-dependence. On

the other side, each dimension (and their respective levels) against problems/shapes

examine the prospective, possible, and practical alternatives that a system could utilize to

frame competitive advantage and respective adoption, instead of checking out all config-

urations (Yoon and Park 2007). At the same time, for technology opportunities, two types

of opportunities (existing promising technology and technical vacuum) have been identi-

fied under different requirements of product design that can significantly alter the orthodox

complexion of a singular project development (Álvarez and Ritchey 2015). Hence, sug-

gested contribution present a more flexible and diversified analysis in identifying the

technology opportunities and aids decision makers in formulating R&D strategies in the

process of technical innovation and market innovation activities.

However, there are some limitations that need to be considered for future developments.

The first constraint is the technique for extracting the SAO structure utilizing abstracts.

Although the abstracts, as prime content that is rated and utilized by the research com-

munity to conduct SAO analysis, have still exerted restrictions on some technological

information. The second constraint is regarding the full automation of the method,

including establishing the morphological matrix; utilizing the processing software; ana-

lyzing the extensive amount of data; and supervizing instructions of domain experts on the

modeling matrix. Extensive provision of information to experts with focused objectivity
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may decrease the limitation of expert knowledge to upgrade the efficacy. The third con-

straint is the judgment through indicators on the basis of which score is given to each level

against the respective problem. This requires more vigilance, background practical

knowledge, and expertise in the specified area; otherwise, complications may arise

regarding evaluation and precision.

In the future, the exploitation of NLP techniques to extract SAO structures could

encompass nearly all the information of a single patent. Achieving automation in exper-

iments for establishing a morphological matrix is another meaningful research direction.

Our experimental technique could be applied at a commercial level and have a competitive

capability to attain more information on technology applications with improvements in

technology opportunity identification. Moreover, detecting novelty by using prior combi-

nations as the indicators can also be a good direction. A future effort could be made which

would integrate this text based method with the IPC or others.
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