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Abstract This study proposes a method to automatically establish a narrow-sense

knowledge structure for Chinese Library and Information Science (CLIS) using data from

the Chinese Social Science Citation Index. The method applies multi-level clustering,

using ontological ideas as theoretical guidance and ontology learning techniques as

technical means. Knowledge categories generated are checked for cohesion and coupling

through hierarchical clustering analysis and multidimensional scaling analysis in order to

verify the accuracy and rationality of the narrow-sense knowledge structure of CLIS.

Finally, the narrow-sense knowledge structure is expanded to a broad sense. Using scholars

as objects in examples, this study discusses the semantic associations between topic

knowledge and the other academic objects in CLIS from the micro-, meso-, and macro-

levels, so as to fully explore the broad-sense knowledge structure of CLIS for knowledge

analysis and applications.

Keywords Chinese Library and Information Science (CLIS) � Discipline knowledge

structure (DKS) � Chinese Social Science Citation Index (CSSCI) � Multi-level clustering

(MLC) � Hierarchical clustering analysis (HCA) � Multidimensional scaling analysis

(MDSA) � Social network analysis (SNA)

Instruction

In a narrow sense, the knowledge of a discipline refers to the confident identification of the

topics or content of the discipline. This concept represents the main driving force for

discipline development and the core content for discipline innovation. The narrow sense of

discipline knowledge can be revealed in two ways. One is to organize and describe the
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static structure of knowledge (Song and Kim 2013), exploring the semantic association

between different disciplines’ knowledge in a certain period, so as to lay the foundation for

displaying discipline knowledge distribution on maps and creating reasonable knowledge

applications. The other is to imitate and track the evolution of knowledge (Chang 2012)

and discuss the laws governing knowledge development and the corresponding causes of

discipline knowledge nodes during a certain historical period, so as to instruct discipline

researchers in knowledge innovation.

Clarifying the structure and evolution of narrow-sense discipline knowledge advances

understanding of discipline connotations and motivates discipline research so as to perfect

research content and promote innovation and development in the discipline. The process of

clarification also contributes to exploring the semantic associations between discipline

knowledge and other academic resources in the discipline, including scholars, institutions,

and journals, so as to reveal their knowledge structures and distribution, and even mine and

depict their potential associations. All of these measures help to outline the overall con-

notations of the discipline. In fact, such clarification forms the structure of discipline

knowledge in a broad sense. Figure 1 illustrates divisions of distinct granularity knowledge

in the Chinese Social Sciences Citation Index (CSSCI) and their relationships. In a narrow

sense, ‘‘Keyword’’ represents the discipline knowledge, and the combination of keywords

from different scopes and in different numbers form the structure of discipline knowledge.

However, in a broad sense, ‘‘Scholar’’, ‘‘Institution’’, ‘‘Area’’, ‘‘Article’’ ‘‘Journal’’, and

‘‘Discipline’’ all stem from ‘‘Keyword’’ and represent distinct granularities in discipline

knowledge. Therefore, the discussion of discipline knowledge structure in a narrow sense

can be gradually expanded to a broad sense.

This study attempts to automatically establish a narrow sense of knowledge structure in

the field of Chinese Library and Information Science (CLIS) using data from CSSCI. In

order to achieve this goal, this study applies the method of multi-level clustering (MLC)

with ontological ideas for theoretical guidance, using ontology learning (OL) techniques as

technical means. Furthermore, knowledge categories (KCs) generated are checked for

cohesion and coupling according to the methods of hierarchical clustering analysis (HCA)

and multidimensional scaling analysis (MDSA) in order to verify the accuracy and

rationality of the narrow-sense CLIS knowledge structure. Finally, the knowledge structure

is expanded from the narrow sense to a broad sense; taking scholarly objects as examples,

the semantic associations between topic knowledge and the other academic objects in CLIS
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Fig. 1 Distinct granularities knowledge in CSSCI
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are discussed from the micro-, meso-, and macro-levels, so as to fully explore the broad-

sense knowledge structure of CLIS (CLIS_KS) in knowledge analysis and applications.

Related research

In current research, discipline knowledge structure (DKS) and its characteristics are dis-

cussed in two primary ways. First, domain experts subjectively integrate and qualitatively

describe DKS according to their own background knowledge, research experience, and

previous research results (Powers 1995; Sluyter et al. 2006; Hooper 2009). Second, DKS is

objectively described and quantitatively analyzed based on bibliometric methods, either to

explore various kinds of domain-oriented evaluation indexes for calculation and statistical

description (Su 2007; Wang et al. 2014; Erserim 2016), or to reveal interactive associations

between various research units in the domain (White and McCain 1998; Yoo et al. 2013;

Ravikumar et al. 2015).

As bibliometrics have gradually matured, researchers are increasingly able to detect

research hotspots and interrelations in their disciples through existing objective relation-

ships between academic objects (Gonzalez-Alcaide et al. 2008; Galvagno 2011; Yan et al.

2015; Machado et al. 2016). This involves the following basic calculation mode: First,

select data from a specific discipline; second, describe the academic units with vectors

according to their objective relationships, such as co-word and co-citation; and third,

cluster similar academic units in order to generate domain hotspots, with the goal of

eventually demonstrating the interactive associations among these hotspots and their

changes in a divided period with structural diagrams.

The above process includes the following characteristics:

The data for analysis comes from a plurality of types of data sources, including books

(Torres-Salinas and Moed 2009), journal articles (Ma 2012; Garcia-Lillo et al. 2016),

dissertations (Prebor 2010), letters, reviews, conference papers (Kurihara et al. 2013) and

other academic events such as workshops, symposia, seminars, etc. (Jeong and Kim 2010).

The knowledge nodes with large granularity, such as directions and hotspots, in a

discipline or a field even a journal, are all formed through academic units clustering

together based on certain rules, in which the academic units may be words or terms (Hu

et al. 2013; Darvish and Tonta 2016), authors (Chen and Lien 2011; Riviera 2015), articles

(Pilkington and Meredith 2009; Hult 2016), journals (Pratt et al. 2012; Machado et al.

2016), etc., the similarities among academic units are the knowledge nodes, and the cri-

terions judging similarities mainly are the relation of co-occurrence, including co-citation

(Leydesdorff and Vaughan 2006; Pilkington and Meredith 2009; Chen and Lien 2011) and

co-word (Zong et al. 2013; Yang et al. 2016) between the academic units.

The methods for gathering academic units based on similarities mainly include

Hierarchical Cluster Analysis (HCA) (Liu 2005; Triventi 2014), Multidimensional

Scaling Analysis (MDSA) (Calabretta et al. 2011; Wolfram and Zhao 2014), Factor

Analysis (FA) (McCain 1990; Charvet et al. 2008; Hossain et al. 2013). The methods for

further describing the association structure of knowledge nodes with large granularities

primarily are social network analysis (SNA) (Otte and Rousseau 2002; Park and Ley-

desdorff 2008; Aleixandre et al. 2015), Pathfinder Net Analysis (PF-Net Analysis) (Kim

and Lee 2008; Ma 2012) and Visualization of Similarities (VOS) (Olijnyk 2015; Pinto

2015).
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The issues for discussing are mostly about narrow-sense subject or domain KS (Charvet

et al. 2008; Dehdarirad et al. 2014; Naghizadeh et al. 2015), seldom with academic units

such as scholars or institutions as main objects. In additional, the knowledge mainly refers

to the knowledge nodes with large granularities, namely the research directions or hotspots

in disciplines or domains (Tseng and Tsay 2013; Danell 2014; Rusk and Waters 2015). The

discipline scope includes LIS (Tseng and Tsay 2013; Milojevic et al. 2011), Biomedical

Informatics (Jeong and Kim 2010), E-Learning (Chen and Lien 2011), Strategic man-

agement (Nerur et al. 2008), International Marketing (Samiee and Chabowski 2012),

Theology (Yoo et al. 2013), etc.

A variety of tools are used to analyze the knowledge structure, including Bibexcel

(Persson et al. 2009) which is able to build co-citation/co-occurrence matrix and cal-

culate the correlation coefficient, SPSS (Accessed by July 1st, 2015) and SAS (Accessed

by July 1st, 2015) which are able to achieve HCA, MDSA and FA, Ucinet (Borgatti

et al. 2002), Pajek (de Nooy et al. 2005), ORA (Meyer et al. 2011) and pathfinder

algorithm (Chen and Paul 2001) used to construct correlation between knowledge nodes

and to calculate characteristics of KS, VOSviewer (Van Eck and Waltman 2010) was

able to implement clustering the co-occurrence matrix and visualize the clusters with

density view and network view, and CiteSpace (Chen 2006; Seyedghorban et al. 2016)

used to analyze the distribution of association between knowledge nodes and evolution

with timeline.

Current explorations of CLIS and its characteristics have exposed problems of small

scale, incompletion, and partial scope. The methods of HCA, MDSA, and FA have been

extensively employed to generate discipline knowledge nodes in research, but the amount

of data applied in these methods has been impossibly large; for example, HCA is a typical

small-scale and high-precision clustering method. Additionally, the knowledge nodes

generated are all research directions and hotspots for subjects or domains, with large

granularity. In other words, the so-called DKS only refers to top-level knowledge cate-

gories and their associations, and analysis of the detailed circumstances in categories has

been inadequate. The descriptions of semantic relationships between knowledge nodes

with distinct granularities have therefore remained incomplete. Finally, discussions based

on parts of KS are partial in their scope, which can only reveal the status of a given aspect

or angle in a certain discipline. For instance, analysis of DKS based on high-citation

authors or high-frequency terms can only yield the research directions in which these

scholars dabble or which are described by this terms, rather than the KS of the entire

discipline (Milojevic et al. 2011; Ma and Ni 2011).

To address these shortcomings, this study attempts to view DKS as a hierarchy of

domain knowledge and to comprehensively analyze the semantic associations between

knowledge nodes in CLIS from an ontological point of view, so as to construct a

relatively complete narrow-sense KS to lay the knowledge foundation for exploring a

broad-sense CLIS_KS. The novelty of this study lies in its attempt to build a relatively

complete multi-level KS for the whole CLIS, on the basis of which some analysis and

applications can be carried out. This requires the collection, processing, calculation, and

analysis of large-scale data covering the entire discipline. In contrast, previous studies of

DKS have mainly stayed in partial hotspots and two-levels structures of disciplines or

domains. In addition, the introduction of the MLC method can solve the problem of

large-scale data processing, which cannot be addressed by HCA because it focuses on

precision.

1728 Scientometrics (2016) 109:1725–1759

123



Methodology

Research framework

The basic idea of this study is summarized graphically in Fig. 2. The entire research

framework can be divided into four phases. First is the data pretreatment phase, which

selects and cleans the LIS academic resources. Using CSSCI (2003–2012) as a data source,

the CLIS document records are selected, and then the core keywords and distinct scholars

who made a certain contribution to the discipline are identified through data-cleaning; this

process forms triples formatted as\Keyword, Scholar, Weight[. Notably, when the task of

data collection begins, the CSSCI (2013–2014) data has not yet been completed.

Second is the KS construction phase, in which the CLIS knowledge ontology is gen-

erated and stored. This process, taking the concept of ontology as theoretical guidance,

converts the triples into a keyword-scholar matrix (KSM), with the keyword serving as an

object, the scholar serving as the description factor for the keyword, and the correlation

coefficient between them serving as the matrix value. Then, the keywords’ hierarchical

structure is constructed using the MLC method, so as to generate an ontology for the

discipline that can be described and stored using Ontology Web Language (OWL) and

graphical visualization. This lays the foundation for further applications of this knowledge

ontology.

Third is the KC validation phase, which examines the correctness and rationality of

CLIS_KC. Through modular reasoning, the cohesion and coupling aspects of KC

demonstrate the quality of CLIS_KS. Cohesion confirms the degree of internal aggregation

in parts of categories through the HCA method in order to discuss the possibility of further

subdividing categories; meanwhile, coupling detects the spatial distribution of keywords

belonging to different categories in order to discuss the discrimination of KCs and the

rationality for dividing keywords.
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Fourth is the CLIS analysis phase, which explores the internal relationships among

CLIS academic objects. As constructed in this study, CLIS_KS only refers to the hierar-

chical relationships among the contents of discipline research, reflecting the scope of

narrow-sense DKS. This DKS can provide a wealth of knowledge reserves for analyzing

and evaluating other academic objects in CLIS. This study proposes to detect academic

objects on the microscopic, mesoscopic, and macroscopic levels. Taking the objects in the

scholar category as an example, on a microscopic level, this study builds scholars’ indi-

vidual KS in order to analyze their research focuses; on a mesoscopic level, this study

detects the core groups of scholars in each large category in CLIS in order to evaluate the

distribution of important scholars in each research direction in CLIS; and on a macroscopic

level, this study mines the content cross and study dependence between scholars in order to

identify the interactions between scholars within a certain range from the point of view of

research content. Of course, the methods for discussing scholars’ research content could

apply equally to other academic objects, such as journals, institutions, and areas; therefore,

this study provides sufficient methodological support and a referential analysis concept for

the construction of broad-sense CLIS_KS.

Methods for CSSCI data cleaning

Journal articles constitute the main carriers and sources of discipline knowledge. They not

only contain the existing foundations of discipline knowledge, but also represent the

important process of recording and sharing new discipline knowledge. CSSCI, widely

recognized as China’s leading, authoritative, and comprehensive database for scholarly

citations in Chinese, includes more than 500 high-impact and high-quality journals in the

fields of the humanities and social sciences, selected by the Social Sciences Evaluation

Center of Nanjing University. This database includes articles, keywords, authors, cited

documents, and other academic resources; therefore, it curates the most cutting-edge and

complete knowledge of social science disciplines. This study intends to employ the

inherent knowledge held in CSSCI journal articles in order to construct CLIS_KS.

A bibliographic record in the CSSCI database consists of multiple fields that describe

the record, among which are title, keyword, and cited document. These fields contain

subject terms or keywords used to describe the subject contents of an item. Due to limi-

tations in the precision of Chinese word segmentation, the word group or phrase repre-

senting knowledge may be subdivided, and the title, citation, and other fields representing

discipline knowledge may not be selected as knowledge sources. For this reason, this study

use the keyword field with wide content coverage, significant segmentation signs and

explicit knowledge as the data source for discipline knowledge.

However, directly using the original data as the experimental sample causes many

problems, such as scholars having the same name, topics not belonging to the discipline,

edge scholars, and accidental associations between knowledge nodes and scholars.

Therefore, it is necessary to clean the original data in order to obtain more standardized and

moderate-scale experimental samples. CSSCI data cleaning includes two main tasks, which

are described in the following paragraphs.

The first is to identify distinct authors. We considered using name and area (the first two

digits of the area code in CSSCI) as unique marks to distinguish scholars; however, it turns

out that some individual scholars are associated with multiple marks. Some of this

duplication is caused by indexing error. For example, the scholar ‘‘JP Qiu’’ from ‘‘Wuhan

University’’ (42) was incorrectly indexed as ‘‘Xiangtan University’’ (43) twice, and the

same scholar was also incorrectly indexed as ‘‘Chinese Academy of Social Sciences’’ (11)
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twice. Other instances of duplication are due to interprovincial changes in a scholar’s

workplace. For example, the scholar ‘‘CJ Suo’’ from the ‘‘Chinese National Library’’ (11)

previously worked in ‘‘Zhengzhou University’’ (41) for a long time, and the scholar ‘‘X

Xu’’ of ‘‘East China Normal University’’ (31) participated in doctoral studies at ‘‘Nanjing

University’’ (32). In these cases, the area symbols do not help to distinguish authors with

the same name; rather, they contribute to data corruption. Ultimately, we decided to

employ ‘‘full name’’ as a mark to distinguish scholars, such that if scholars with the same

name remain after data filtering, they are separated manually. The method proceeds as

follows: All of the possible institutions and corresponding titles are extracted from the

source data for the selected scholars, and then scholars with the same name are judged to

be the same person based on their research content, supplemented by search engines that

specifically check full names with common or short surnames. Fortunately, among all

selected scholars in CLIS, only a dozen groups of scholars with the same name were

identified. In fact, renowned scholars with the same name are actually very rare within a

given discipline. Undeniably, this method introduces a certain subjectivity and therefore

reduces the degree of automation possible; however, this is necessary to ensure precision in

the case of without scholar ontologies.

The second task is to screen data. In order to ensure that non-domain topics, edge

scholars, and accidental associations have little influence on the generation of domain

knowledge and its structure, this study considers screening methods from three perspec-

tives: keywords, scholars, and associations between them. Therefore, we set the following

five parameters to ensure the rationality and scale of the selected data, with the main

purpose of getting rid of noise data. (1) Keyword frequency factor (K). In order to ensure

that the selected keywords cover a long study period and maintain a certain degree of

novelty, we established the two frequency factors K10 and K5, which are used to control

the number of keywords appearing in the past 10 and 5 years, respectively. When the two

factors of a keyword exceed the thresholds T1 and T2, this keyword is accepted by the

domain; in other words, the keywords selected need to satisfy formulas (1) and (2).

However, this study did not standardize the selected keywords, because no related dic-

tionary exists. This operation may affect the accuracy of clustering, such that synonymous

keywords with different forms may be classified in different categories. However, within

the same discipline, scholars tend to use certain established keywords. (2) Scholar issuing

factor (A). The issuing number is only counted for the first author. Similar to the above

method, the scholar is assumed to be an important scholar in the discipline if his or her total

of recent issuing numbers reaches a certain level; this excludes a large number of scholars

who make small contributions to the domain of CLIS. Therefore, we established the factors

A10 and A5, and the selected scholars must meet the conditions of formulas (3) and (4), in

which T3 and T4 are constants. It is worth noting that A10 and A5 are not evaluation

indices measuring the influence of a scholar. Rather, they serve as a basis for excluding

those authors who make small contributions to CLIS. A5 ensures that scholars are actively

and currently conducting research, while A10 ensures that scholars have considerable

research history. (3) The factor of association between a keyword and a scholar (W). A

scholar has a semantic association with a keyword when a paper is published, and the

strength of this association is determined by the rank of the scholar in the paper and the

weights of the keywords. Table 1 lists the contribution rates of authors in CSSCI articles,

determined by the author quantity and signature order; with very slight modifications, this

table is based on a study by XN Su and ZR Zou, who founded CSSCI (Su and Zou 2011). If

the weight of all keywords is set as 1, the strengths of associations between all scholars and

all keywords can be calculated, and the total correlation coefficient between a scholar and a
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keyword can be obtained. The coefficient reflects the degree of a scholar grasping and

applying a related knowledge node. However, a large number of accidental associations

may occur. Therefore, the association between a scholar and a keyword is considered to be

real and valid only when its coefficient satisfies formula (5), in which T5 is a constant

threshold.

K10�T1 ð1Þ

K5�T2 ð2Þ

A10�T3 ð3Þ

A5�T4 ð4Þ

W [T5 ð5Þ

Methods for CLIS_KS construction and description

In this study, keywords are considered to be the smallest-granularity discipline knowledge,

and multiple-granularity knowledge nodes can be generated after aggregating keywords in

varying degrees. All of these knowledge nodes are integrated to form a complete DKS.

This process is illustrated in Fig. 3. First, all of the core keywords in CLIS combined

constitute the largest-granularity knowledge node, denoted as CLIS_KS. Then, based on

the object similarity principle, those keywords having greater similarities are gathered

together to form several clusters or classes, each of which is a discipline knowledge node

with relatively large granularity, denoted as C1_KS. Clusters that contain more keywords

or in which keywords have a high degree of dispersion can be further clustered, and

keywords with greater similarities in the same cluster are gathered together, such that the

knowledge nodes on the C1-level split into smaller-granularity knowledge nodes denoted

as C2_KS. The above process is executed continually, so that large-granularity knowledge

nodes constantly split into small-granularity knowledge nodes with stronger cohesion, until

the number of keywords in a cluster falls to a specified threshold or the similarity of

keywords in a cluster reaches a fairly high degree.

The process described above employs MLC to achieve the automatic generation of

distinct-granularity knowledge nodes. However, prior to performing the specific operation,

some issues need to be addressed. The first issue is the choice of clustering algorithm. To

deal with large-scale keyword objects, the high-efficiency, division-based K-means clus-

tering algorithm is employed to aggregate different-granularity knowledge nodes; then,

Table 1 Author contribution
rates based on author quantity
and signature order

The contributions of the
corresponding author and authors
7 and later of an article are not
considered. The total
contribution rate of one article is
1

Author quantity Signature order

1 2 3 4 5 6

1 1 – – – – –

2 0.6 0.4 – – – –

3 0.6 0.25 0.15 – – –

4 0.6 0.2 0.1 0.1 – –

5 0.6 0.2 0.1 0.05 0.05 –

6 0.6 0.1 0.1 0.1 0.05 0.05
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HCA is adopted to subdivide the minimum knowledge sets and verify the effect of

knowledge clustering. To address this issue, we considered a variety of clustering algo-

rithms, including DBSCAN, BRICH, and K-means. DBSCAN is a pioneer among density-

based clustering techniques; it can discover clusters of arbitrary shapes, it requires no prior

knowledge of the cluster number, and it handles noise and outliers effectively. However,

this algorithm does not work well in high-dimensional datasets, and it may rule out parts of

keywords as noise (Ester et al. 1996; Sarafis et al. 2007; Kumar and Reddy 2016).

Therefore we determined that it is not suitable for the large-scale, high-dimensional, sparse

data in this study. BRICH (Zhang et al. 1996) is a bottom-up hierarchical clustering

algorithm, and it is very suitable for constructing multi-level data structures. However, this

algorithm requires specification of parameters beforehand, especially in setting the max-

imum number of leaf nodes, which is more difficult than setting the number of categories

for each level. Because of this limitation and its few degrees of freedom, BRICH was not

employed. K-means has a large number of practical applications, fast algorithm speeds,

and a nice treatment effect for sparse matrices; furthermore, when the experimental data

was precalculated, the clustering results were reliable. Therefore, the K-means algorithm

was employed in this study. However, the algorithm cannot determine the cluster number,

which must be manually set.

The second issue to address involves describing keywords with vectors. Keywords are

used as clustered objects in this study, and they should therefore be described with features.

The previous data-cleaning process produced triples of\Keyword, Scholar, Weight[, such

that ‘‘Scholar’’ is taken to be description factor for ‘‘Keyword’’, and a KSM can be built as

a clustered object. Generally speaking, more frequent co-occurrences of a pair of keywords

in the literature or context indicate more similar themes (Cho 2014; Hong et al. 2016). This

suggests that keywords frequently used by similar scholars may be correlated with each

other. The third issue involves setting a category on every level. Clustering is a non-

supervised classification method, and the category number (Cn_num) and name (Cn_-

name) must be artificially set by domain experts before clustering. The threshold of

Cn_num is set according to the number of keywords in categories, which should not be too

CLIS_KS 

C1_KS 

C2_KS

C3_KS 

Large
S

m
all

G
ranularity of know

ledge

Fig. 3 Process of establishing CLIS_KS based on multi-level K-means clustering

Scientometrics (2016) 109:1725–1759 1733

123



large or too small. In order to set a C1_num threshold, the experiment was conducted many

times; this revealed that using too many categories leads to some small categories having

fewer than 100 keywords, while using too few categories results in large categories with

more than 1000 keywords. Therefore, we determined that setting C1_num = 10 guarantees

that the number of keywords in each category will have three digits. Similarly, the C2_num

threshold is dictated by the number of C1 category keywords and the maximum category

keywords. The minimum value of the former is about 100, and the latter can be set between

5 and 20; therefore, setting C2_num = 5 ensures that the number of keywords in the

second level will not be too low. Setting Cn_num for the third level and beyond must also

consider the number of keywords in categories. Based on the subject characteristics of

CLIS, we set Cn_num to 10 on C1-level and 5 on C2-level, while all subsequent levels are

set according to formula (6):

Cn num ¼ min 5; ceil ðm=MaxNum)ð Þ ð6Þ

where m represents the number of knowledge nodes in the cluster needing to be clustered,

MaxNum is the maximum number of keywords allowed in any lowest cluster, the function

ceil (X) denotes the minimum integer greater than X, and min (X, Y) denotes the smaller of

the parameters X and Y.

The fourth issue concerns the conditions required to finish MLC. As Fig. 3 shows, this

study adopts MLC to achieve the division of basic knowledge nodes and the generation of

distinct-granularity knowledge nodes; therefore, the conditions to end clustering must be

preset. To address this, we introduced two parameters to control the clustering process.

One is MaxNum, which denotes the maximum number of nodes allowed in any lowest

cluster. If the number of keywords in a cluster exceeds MaxNum, the clustering continues;

otherwise, the clustering stops [see formula (6)]. The other parameter is SumD, which

denotes the minimum distance allowed for a cluster. If the sum of the distance between

each node in the cluster and the center node exceeds SumD, the clustering continues;

otherwise, the clustering stops. As long as one of these two conditions is satisfied, the

clustering process is finished. MaxNum is used for the purpose of amplifying the degree of

coupling between clusters, in order to prevent semantic bias caused by excessively small

granularity in a knowledge node; meanwhile, SumD is used for the purpose of controlling

the degree of cohesion within a cluster, in order to prevent the production of an error

category or excessive node density in a cluster that could inhibit clustering. Variations in

these two parameters’ values lead directly to changes in CLIS_KS. The width and depth of

a reasonable CLIS_KS must be effectively controlled, such that the CLIS_KS is neither too

wide nor too deep; this requires the user to detect the thresholds of the MaxNum and SumD

parameters.

The CLIS_KS generated can be stored as text in the form of OWL for visualization.

\Owl: Class[and\Owl: subClassOf[are the main labels for describing IS_A relations.

There are two basic syntaxes, as follows:

<owl:Class rdf:ID="Class Name">Content</owl:Class> ð7Þ

<owl:Class rdf:ID="Subclass Name">
<rdfs:subClassOf rdf:resource="#Superclass Name"/>
…

</owl:Class>

ð8Þ
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<owl:Class rdf:ID="Subclass Name">
<rdfs:subClassOf><owl:Class rdf:ID=" Superclass Name">Content</owl:Class>
</rdfs:subClassOf>
…

</owl:Class>
ð9Þ

Together, formulas (7) and (8) describe two classes and their parent–child relationship.

The parent class is defined first, and the child class is defined in relation to its designated

parent class. Formula (9) merges these two steps into one, such that the child class is

defined and related to a designated parent class at the same time that the parent class is

defined. Figure 4 uses these two approaches to define the classes of ‘‘Ontology’’ and

‘‘Semantic Web’’, as well as their IS_A relation. The first approach is depicted on the left,

and the second is depicted on the right.

Protégé (Accessed July 1, 2015) is a plug-in tool for ontological editing and visual-

ization display. It is able to read and write OWL files and to transform them into visual

graphics. A variety of ontology visualization plug-ins currently exist for Protégé, among

which Ontograf (Falconer 2015) demonstrates comprehensive visualization capabilities. It

not only shows ontological relationships in a variety of layouts and effectively filters them,

but also retrieves ontological concepts and quickly locates and locally displays them.

The generation of OWL files and realization of graphical display indicate that the

construction of the knowledge ontology of CLIS_KS is complete, and the ontology can be

further applied to the validation and analysis of discipline knowledge.

Methods for CLIS_KS Verification

CLIS_KS is automatically generated by K-means clustering. However, due to the insta-

bility of the K-means clustering algorithm, some deviations may appear in the automatic

MLC results for keywords. On the whole, CLIS_KS roughly reflects the overall situation of

CLIS, and it is certainly credible. Using the methods of HCA and MSDA, partial inves-

tigation for cohesion and coupling in special categories goes further in demonstrating the

rationality of CLIS_KS generated by clustering.

When MLC was performed in this study, the two parameters SumD = 3 and Max-

Num = 15 were set to control whether clustering would continue. However, in the final

CLIS_KS generated, the lowest clusters had up to 25 objects, far more than the MaxNum

threshold; instead, clustering ended because the total distance between each object within

the cluster and its centroid (denoted as Sum_dis) was less than the SumD threshold. In

contrast, some of the bottom knowledge categories had fewer objects than MaxNum, while

<owl:Class rdf:ID="Ontology"></owl:Class> 
<owl:Class rdf:ID="Semantic Web"> 

<rdfs:subClassOf rdf:resource="#Ontology"/> 
</owl:Class> 

<owl:Class rdf:ID="Semantic Web"> 
<rdfs:subClassOf> 

<owl:Class rdf:ID="Ontology"></owl:Class> 
<rdfs:subClassOf> 

</owl:Class> 

Fig. 4 OWL codes on hyponymy of LIS knowledge classes ‘‘Ontology’’ and ‘‘Semantic Web’’
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Sum_dis was far greater than SumD. If the former situation is denoted as A, and the latter

is denoted as B, the following rational hypotheses can be stated:

• H10: In situation A, objects inevitably gather in the vicinity of the centroid; therefore,

cohesion is good, and the differences between objects within clusters are not obvious.

• H20: In situation B, objects are highly dispersed relative to the centroid, which directly

leads to larger total distance and poorer cohesion, However, because the clusters have

few objects, they can be further clustered using more accurate methods, depending on

the needs.

The purpose of stating these two hypotheses is to provide reasons for additional research

and lay the groundwork for further outlining and analyzing the internal structure of the

lowest clusters, including the specific distribution of keyword nodes. MLC involves a

question of when clustering should stop. The conditions for stopping clustering have

different results, and the thresholds can be adjusted. Therefore, the distributions in the

lowest clusters must be understood in order to answer these questions. HCA, which can

describe the process of clustering in detail, can be employed to make an argument for

understanding the relative position of objects within a cluster and their degree of cohesion.

Another question is whether knowledge categories in CLIS_KS obtained by K-means

clustering are relatively independent; in other words, how is the coupling between

knowledge categories? To address this question, MDSA is employed to scatter the nodes in

different knowledge categories over a two-dimensional plane. Then, the rationality of

category division is verified according to the position distribution of the nodes on the

plane, as well as the coupling between categories. The two samples from category A with

the most objects (denoted as A1 and A2) and the two from category B with the largest

Sum_dis (denoted as B1 and B2) are used to carry out coupling analysis. Prior to the

specific operation, the hypotheses can also be stated as follows:

• H30: The objects from the four categories are independent of each other; therefore, the

coupling between categories is very low, and clustering has a positive effect on

category division.

• H40: The hierarchy of the objects from A1 and A2 is poor, while further clustering may

be possible for the objects from B1 and B2.

Methods for CLIS_KS Analysis

According to the hierarchical structure of discipline knowledge, the semantic relationships

between discipline knowledge and other academic objects can be further understood by

means that include sketching out the knowledge structure of individual academic objects,

discovering the core academic object groups for various categories in CLIS, and even

depicting associations of content containing and crossing academic objects. Academic

objects mainly include scholars, journals, institutions, and areas. Analysis of narrow-sense

KS including only research content transforms to exploration of broad-sense KS containing

all academic objects in a given discipline. This study adopts only scholars as example

objects, assessing from microscopic, mesoscopic, and macroscopic levels in order to fully

detect and discuss the semantic associations between the scholars and CLIS_KS.

Microscopic analysis detects the internal structure of academic objects and examines

their research interests and contributions to the discipline based on the content details. This

analysis specifically refers to exploration of the KS of individual scholars. Given the length

of this study, the scholar ‘‘JP Qiu’’ was chosen for a detailed detection of his microscopic
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KS; he has the largest knowledge coefficient in CLIS from 2003 to 2012. The knowledge

coefficient is the total correlation coefficient between a scholar and all his related key-

words, which are the basic knowledge nodes. Of course, this analysis mode is also

applicable to other scholars and academic objects, and it can help create a deep under-

standing of their research focuses and corresponding causes within a certain range of time,

as well as providing a factual basis and referential suggestions for the further development

and improvement of academic objects in the CLIS study.

Mesoscopic analysis comprehensively investigates the same or similar external per-

formances of academic objects groups. This analysis specifically refers to probing the

associations between scholars and category knowledge nodes (CKNs), so as to analyze the

core scholar groups on distinct, hierarchical category levels. The core scholar groups are

the main creators and users of CKNs. First, keywords are generalized to CKNs based on

CLIS_KS. In this way, the triples\Scholar, Keyword, Weight[are converted to\Scholar,

Sub-domain, Correlation Coefficient[. Then, in accordance with the correlation coeffi-

cient, the rank of scholars is calculated, and the collection of the most relevant scholars in

every CKN is identified as the core scholar group for this category. Finally, the relation-

ships between CKNs and core scholar groups are described and visually displayed through

social network analysis (SNA). Given the restrictions on length, this study only depicts the

core scholar groups for sub-domains (categories) C1 and C2. The core scholars are

identified for every sub-domain according to formula (10), in which CC_Rank means the

rank of the sum of correlation coefficient in sub-domain, S_Num means the number of

scholars in sub-domain and n is an indefinite value empirically determined based on the

level and size of the sub-domain. Similar to the microscopic analysis described above, this

study provides a model for analyzing the relationships between academic objects and

CKNs with distinct generalization degrees based on CLIS_KS. This model can conve-

niently single out the most relevant academic objects for every research sub-domain in a

discipline, and then offer knowledge services for evaluating academic objects, retrieving

reference information, submitting academic papers, and surveying a region’s study

domain.

CC Rank

S Num
� n% ð10Þ

Macroscopic analysis discusses the research characteristics of academic objects to a

more comprehensive extent. CLIS_KS contains discriminative generalized levels,

including basic knowledge nodes (BKNs) at the bottom in addition to distinct, compre-

hensive CKNs. Because of the complexity of Chinese compound words and less normative

Chinese keywords, the BKNs for scholars are complicated, with basically no rules to

follow. However, if a scholar’s BKNs are generalized to a certain extent, such that the non-

core study fields of the scholar are excluded, the scholar’s true CKNs can be obtained. At

the same generalized level, the KS of scholars can exhibit some regularity. Therefore, this

study addresses the associations between scholars on level C1, which includes 10 sub-

domains, and analyzes the possibility of knowledge exchange and integration among

scholars so as to promote research innovation in the discipline. In detail, the methods are as

follows: First, BKN that all scholars are related to are generalized to knowledge nodes of

the C1 sub-domains; this allows the number of knowledge nodes to drop from 3081 to 10,

and the content crossing between scholars increases substantially. Second, scholars’ non-

core C1 sub-domains are removed. The threshold K_C1 is introduced; if the knowledge

coefficient of a scholar in a C1 sub-domain is larger than K_C1, this C1 sub-domain is
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considered to represent the scholar’s core research field. A scholar’s K_C1 threshold is set

to the average of all of the scholar’s knowledge coefficients with related C1 sub-domains.

Third, the cross-correlation between scholars is calculated based on the research crossing

between scholars on level C1. The improved TF-IDF (Wang 2010) is employed to describe

different interactions between associated scholars’. The calculation method is shown in

formula (11), and the variables are described in Table 2. When scholar Y has an important

effect on scholar X, their shared knowledge coefficient tfiXY should be much higher, and

scholar Y’s research should be much more converged. Finally, the most important

M scholars for scholar X can be identified as associated scholars of scholar X. Similarly,

when discussing the associations between scholars on level C2, the BKNs can be gener-

alized to the CKNs on level C2.

kY!X ¼ RelevancyðSX; SYÞ ¼
Pn

i¼1 CiXYPn
i¼1 CiX

� WeightingFactor ðSYÞ ð11Þ

CiXY ¼ tfiXY � log10

N

cfXY

� ðN � cfXÞ
� �

ð11 � 1Þ

CiX ¼ tfiX � log10

N

cfX
� ðN � cfXÞ

� �

ð11 � 2Þ

WeightingFactor ðSYÞ ¼
log10

N
cfY

log10 N
ð11 � 3Þ

Results and discussion

Results of CSSCI data cleaning

Starting from a subject category of 870 (the serial number of CLIS in CSSCI), this study

retrieved records for all papers and their authors from CSSCI between 2003 and 2012,

using this data as a foundation to construct DKS. This dataset included a total of 58,281

papers, 34,222 scholars, and 67,351 keywords. Obviously, this represents a huge amount of

data; therefore, the data were screened according to preset parameters. Thresholds were set

for each parameter, denoted as T1 through T5 as described in ‘‘Methods for CSSCI data

cleaning’’ section, according to the following principles. (1) The laws of the distribution of

source data, including the frequency and number of keywords, and the number and issuing

number of scholars, must meet certain criteria. (2) The size of the calculated data,

Table 2 Description of variables in formula (11)

Variable Description Variable Description

kY!X The association degree of scholar Y with X,
where the latter is the central object

cfXY The number of C1 sub-domains in
which scholar X and Y co-occur

tfiXY The shared knowledge coefficient of scholars
X and Y

N The total number of C1 sub-domains

tfiX The knowledge coefficient of scholar X in C1
sub-domains

cfX / cfY The number of C1 sub-domains in
which scholar X/Y occur
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including the selected keywords and scholars, must cover the entire discipline, while the

size of the experimental data must be controlled within calculability. (3) Repeated testing

is necessary to ensure that all important keywords and well-known scholars are selected.

(4) The actual situation of CSSCI papers is considering. The degree of correlation between

the content of papers and authors other than the first author is small. Based on these four

considerations, the distributions of keywords and scholars were evaluated, with the results

shown in Fig. 5.

Figures 5a, b show the keyword frequency trends over the last 10 and 5 years,

respectively, under different grades. Figure 5a divides the range 0 through 25 into 6 grades,

and Fig. 5b divides the range 0 through 15 into 6 grades. When the grades of both are 2, or

K10 C 5 (T1 = 5) and K5 C 3 (T2 = 3), changes in keyword frequency begin con-

forming with the trendline with regularity; at this point, the keywords satisfying these

conditions are recognized by CLIS. Figures 5c, d show the trends for numbers of scholars

over the last 10 and 5 years, respectively, under different grades. Figure 5c divides the

range 10 through 20 into six grades, and Fig. 5d divides the range 5 through 10 into 6

grades. Published papers are counted only for the first author, and the grades are divided

based on the issuing number. The parameters are set at A10 C 10 (T3 = 10) and A5 C 6

(T4 = 6), such that only authors who have published at least ten papers in past 10 years

and at least six papers in the past 5 years are selected as CLIS scholars. The final parameter

is set as T5 = 0.6 and W[ 0.6; in other words, only a keyword used by a scholar who is

the first author in more than one multi-author paper is inevitably association with this

scholar. To refine the data further, scholars with the same name were checked based on

data filtering. A dozen groups of scholars with the same name were found, and the full

names were all short, with common surnames. After these names were marked with

different tokens, data filtering was performed again. It is worth noting that some errors may

remain in the results due to the strong subjectivity and rough operation of the cleaning

process. It is possible that some scholars with same name were not separated.

Fig. 5 The trends for keywords frequencies (a, b) and numbers of scholars (c, d) in the most recent 10 (a,
c) and 5 (b, d) years under the different grades
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After data cleaning, CLIS ultimately recognized 3081 valid keywords, 575 important

scholars in the discipline, and 12,005 semantic associations between keywords and

scholars. Therefore, the obtained triples\Keyword, Scholar, Correlation coefficient[were

used as the data foundation to construct CLIS_KS.

Results of CLIS_KS construction and description

Results of CLIS_KS construction

In order to identify final values for MaxNum and SumD, this study set several values for

MaxNum {5, 10, 15, 20} and SumD {2, 3, 4, 5, 6} and carried out MLC experiments 20

times to test all combinations. The detailed process proceeded as follows. First, according

to the rules for setting the number of categories on all levels, KSM was clustered with

MLC using the K-means algorithm. However, the K-means algorithm produces instability

in clustering results by selecting different initial centroids; therefore, every K-means

clustering operation was executed ten times, and the final result was the one that minimized

the sum of the distance between all nodes in the cluster and the centroid. The final

clustering results are shown in Table 3.

As Table 3 proceeds from top to bottom, the conditions for clustering become gradually

stricter, and the generated knowledge hierarchical structures also undergo a subtle change.

The number of generated clusters (Num_C) decreases significantly, and the overall width

of the hierarchy (MaxWid_H, the number of nodes on the level with most nodes) becomes

smaller. As the number of nodes allowed in a cluster increases, the maximum depth of the

hierarchy (MaxDep) generally increases; meanwhile, the minimum depth (MinDep) shows

a decreasing trend, such that the whole structure is essentially elongated. As the conditions

for clustering become stricter, the maximum number (MaxWid_C) and the minimum

number (MinWid_C) of clusters both demonstrate an upward trend, with the maximum

changing very significantly. Generally speaking, in a reasonable class hierarchy, the overall

width, depth, and size of the clusters must be moderate. Therefore, MaxNum can rea-

sonably equal 15, and SumD can reasonably equal 3; in other words, when there are more

than 15 nodes in a cluster, and the sum of distances between every node and the centroid

exceeds 3, clustering will continue so as to ensure that the nodes in every cluster gather in a

small space or the number of nodes is less than 15. At this moment, the depth of CLIS_KS

(MaxDep) is less than 10, while the width (MaxWid_H) is between 160 and 200. At the

same time, the largest number of keywords in a cluster (MaxWid_C) is 25, which is not

excessive compared with the threshold of MaxNum, and the total number of categories

(Num_C) is as small as possible. Relatively speaking, this structure is more reasonable.

The MLC experiment was performed an additional ten times with the selected

parameters. Then, combining the opinions from domain experts with the characteristics of

hierarchical structure including width, depth, and category number, one of the most rea-

sonable clustering results was chosen to represent CLIS_KS. The chosen result has a depth

of 9, a width of 178, and a total of 347 CKNs. The first level of CKN (C1) is shown in

Table 4, in which the keywords with the highest frequency are used as names for the

categories (C1_name). In the CLIS_KS shown in the table, ‘‘University Library’’ and

related research forms the largest category, with 741 keywords. This is more than twice the

number of keywords in the ‘‘Digital Library’’ category, which is ranked second. Therefore,

this CKN currently constitutes the main research content of CLIS. The study scales for

‘‘Informatics’’ and ‘‘Philology’’ are relatively small, with the number of related keywords

being fewer than 200. ‘‘Philology’’ seems to represent a declining trend as a traditional
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research direction for CLIS, while ‘‘Informatics’’ has experienced a great diversion of

research contents since the rise of research classified as ‘‘Competitive Intelligence’’ and

‘‘Search Engine’’. The ten C1 categories, four of which are related to the term ‘‘library’’,

indicate that up to 2012, research into ‘‘Library Science’’ has remained the focus of

knowledge distribution in CLIS.

Results of CLIS_KS description

The entire CLIS_KS can be coded using OWL labels; then, the CLIS knowledge ontology

can finally be formed, containing only hierarchical relationships. After the OWL ontology

file is generated, the file can be read with Protégé in order to perform class retrieval and

visual display using visualization plug-ins such as OntoGraf. Figure 6 lists partial OWL

codes for CLIS_KS, which mainly describe the hypernym/hyponym relationships between

the fourth-level category ‘‘C3_Bibliometrics’’ and its terminal KN. Figure 7 structures all

the KN in the three fourth-level categories ‘‘C3_Semantic_Web’’, ‘‘C3_Library_Cause’’,

and ‘‘C3_Bibliometrics’’ into a spring shape, in which the node for CLIS_KS is taken as

the ceiling-level CKN. Figure 8 is a tree-shaped graph on DKS constructed from parts of

categories in CLIS_KS.

Results of CLIS_KS verification

Results of cohesion analysis

Two cases were chosen from A and B (see also ‘‘Methods for CLIS_KS Verification’’

section) to represent two kinds of extreme CKN. This study attempted to explore and

analyze the distribution and cohesive characteristics of keywords in these CKNs, using the

HCA method so as to verify the above hypotheses listed in ‘‘Methods for CLIS_KS

Verification’’ section.

Fig. 6 Partial OWL codes on CLIS_KS

Table 4 First level of CKN (C1) in CLIS_KS

C1_no. C1_name Number
of BKN

C1_no. C1_name Number
of BKN

11 C1_University_Library 741 16 C1_Communication 244

12 C1_Philology 195 17 C1_Digital_Library 356

13 C1_Public_Library 261 18 C1_Library 298

14 C1_Competitive_Intelligence 316 19 C1_Knowledge_Management 282

15 C1_Search_Engine 254 20 C1_Informatics 134
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(1) A: CKNs with the most objects, both including 25 keywords

A1: LIS_KS[C1_Public_Library[C2_Library_Management[C3_Reader_Services[C4_

Library_Architecture[C5_Library_Architecture[C6_Library_Architecture, Sum_dis =

2.787157.

A2: LIS_KS[C1_Informatics[C2_Informatics[C3_Bibliography_Metering[C4_Bibli-

ography_Metering[C5_Knowledge_Exchange, Sum_dis = 2.833931.

Fig. 7 Spring-shaped visualization of DKS using parts of categories in CLIS_KS

Fig. 8 Tree-shaped DKS using
parts of categories in CLIS_KS
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The KSMs of A and B, which constitute 25 keywords, are clustered using HCA, and the

results are shown as A1 and A2 in Fig. 9. A1 contains 11 completely similar objects,

accounting for about half of the total. The maximum difference between objects within the

cluster (MaxDiff) is only slightly larger than 0.7. The distribution of BKNs in A2 is very

similar to A1; there is also a group of 11 objects among which the distances are all 0, and

the MaxDiff is slightly larger than 0.7. The maximum differences of BKNs in A1 and A2

are quite small, even with no differences between a large number of BKNs, and the

clustering hierarchies are not obvious. This implies that there is no significance in clas-

sifying BKNs within A1 and A2 further, and the BKNs of these categories maintain a great

cohesion.

(2) B: CKNs with the largest Sum_dis

B1: LIS_KS[C1_Library[C2_Information_Sharing[C3_Knowledge_Integration, Sum_

dis = 8.502761

B2: LIS_KS[C1_Philology[C2_Four_Books_Comprehensive_Table_of_Contents_Ab-

stract[C3_Intangible_Cultural_Heritage, Sum_dis = 7.464072.

The keywords in B1 and B2 are clustered using HCA, and the results are shown as B1

and B2 in Fig. 10. In B1, MaxDiff between the BKNs is close to 1.6, almost twice as large

as A1’ and A2’ MaxDiff. Additionally, the BKNs in B1 are distributed in a wider range of

space. The 15 BKNs are divided into three distinct groups, making the clustering hierarchy

extremely clear. The distribution of BKNs in B2 is similar to that in B1, in which No. 5 and

No. 12 are identical, as are No. 2 and No. 6. These 14 objects are also divided into three

distinct categories. Because MaxDiff exceeds 1.6, the dispersion among the objects is even

greater than in B1.

An analysis of the four bottom CKNs yields the following results:

• R10: H10 should be accepted. Category A generally contains more BKNs, but due to the

great similarity between internal objects and the strong cohesion resulting from the

internal objects gathering in a small space, it is impossible to continue the subdivision.

• R20: H20 should be accepted. The dispersion among the BKNs in category B is greater,

and the hierarchy of internal objects is fairly clear; therefore, it is obvious that the

internal objects have relatively poor cohesion. However, because of the small number

of internal objects, the categories should be further subdivided using the cluster

algorithms, which are more accurate and suitable for small-scale data such as HCA.

Fig. 9 Results of HCA on the CKN containing the most keywords

1744 Scientometrics (2016) 109:1725–1759

123



In summation, microscopic verification of the internal distribution of special categories

makes it clear that the CKNs obtained by MLC through the K-means algorithm in CLIS

have either strong cohesion or less embedded BKNs; therefore, the CLIS_KS possesses a

certain rationality.

Results of coupling analysis

MDSA is performed on the KSM, a 79-by-76 matrix formed by the keywords from A1, A2,

B1, and B2 to calculate the pairwise relative distances between all of the keywords. It

involves dimensionality reduction for compression, depending on the distances. Ulti-

mately, the KSM demonstrates that credibility stress equals 0.10893, and values greater

than 0.1 are recognized as generally credible. Additionally, the validity RSQ equals

0.98240, and values larger than 0.6 convey validity. Evidently, dimensionality reduction

has good effects, but the credibility is general. According to the position coordinates of the

keyword objects after reducing the dimensions from 76 to 2, the relative positions of the

BKNs from the four categories are shown in Fig. 11.

Overall, objects from these four clusters are divided into three groups. The blue circles

in the second quadrant represent the BKNs from A1; the pink points from A2 lie in the

fourth quadrant; and the black forks from B1 and the red diamonds from B2 are piled

together in the first quadrant, with B1 objects occupying the gaps between B2 objects.

These results suggest that coupling among these CKNs is low, because A1 and A2 are

independent from the others. Dimensionality reduction distorts the associations between

objects to some extent, with the result that B1 and B2 are integrated into one cluster in the

two-dimensional plane. It seems that the characteristics distinguishing B1 and B2 objects

are lost in the process of reducing dimensions. Of course, compared with A1 and A2, the

association between B1 and B2 is much closer; B1 is from ‘‘C1_Library’’ and B2 is from

‘‘C1_Philology’’, so the two groups may be correlated along some dimension.

There are 25 BKNs in A1 and A2, but fewer nodes appear in the figure. This suggests

that many objects are covered by others, and the BKNs in these two clusters are relatively

concentrated and highly cohesive. Of course, there may be individual objects far away

from the center of the collection, such that the BKNs show a larger difference; this could

be attributed to less similarity with other BKNs in the same cluster, or dimensionality

reduction could magnify distortions. The distances between dissimilar BKNs show a linear

growth trend in A1 and A2, such that the clustering hierarchy of BKNs is not clear and it is

Fig. 10 Results of HCA on the CKNs with the largest Sum_dis
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difficult to subdivide A1 and A2 further. In other words, the current classification has

reached the optimum level.

The BKNs are also concentrated in B1 and B2; this indicates that the division of KC has

reached a good effect based on K-means clustering, such that similar BKNs are gathered

together. However, in contrast to the linear distribution of the BKNs in A1 and A2, the

BKNs in B clusters show a more significant hierarchy. In fact, the BKNs can be subdivided

into several groups. B1 can easily be divided into three groups, as marked with black-dot

circles in Fig. 11, while B2 can be divided into four groups, marked with red-dot-line

circles. This implies the potential for further clustering in B1 and B2, which could be

performed depending on actual demand. However, it should be noted that the MDSA

method displays differences between objects on a flat surface by reducing dimensions for

compression; this introduces some distortion, such that the results cannot be used as a basis

for further classification.

Based on the analysis above, the coupling of CLIS_KS is low, and the results are as

follows:

• R30: H30 should be accepted. Viewed as a whole, the four categories are independent

from each other, which reflects poor coupling among the categories. The discrimination

between the B categories is relatively worse.

• R40: H40 should be accepted. The objects in A1 and A2 are concentrated, with strong

cohesion and poor hierarchy. In contrast, the possibility of further clustering exists for

B1 and B2, consistent with the conclusions of the previous section.

Fig. 11 Results of MDSA on four CKNs with greatest Sum_dis and most keywords in CLIS

1746 Scientometrics (2016) 109:1725–1759

123



In summary, the CKNs obtained by HCA and MDSA have high cohesion and low

coupling; therefore, the CLIS_KS has strong credibility and rationality.

Results of CLIS_KS analysis

Results of microscopic analysis: scholar’s knowledge structure

This study used the scholar ‘‘JP Qiu’’, who has the largest knowledge coefficient in CLIS at

220.10, as an example. CLIS_KS and the associations between scholars and related BKNs

can be employed to build the complete KS of individual scholars, as well as to analyze the

scope and depth of their research. According to the CLIS_KS, the individual KS of ‘‘JP

Qiu’’ contains eight levels and 188 KNs. Because the structure of the diagram is very

complex, it will be stratified and discussed separately in Figs. 12 and 13.

The double-bordered box in Fig. 12 represents CKN. Figure 12 shows only the top two

levels of the KS, and the nodes’ shading indicates the extent of the scholar’s research in the

CKN. A knowledge coefficient between 0 and 250 is averagely divided into five levels.

The deeper the color, the more of the scholar’s studying appears in the CKN. The total

knowledge coefficient of the scholar is listed below the CKN. Figure 12 clearly shows a

wide research scope, which covers seven of ten total C1 sub-domains in CLIS, in addition

to 20 C2 sub-domains. Although the research scope is wide, this scholar only scratches the

surface in the majority of the seven C1 sub-domains, and six C1 sub-domains have

knowledge coefficients no larger than 10; this indicates that these C1 sub-domains are not

focuses of his research. More than 80 % of this scholar’s studies are focused on

‘‘C1_Informatics’’, and this CKN also shows that nearly 80 % of his studies are performed

in ‘‘C2_Informatics’’, followed by ‘‘C2_Knowledge_Mapping’’ and ‘‘C2_Citation_Anal-

ysis’’. The total studies represented in these three C2 sub-domains constitute 95 % of his

entire body of work in ‘‘C1_Informatics’’.
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Fig. 12 Top two levels of the KS of ‘‘JP Qiu’’
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From this point, the scholar’s research focuses can be further pinpointed. In his key

research domains, he has achieved great depths of research. In order to further explore the

scholar’s KS, Fig. 13 shows his KS in ‘‘C2_Informatics’’, ‘‘C2_Knowledge_Mapping’’,

and ‘‘C2_Citation_Analysis.’’

In Fig. 13, the double-bordered box represents CKN, and the single-bordered box

represents BKN. The other graphic symbols are similar to the ones used in Fig. 12. Part A

of Fig. 13 is the KS of ‘‘C2_Knowledge_Mapping’’ and ‘‘C2_Citation_Analysis’’ for ‘‘JP

Qiu’’, and the background color of each node corresponds with the level of the knowledge

coefficient divided from 0 to 20 into five levels. Part B is the KS of ‘‘C2_Informatics’’, and

the background color of each node corresponds with the level of the knowledge coefficient

divided from 0 to 150 into five levels. This sub-domain has too many BKNs to list. In Part

A of Fig. 13, the two C2 sub-domains are the secondary research directions, and the total

knowledge coefficient does not exceed 20. However, a number of BKNs used often by the

scholar, such as ‘‘Network_Information_Metrology’’, ‘‘Journal_Evaluation’’, and ‘‘Cita-

tion_Analysis’’ have knowledge coefficients exceeding 4. This suggests that the scholar

used these BKNs in at least four papers. ‘‘Information_ Metrology’’ and ‘‘Network_Im-

pact_Factor’’ are also similar to the BKNs listed above. The C2 sub-domain in Part B

represents the scholar’s core research contents, consisting of five C3 sub-domains. Three of

these, ‘‘C3_Bibliography_Metering’’, ‘‘C3_Bibliometrics’’, and ‘‘C3_Informatics’’, repre-

sent the scholar’s major focus. The first one can be divided further to yield a C5 level. The

BKNs related to this scholar mostly derive from ‘‘C2_Informatics’’, which can be assumed

Fig. 13 Details of the three largest sub-domains in JP Qiu’s KS
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to represent the scholar’s research focus. Although numerous BKNs appear in the KS, few

are frequently used by the scholar. In fact, only six BKNs knowledge coefficients exceed 4:

‘‘Informatics’’, ‘‘Bibliometrics’’, ‘‘Social_Network_Analysis’’, ‘‘Bibliography_Metering’’,

‘‘Content_Analysis_Method’’, and ‘‘Link_Analysis’’. ‘‘C5_Knowledge_Exchange’’ is the

scholar’s highest C5 sub-domain in terms of knowledge coefficients, containing 25 BKNs;

however, only three BKNs have knowledge coefficients larger than 3, ‘‘Multidimen-

sional_Scaling_Analysis’’, ‘‘Author_Co-citation_Analysis’’, and ‘‘Knowledge_Exchange’’.

Some domains have high knowledge coefficients due to the large number of BKNs, while

other domains have medium knowledge coefficients but contain a small number of BKNs

frequently used by the scholar. Looking at the high-frequency BKNs from the different

categories listed above, it is clear that ‘‘metrology’’, ‘‘scientific evaluation’’, and ‘‘citation

analysis’’ are this scholar’s absolute core research subjects. These contents are classified

into different CKNs for two main reasons. One is that the Chinese keywords are irregular

and fully processed by machine; for example, ‘‘Bibliography_Metering’’ and ‘‘Biblio-

metrics’’ should actually be merged. The other reason is that some errors occurred in the

unsupervised machine clustering. Further discussion should also address using related

scholars as descriptive features of keyword objects.

‘‘JP Qiu’’ is the scholar with the highest knowledge coefficient in CLIS. He not only has

a wide knowledge scope reaching almost all the domains in CLIS, but also has a strong

study depth in the domain of metrology. In the most recent 10 years, he has primarily

focused on knowledge application and knowledge accumulation in this domain. These are

the characteristics of this scholar’s individual KS.

Results of mesoscopic analysis: core-scholars of CLIS

This section analyzes the core scholars in sub-domains C1 and C2 of CLIS. For C1, n is set

to 5, and for C2, n is set to 3. However, it is important to note that this study focuses on the

general results and typical modes of data analysis based on the CLIS; therefore, the value

of n is only an example. It can be set to other values based on the analyst’s actual priorities.

There are a total of ten C1 sub-domains in CLIS_KS. Furthermore, 174 relationships

involving 159 core scholars meet the condition that the association coefficients between

scholars and C1 sub-domains rank in the top 5 % in every C1 sub-domain. The specific

distribution of core scholars in C1 sub-domains is shown in Fig. 14. In Fig. 14, red circles

indicate the ten C1 sub-domains; their names, all beginning with C1, are written beside the

circles. The size of each circle represents the sum of the association coefficients between

the core scholars and the C1 sub-domain. The ratio of this sum to the total association

coefficients of that C1 sub-domain is in the name label. Blue squares indicate scholars, and

they are labeled with each scholar’s name. The links between blue squares and red circles

represent associations in which the scholar is a core scholar of the corresponding sub-

domain. The size of the square represents the strength of the association between the

scholar and the sub-domain; if a scholar associates with multiple sub-domains, the size of

his square represents the sum of all the associations.

Figure 14 shows that in the ten C1 sub-domains, the overall core scholar knowledge

references are highest in the library-related sub-domains, such as ‘‘C1_Library’’,

‘‘C1_University_Library’’, ‘‘C1_Digital_Library’’, and ‘‘C1_Public_Library’’. This result

indicates that many more studies are carried out in these sub-domains. To some extent, this

suggests that these sub-domains are the main research objects in CLIS, and they all contain

a large number of discipline KNs. As for the four sub-domains listed above, in addition to

‘‘C1_Public_Library’’, the associations of other sub-domains account for about 30 % of the
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total associations; in other words, ‘‘C1_Knowledge_Management’’, ‘‘C1_Communica-

tion’’, ‘‘C1_Competitive_Intelligence’’, and ‘‘C1_Search_Engine’’ are all similar in that the

sum of the core scholars’ studies in a sub-domain account for about 30 % in the sub-

domain. This reveals a major feature of CLIS, in that generally speaking, about 5 % of

scholars account for about 30 % of the work in their research field. However, the ratio is

close to 40 % for ‘‘C1_Public_Library’’ and ‘‘C1_Informatics’’, while the ratio for

‘‘C1_Philology’’ reaches 43 %. The research tasks in these three sub-domains are much

more concentrated, such that 5 % scholars perform about 40 % of the research work. These

sub-domains all seem to represent traditional research directions for CLIS, and the liter-

ature is relatively mature. Long-term research results in a certain number of core char-

acters, and it is hard to achieve research innovation in these directions.

On the whole, the studies in ‘‘C1_Communication’’, ‘‘C1_Search_Engine’’, ‘‘C1_

Philology’’, and ‘‘C1_Knowledge_Management’’ are relatively independent, and their core

scholars have very little crossover with other categories. These sub-domains are either tra-

ditional research directions that are currently developing slowly, such as ‘‘C1_Philology’’, or

emerging fields in their discipline that are the subjects of a great deal of knowledge and

technology outside CLIS. Research in emerging fields is special, such that little crossover

occurs with other fields in CLIS. Examples of such crossovers include ‘‘C1_Communica-

tion’’, ‘‘C1_Search_Engine’’, and ‘‘C1_Knowledge_Management’’, which are the products

of content crossing between CLIS and journalism, computer science and management sci-

ence. A great deal of crossover exists among the core scholars from the four library-related

and two intelligence-related (‘‘C1_Informatics’’ and ‘‘C1_Competitive_Intelligence’’) fields,

suggesting that these sub-domains are not completely separated. They may have some

common research, and they may represent traditional research fields with a great deal of

Fig. 14 Core scholars (top 5 %) in the C1 sub-domains in CLIS
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knowledge exchange. This finding also confirms the discipline characteristics of CLIS that

‘‘library science and intelligence science are always one family’’.

From a scholar’s point of view, the size of a square reflects the total quantity of the

scholar’s research work. Figure 14 shows that the scholars ‘‘JP Qiu’’, ‘‘ZJ Wang’’, ‘‘SW

Wang’’, ‘‘HJ Yuan’’, ‘‘YF Jiang’’, ‘‘TN Wu’’, ‘‘F Chen’’, ‘‘Y Zhou’’, and ‘‘Y Xiao’’ have

the most discipline KNs and the greatest research breadth and depth in CLIS. These

scholars represent the main sources of discipline innovation. Some of these scholars cross

several sub-domains, indicating that they have a wide range of knowledge and can become

a core figure in multiple sub-domains. One example of this phenomenon is ‘‘ZJ Wang’’,

whose knowledge covers the four sub-domains of ‘‘C1_University_Library’’, ‘‘C1_Digi-

tal_Library’’, ‘‘C1_Informatics’’, and ‘‘C1_Competitive_Intelligence’’. ‘‘HJ Yuan’’, ‘‘F

Chen’’, ‘‘Y Xiao’’, ‘‘GX Li’’, ‘‘JY Ye’’, ‘‘XC Luo’’, ‘‘XM Xia’’, ‘‘P Ke’’, ‘‘YC Jiang’’, ‘‘J

Li’’, and ‘‘F Wang’’ are other examples. The extent of this crossover also indicates the

presence of many fields in related sub-domains among which knowledge can be integrated

and exchanged, conducive to achieving subject knowledge innovation. In contrast, other

scholars focus on one sub-domain and achieve astonishing depth of research, such as ‘‘JP

Qiu’’ in ‘‘C1_Informatics’’, ‘‘SW Wang’’ and ‘‘YF Jiang’’ in ‘‘C1_Public_Library’’, ‘‘TN

Wu’’ in ‘‘C1_Philology’’, and ‘‘Y Zhou’’ in ‘‘C1_Library.’’

Similarly, CLIS has 50 C2 sub-domains. The top 3 % of scholars associated with every

C2 sub-domain are taken as core scholars; this produces 208 associations between scholars

and sub-domains, encompassing 172 scholars. The results are shown in Fig. 15. In Fig. 15,

C2 sub-domains from the same C1 sub-domain are represented with circles of the same

color, separated with dashed lines and named with abbreviations using the first letters of

the words in full names as the new name. Figure 15 looks incredibly complicated, because

it contains too many sub-domains and scholars. With the exception of the absolutely

independent ‘‘C1_Communication’’ (C1_C) shown in green nodes on the bottom-right

corner, the C1 sub-domains are associated with each other, which is a different result from

that indicated in Fig. 14. A few overlaps exist between core scholars in the C2 sub-

domains of ‘‘C1_Search_Engine’’ (C1_SE), ‘‘C1_Philology’’ (C1_P), and ‘‘C1_Knowl-

edge_Management’’ (C1_KM). This suggests that of all CLIS C1 sub-domains, ‘‘C1_C’’ is

the most marginalized sub-domain, whose main researchers may not be core scholars in

CLIS. ‘‘C1_C’’ is followed in this regard by ‘‘C1_P’’ and ‘‘C1_SE’’. ‘‘C1_P’’ is a tradi-

tional CLIS field, and its sub-domain ‘‘C2_Bibliography’’ has some associations with

‘‘C2_Library_Science’’ in ‘‘C1_Digital_Library’’ (C1_DL) and ‘‘C2_Resource_Sharing’’

in ‘‘C1_KM’’, suggesting that prominent ‘‘C1_P’’ researchers may transfer in the latter two

directions. ‘‘C1_SE’’ is related to the study of information technology, and it is the product

of crossover between CLIS and computer science; its sub-domain ‘‘C2_Personaliza-

tion_service’’ has some associations with the studies of knowledge management and digital

libraries.

Most scholars do not cross between C2 sub-domains, because only the top 3 % of

scholars in a C2 sub-domain are defined as core scholars. In other words, this analysis

highlights only the most critical researchers in each C2 sub-domain, resulting in reduced

probability of domain-crossing. Additionally, most scholars’ research efforts are so limited

that the majority of them concentrate their studies on only one field within a decade,

because research concentration is the basic law of general scientific research. Of course,

some C1 sub-domains feature a great deal of crossover in their C2 sub-domains, including

‘‘C1_Informatics’’ (C1_I) and especially ‘‘C1_Public_Library’’ (C1_PL), in which asso-

ciations exist among all five C2 sub-domains. This feature suggests that these two sub-

domains are smaller in scope, and the differences between them are not obvious. The
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content of these two sub-domains overlaps significantly, such as ‘‘C2_Infomatics’’,

‘‘C2_Knowledge_Mapping’’, and ‘‘C2_Citation_Analysis’’. The latter two examples can

almost be merged into one C2 sub-domain.

Core scholars account for 20–40 % of the studies in these C2 sub-domains, similar to

the results at the C1 level. However, some special sub-domains are exceptions to this rule,

such as ‘‘C2_Four_Books_Comprehensive_Table_of_Contents_Abstract’’ in ‘‘C1_P’’. This

is a C2 sub-domain defined by specific Chinese characteristics. The scope of research is

very narrow, and only one scholar was selected. This suggests that researchers in this sub-

domain are very scarce, and the distribution of their studies is relatively uniform.

‘‘C2_Library_History’’ in ‘‘C1_P’’ and ‘‘C2_Bibliography_Retrieval’’ in ‘‘C1_Univer-

sity_Library’’ (C1_UL) are just the opposite, and the research coverage of their core

scholars is close to or even above 50 %. The studies in these C2 sub-domains are relatively

concentrated, such that some outstanding core figures appear and there are few related

scholars.

Results of macroscopic analysis: relationships among scholars

Following the methods described above and using CKNs on level C1 as the basis for

associations, all of the correlation coefficients between each pair of scholars can be cal-

culated. M is set to 15, such that the 15 scholars with the highest correlation coefficients

will be identified as the associated scholars for every scholar. Of course, M also can be set

to other values, according to the analyst’s actual demand. In this example, 11,553 asso-

ciations on level C1 were built among 575 scholars, in which the maximum correlation is 1

and the minimum is 0.052954. The number of C1 sub-domains was small, yielding a small

value for N in formula (11) and generating many identical values in terms of correlation

coefficients. No fewer than 15 associated objects were identified for every scholar, with

one having 73 associated objects with the same coefficient. Calculating and mining

Fig. 15 Core scholars (top 3 %) of the C2 sub-domains in CLIS
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associated scholars on level C1 is a useful exercise for scholars who want to seek content-

related peers for the purposes of academic discussion or research collaboration within the

range of a C1 sub-domain.

Associated scholars on level C1 were identified for the two authors of this study, ‘‘XN

Su’’ and ‘‘H Wang’’, with the results shown in Fig. 16. Then, the ‘‘School of Information

Management of Nanjing University’’ was taken as an example to depict associations

among 17 scholars selected in this study. These results are shown in Fig. 17, to aid in

further analysis of the association status of their studies on level C1 level in CLIS.

In Fig. 16, the circles at the center are the central scholars (X), and the squares dis-

tributed around them are the associated scholars (Y). The sizes of the shapes represent the

total knowledge coefficient of a scholar in his level C1 research focus, and the thicknesses

of the lines linking scholars represent the strength of associations between them. Addi-

tionally, the associated scholars are coded with three colors. Associated scholars shared by

the two central scholars are colored blue, scholars associated only with ‘‘XN Su’’ are

colored pink, and those associated only with ‘‘H Wang’’ are colored green. The two central

scholars have a great deal of common ground, in that they share 13 associated scholars,

excluding themselves. ‘‘XN Su’’ is also associated with ‘‘ZZ Wang’’ and ‘‘TX Wen’’, while

‘‘H Wang’’ is associated with ‘‘YC Jiang’’ and ‘‘Y Ye’’. However, the unshared associated

scholars have little effect on the central scholars, judging from the thickness of the lines

connecting them. In other words, all of the most important associated scholars are shared,

and the two central scholars are also associated with each other. These results demonstrate

that the two central scholars have a great deal of commonality in their studies, such that

they can cooperate closely and explore together on level C1 topics.

Looking at the unshared associated scholars, the knowledge coefficients of the two

scholars associated only with ‘‘XN Su’’ are far larger than those of the two scholars

associated with ‘‘H Wang’’. The former’s associated nodes are also larger than the latter’s,

indicating that the current research depth or intensity of ‘‘XN Su’’ is much larger than that

Fig. 16 Associated scholars for XN Su and H Wang in C1 sub-domains of CLIS_KS
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of ‘‘H Wang’’. This means that ‘‘XN Su’’ is more strongly associated with scholars who

have larger research efforts. In other words, scholars associated with ‘‘XN Su’’ have more

specialized and deeper research than those associated with ‘‘H Wang’’. In terms of asso-

ciation strength, the method used in this study to calculate association strength is global in

nature. Therefore, the strengths of different scholars are comparable. On the whole, the

association coefficients between ‘‘XN Su’’ and the shared associated scholars are larger

than the ones between them and ‘‘H Wang’’. In particular, ‘‘JP Qiu’’, ‘‘RY Zhao’’, ‘‘Y

Zhang’’, and ‘‘CL Jiang’’ all have very close contact with the ‘‘XN Su’’ in terms of content,

and they are his most important associated scholars; in contrast, the influence of these

scholars on ‘‘H Wang’’ is not as great. This finding suggests that these scholars have more

common studies with the former; furthermore, if these common studies are all co-authored

by both ‘‘XN Su’’ and ‘‘H Wang’’, the former’s research efforts were much larger than the

latter’s. The other scholars with the greatest associations with ‘‘H Wang’’ are ‘‘JL Yang’’,

‘‘QJ Zong’’, ‘‘SH Deng’’, ‘‘SL Yang’’, and ‘‘Y Xiao’’. These results show that scholars with

more significant research efforts are more easily influenced by a scholar with a similar

research level, while associated scholars with low research levels have little influence on

them.

In Fig. 17, the round-cornered rectangular boxes represent scholars, and their sizes express

the scholar’s research efforts or research level in C1 sub-domains, as expressed by knowledge

coefficients. The links show associations between scholars, with the arrows pointing to the

associated scholar and the sizes representing the degree of dependence or association. The 17

scholars from the School of Information Management of Nanjing University have few

associations with one another, indicating that their studies are quite dispersed on level C1.

This school has certain representative figures in distinct C1 sub-domains, and their research

has a certain systematicness. ‘‘JH Wu’’, ‘‘Y Xu’’, and ‘‘G Li’’ form three islands, indicating

that their studies have some independence and that they are the representative figures for

‘‘C1_Library’’, ‘‘C1_Philology’’, and ‘‘C1_Knowledge_Management’’, respectively. In

Fig. 17 Social network diagram of 17 scholars from the School of Information Management of Nanjing
University in C1 sub-domain of CLIS_KS
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particular, ‘‘JH Wu’’ is the representative figure for ‘‘Archival Science’’, but this subject has

such a small research scale that it has not been automatically clustered into one class in CLIS;

instead, it is included in ‘‘C1_Library’’. These three research directions are so minor in this

school that they deserve more attention for enhancing comprehensiveness of the school’s

research.

On the left side of Fig. 17, ‘‘QH Zhu’’, ‘‘YX Zhao’’, and ‘‘GC Shen’’ form a group

characterized by unidirectional dependence; in other words, ‘‘QH Zhu’’ and ‘‘YX Zhao’’

are associated scholars for ‘‘GC Shen’’, who is a representative figure in ‘‘C1_Competi-

tive_Intelligence’’. The core research fields of the other two scholars have been included in

this domain, allowing them to form a small group in competitive intelligence research. At

the bottom of Fig. 17, ‘‘Y Cheng’’, ‘‘Y Chen’’, and ‘‘JJ Sun’’ form a dependent group that

is also a unidirectional dependent association. ‘‘Y Cheng’’ represents the core of this group,

whose representative BKN are all included in ‘‘C1_University_Library’’. The main sub-

domains of the other two are also ‘‘C1_University_Library’’, creating the dependence on

‘‘Y Cheng’’. However, this group is not entirely independent; in addition to this sub-

domain, ‘‘JJ Sun’’ has an important connection to the sub-domain ‘‘C1_Informatics’’,

giving him another dependence on ‘‘JY Ye’’. At the top of Fig. 17, ‘‘XF Zhu’’, ‘‘JM

Zheng’’, and ‘‘WN Hua’’ form a small group whose research field is ‘‘C1_Digital_Li-

brary’’. It should be noted that ‘‘XF Zhu’’ and ‘‘JM Zheng’’ have other sub-domains, but

the total number of their studies is small, such that they have not become the dependent

objects of other scholars and no scholar has become their dependent objects.

The largest research group in this school appears in the middle of Fig. 17. This group is

made up of five scholars with many complicated dependent associations among them-

selves. The core field of this group is ‘‘C1_Informatics’’. The calculation method used

means that the larger and the more concentrated the total studies of a scholar are, the easier

for the scholar to become the dependent object of other scholars. Therefore, the interde-

pendences of this group suggests that this school concentrates significant research efforts in

‘‘C1_Informatics’’, and there are also a number of scholars involved in ‘‘C1_Digital_Li-

brary’’. Therefore, this group takes ‘‘C1_Informatics’’ and ‘‘C1_Digital_Library’’ as core

research fields. Finally, the School of Information Management of Nanjing University has

other sub-domains with some representative figures, in addition to the small contributions

of ‘‘C1_Search_Engine’’ and ‘‘C1_Public Library’’. Especially in regards to ‘‘C1_Infor-

matics’’, the school has attained a certain scale of study, with a plurality of scholars

demonstrating research strengths.

Conclusions

Using keywords from CSSCI (2003–2012) papers and co-occurrence associations between

keywords and scholars, this study completely constructed a narrow-sense CLIS_KS with

keywords as BKN. Then, this study applied cohesion and coupling from part of CKN to

verify the rationality of CLIS_KS. Subsequently, this study deeply analyzed and discussed

the KS of renowned scholars, the related core-scholars of CKNs, and the associations

among the scholars in CLIS from the microscopic, mesoscopic and macroscopic levels.

This study provides a reference for the construction and applications of DKS based on

academic resources, and it plays an enlightening and driving role in summarizing and

combing discipline knowledge from CLIS. Moreover, applying these modes and
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conclusions to the analysis of other academic objects could promote discipline construction

and development.

This study makes novel contributions through the automatic construction and subse-

quent application of a complete DKS. This kind of multi-level knowledge structure has not

been fully presented in past studies; instead, co-citation analysis or co-word analysis have

formed the main basis for judging similarity among academic objects such as words,

literature, scholars, institutions, and disciplines. Author co-citation analysis provides a

basis for establishing similarity between authors, while co-word analysis provides a ref-

erence for similarity in the word use of academic objects. In essence, this study is a variant

of co-word analysis. However, in the past, methods of co-citation analysis or co-word

analysis have mostly been employed in detecting and analyzing hotspots related to the

most famous scholars or the most commonly used terms in a certain discipline. These

hotspots only represent the partial knowledge structure of a discipline, and they are

completely unable to cover the entire discipline or present a multi-level structure.

Some points in this study require further refinement and improvement in future studies,

including eliminating the uncertainty of clustering, naming the CKNs and detecting the

scholars’ KS trend in microscopic analysis, determining the core-scholars in mesoscopic

analysis, and judging the associations between scholars on distinct-granularity levels in

macroscopic analysis.
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