
Agent-based simulation for science, technology,
and innovation policy

Petra Ahrweiler1

Received: 17 March 2016 / Published online: 20 August 2016
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Abstract Policymaking implies planning, and planning requires prediction—or at least

some knowledge about the future. This contribution starts from the challenges of com-

plexity, uncertainty, and agency, which refute the prediction of social systems, especially

where new knowledge (scientific discoveries, emergent technologies, and disruptive

innovations) is involved as a radical game-changer. It is important to be aware of the

fundamental critiques, approaches, and fields such as Technology Assessment, the For-

rester World Models, Economic Growth Theory, or the Linear Model of Innovation have

received in the past decades. It is likewise important to appreciate the limitations and

consequences these diagnoses pose on science, technology and innovation policy (STI

policy). However, agent-based modeling and simulation now provide new options to

address the challenges of planning and prediction in social systems. This paper will discuss

these options for STI policy with a particular emphasis on the contribution of the social

sciences both in offering theoretical grounding and in providing empirical data. Fields such

as Science and Technology Studies, Innovation Economics, Sociology of Knowledge/

Science/Technology etc. inform agent-based simulation models in a way that realistic

representations of STI policy worlds can be brought to the computer. These computational

STI worlds allow scenario analysis, experimentation, policy modeling and testing prior to

any policy implementations in the real world. This contribution will illustrate this for the

area of STI policy using examples from the SKIN model. Agent-based simulation can help

us to shed light into the darkness of the future—not in predicting it, but in coping with the

challenges of complexity, in understanding the dynamics of the system under investigation,

and in finding potential access points for planning of its future offering ‘‘weak prediction’’.
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Introduction

Policymakers have identified science, technology and innovation (STI) as the most

important policy targets for the future of our societies (OECD 2009a, b; European Com-

mission 2002, 2008). Related STI Policy frameworks, such as the funding programme of

the European Commission, are of ever-increasing importance: ‘‘Horizon 2020 is the big-

gest EU Research and Innovation programme ever with nearly €80 billion of funding

available over 7 years (2014 to 2020)—in addition to the private investment that this

money will attract. It promises more breakthroughs, discoveries and world-firsts by taking

great ideas from the lab to the market. (…) Seen as a means to drive economic growth and

create jobs, Horizon 2020 has the political backing of Europe’s leaders and the Members of

the European Parliament. They agreed that research is an investment in our future and so

put it at the heart of the EU’s blueprint for smart, sustainable and inclusive growth and

jobs. By coupling research and innovation, Horizon 2020 is helping to achieve this with its

emphasis on excellent science, industrial leadership and tackling societal challenges. The

goal is to ensure Europe produces world-class science, removes barriers to innovation’’ (29

DEC 2015; https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020).

This contribution starts from the challenges of complexity, uncertainty, and agency,

which refute the prediction of social systems, especially where new knowledge (scientific

discoveries, emergent technologies, and disruptive innovations) is involved as a radical

game-changer. Next, this contribution will introduce requirements for STI Policy agendas

stemming from current network modes of knowledge production, which decisively shape

the need for scientific policy advice in this field. Then it will present how experimental

methods of agent-based simulation can address the identified requirements for policy

advice. This will be done with reference to some simulation-based policy advice projects in

the STI field using the agent-based simulation platform SKIN. The article finishes with a

discussion of validation and quality assessment issues for social simulation models, and of

the applicability and limitations of computational experiments in the social sciences.

Science, technology and innovation for society

The role of knowledge–of STI for modern economies–is confirmed by income distributions

and the share of knowledge-intensive industries in different world regions. The correlation

is significant—high-tech regions match with high-income regions (cf. Krueger et al. 2004).

‘‘R&D expenditures and intensity have been found to have a significant effect on per

capita GDP growth.’’ (OECD 2009b: 5) The extensive evidence for this correlation has

long been monitored and documented by international and national institutions in much

detail (e.g. OECD 2009a, b; European Commission 2002, 2008). However, these analyses

provide evidence using correlations from econometric data. They do not tell us much about

causal chains and mechanisms, about the traceable line from investment to result.

Empirical evidence proving a direct and immediate profitability of STI investment is
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scarce. There are even studies suggesting that R&D intensity is negatively associated with

innovation and economic growth (Jordan and O’Leary 2007).1

Especially in a time of diminished public resources and difficult capital markets, this is

not acceptable. The strong need for justifying public and private investments produces a

tendency in STI Policy, business management, and public discourse to expect that the

current investments in R&D, higher education institutions, science-industry networks etc.

will immediately produce a flow of products and processes with high commercial returns.

The requirement is to see value for money, and that is money for money. If there is a

considerable investment as input, there must be a considerable, beneficial, and short-term

output, which can directly be traced to this input.

This expectation still feeds from one of the first conceptual policy frameworks, the so-

called linear model of innovation, which was fundamental to post-war innovation policy. It

assumed that innovation—like through an input–output pipe—could directly be triggered

by investing in basic scientific research, which would immediately be followed by applied

research and technology development, and would end with production and diffusion

bringing products and services to the market (cf. Bush 1945). However, too often STI

policymakers who had put large amounts of money into the R&D end of this pipe and sat at

the output end waiting for the benefits had been disappointed. Due to this situation of

‘‘market failure’’, the linear model and theoretical frameworks favoring it were heavily

criticized, e.g. in discussing the principal-agent theory of policymaking (van der Meulen

1998; Kassim 2003), or in promoting the garbage can-model of policymaking (Mucciaroni

1992). Although the linear model is still ghost-riding through practitioner needs and public

discussions, STI policymakers have long since favored the so-called ‘‘neo-liberal model’’,

which better includes issues of open innovation (Chesbrough 2003), innovation networks

etc.

The linear model of innovation, that assumes that research leads directly to inno-

vation, has proved to be insufficient to explain innovation performance and to design

appropriate innovation policy responses. (European Parliament 2006: 18).

On the practitioner side and to the critical public mind, the disappointments and

legitimatory problems arising from missing outputs, however, were considerable and

showed the limits of steering, control, and policy functions. If not a principle apprehension

against the importance of knowledge and innovation (Jordan and O’Leary 2007), the

responsible innovation managers mention a frustration with the too messy and complicated

features of the innovation process, which simply ‘does not seem to compute’.

Knowledge has always been a challenge to economic growth theory (cf. Hanusch and

Pyka 2010). First it figured as a residual variable to work and capital (Solow 1956, 1957),

then ‘‘knowledge and innovation’’ advanced as a new productivity factor, e.g. in the New

Growth Theory of Paul Romer, which was used by the OECD in their famous 1996 paper

on the knowledge-based economy (OECD 1996). In New Growth Theory (e.g. Romer

1990; Grossman and Helpman 1991), the continuously increasing factor of human capital,

i.e. the sum of all technological capabilities of human beings in the production process,

secured the usage of capital with constant marginal productivity—leading to limitless and

continuous growth. This framework would have offered the best fit to the expectations

1 This study states that the innovation output of Irish business may be negatively affected by R&D links to
universities, and that future national prosperity may be undermined by continued investment in university
research and university-industry collaboration. The resolution of the paper is that attempts to build local
linkages and clusters are a wasted effort.
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mentioned: we invest in technology, research, and learning, and we will get direct and

ever-increasing economic returns. However, empirical economic research quickly falsified

the general applicability of framing the relation between technological innovation and

economic growth like this.

The world model of the Club of Rome (Meadows et al. 1972) presented five variables

allowed to grow exponentially (population, industrialization, pollution, food production,

and resources depletion) while the ability of technology to increase resource ability was

supposed to grow linear, discrete, and incremental. Although some people have said the

opposite in the meantime (cf. Turner 2008; Nørgård et al. 2010), critics generally agreed

that the model had been proven to be wrong historically, did not take in enough variables

and feedbacks, relied on simplistic dynamics, was based on limited data, and generally

failed in prediction (cf. Sandbach 1978; Hayes 2012). One of the strongest critics was

Nobel Prize winner Robert Solow, who argued that the role of new knowledge and

technology was seriously under-estimated (Newsweek, March 13, 1972, p. 103).

In empirical reality, growth processes are never continuous. They are specific to

technologies and sectors showing multiple layers of small cycles, they stagnate, they slow

down, they are characterized by time-delays, they break up, they go on—sometimes

incrementally, sometimes in radical jumps. Neo-Schumpeterian approaches in economics

concluded: if we are interested in this fine-granulation of growth processes, we have to

look deep into the real dynamics of innovation, i.e. on the micro-level. This is because

success and failure of empirical innovation processes determine the movements in pro-

ductivity (Nelson and Winter 1982). Accordingly, economic growth can be observed on the

macro-level, but an explanation for growth cannot be found there.

This quick look into the recent history of growth theory already directs us towards

doubting the justification of the expectation of immediate economic returns for R&D

investments. Castells (2000) continued his analogous discussion concerning the economic

profitability issues of the ICT revolution by further elaborating on the reasons why there is

no direct input–output relation:

(a) we have to account for the lag effects—knowledge and new technology need quite

some time to enter the market and to diffuse widely;

(b) we have to account for serious productivity measurement problems, especially

where the service sector is concerned. ‘‘The focus on non-technological innovation

has been most prominent in the services sector, which now accounts for more than

70 % of GDP in OECD countries. Indeed, empirical evidence shows that innovation

in this sector takes different forms than in the manufacturing sector. Services firms

innovate through informal R&D, the purchasing and application of existing

technologies, as well as the introduction of new business models. There is a growing

recognition that innovation encompasses a wide range of intangible activities, in

addition to R&D. Efforts to improve measures of such innovative activity, or show

that R&D needs to be supported by a complementary range of other investments, are

still underway’’ (OECD 2009b: 7). The same holds for qualitative improvements of

technologies as in most cases it is not the amount of output produced that increases

but the technical features improve, thus offering higher quality;

(c) we have to account for sector-specific productivity—aggregated productivity

figures might not tell the true story.

It is important to look at the reasons why empirical growth rates depart from a linear rela-

tionship with R&D investment and what the consequences are for STI Policy and innovation

management. Refuting a simple causal connection between innovation and productivity does
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not imply that there is none at all. We just have to take up the challenge to investigate it for

what it is: a complex empirical phenomenon. The task is to enter the turbulent layers of small

innovation cycles and the innovation dynamics of innovation networks.

Following insights from innovation economics and economic sociology (cf. Ahrweiler

2010), it would indeed be surprising to see immediate and easily measurable output fol-

lowing any improvements in the area of knowledge, research, and learning. Although

growth can be observed on the systems level, growth cannot be explained and controlled on

the systems level. We have to investigate the non-linearities and path-dependencies of

sector-specific productivity located in institutional contexts (cf. Saviotti 2010). There is a

strong influence of geography that matters (cf. Cooke, Heidenreich and Braczyk 2004;

Ebersberger and Becke 2010). Ultimately, growth as a system-level phenomenon is pro-

duced by a complex interaction pattern on the micro level of innovative actors in networks

(cf. Allen et al. 2010). This is why we have to investigate the role of collaborative

arrangements in innovation.

For business innovation management this means difficult decisions: the true uncertainty

(Knight 1921) of knowledge availability, access, and transfer, of technology absorption, of

financial risk, of regulatory barriers, institutional impediments, of market access, and prof-

itability counteracts all predictability (Pyka and Ahrweiler 2008). STI Policy needs to accept

and handle the complex features of innovation (cf. Rossi et al. 2010). This implies resisting the

temptation of false expectations concerning short-term economic rewards for R&D investment.

‘‘Governments (…) need to focus on medium to long-term actions to strengthen innovation. A

broad range of policy reforms will be needed in OECD economies and non-OECD economies

to respond to the changing nature of the innovation process and strengthen innovation per-

formance to foster sustainable growth and address key global challenges.’’ (OECD 2009a: 12).

It is understandable that the linear model still influences the expectation structures of

STI policymakers, business managers, and the public. Simple messages about causes and

effects always go down well where there is a need for control. However, in this case, it has

been made very clear over the past decades that ‘‘they do not compute’’ (Buchanan: ‘‘This

Economy Does Not Compute’’, New York Times, 1 Oct 2008: A29). The task at hand is to

develop a complexity-adapted way to support, on the one hand, STI Policy design and

analysis (cf. Squazzoni and Boero 2010), and, on the other, to understand and analyze the

self-organizing coordination mechanisms, which arise in and between participating inno-

vative actors in R&D networks.

Planning and prediction as a policy challenge

There is a tension in current policymaking between the obvious necessities of planning and

the opacity of its impacts. Planning is the process of contemplating and organizing the set

of activities and measures required to achieve a desired goal. Creating and following a plan

implies scenario analysis, i.e. forecasting the most likely developments and preparing for

challenges and conditions that could potentially arise. Planning has obvious advantages,

and they all center on the possibility of asking ‘‘what if’’-questions for evaluating different

scenarios and using predictive information before implementing decisions about activities

which will affect the future in the empirical world.

Implementing measures realizing planned objectives is usually risky: there is no lin-

earity between the suggested measure and its desired effect. Analytical approaches which

attempt to offer guidance and support have to acknowledge that any forecasts and
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predictions on planning success or failure are difficult if not impossible. The real-world

implementation of planning measures can also turn out to be expensive. If the implemented

measure is a failure, it will not only have occasioned production and roll-out costs, it might

even prove to be harmful and lead to some un-intended, very costly side-effects. Last but

not least, the time and efforts wasted on the failure might have been better used for a more

appropriate set of activities. Furthermore, objectives can change or disappear in the middle

of the plan implementation process, and quick and intelligent response is needed.

Even in the highly-controlled settings of game theory, the future is unpredictable and

cannot be planned accurately. A famous example is the so-called El Farol problem put

forward by mathematician Brian Arthur (Arthur 1994). As the story goes, there are 100

jazz fans in Santa Fe, New Mexico, who like to visit the Thursday jazz concerts of the El

Farol Bar in town, where enjoying yourself becomes impossible when there are more than

60 people in the room. Although attendance numbers of each concert are published in the

weekly newspaper, the jazz lovers use their own prediction rules for estimating visitor

numbers of the next concert (such as ‘‘same as last week’’; ‘‘half as many as last week’’,

etc.), which they update according to their reliability. That means that whenever the

prediction rule forecasts a visitor number above 60, you will stay at home. The problem is

that other people are clever as well, so, if a person has a high forecast, other people might

have a number well above 60, too, and will stay at home accordingly. The result is that a

person could actually go. However, when everyone is using the same logic—‘‘I think that

you think that I think.’’—and are using the same strategy, you will have an unhappy

gathering of everybody.

In other words, we create and change the world we want to predict. There is no

analytical solution to the problem, which would allow us to plan. However, if we simulate

the number of weekly guests as a global property emerging from the individual decisions

of jazz fans, we get something looking like a random process fluctuating around 60.

However, it is not even a random process; in fact there is nothing random in this instance.

The number of weekly guests is a completely deterministic function of the individual

predictions, which are themselves deterministic functions of past guest numbers. There is

nothing random here.

The bad news is that the El Farol problem is a tiny problem. It deals with a limited

number of homogenous individuals featuring a limited number of attributes (loving jazz

music, hating crowds) being able to obtain a limited number of possible states (be in bar, be

at home) and following a limited number of rules (prediction rules) in a stable context. El

Farol is a tiny, closed, completely deterministic world to operate in. Nevertheless, planning

and prediction in any analytical sense is impossible.

Enters ‘‘the real world’’ to deal with: heterogeneous individuals with many attributes

and properties in permanently changing contexts displaying a multitude of behaviors—

interacting, learning, creating, anticipating, changing their mind, adapting, forgetting,

ignoring, experimenting, testing, choosing etc. Above all, those individuals also are

inventing, creating new knowledge, developing new technologies, and innovating—to

solve problems, to give somebody a surprise, to make life better or for whatever reasons

they imagine.

How about planning and prediction here? According to popular definitions, planning

requires some sort of prediction: it requires knowledge about the future. In the El Farol

world, we cannot even plan our next visit to the bar due to severe problems forecasting

guest numbers and preparing for anything happening.

Are we in any better situation because we have scientists, professional planners, policy

makers, future analysts, and suchlike people to provide forecasts for whole societies,
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especially with reference to new technology? And would it be a good idea to abstract from

interacting individuals but go for statistics, aggregate variables, and correlations on the

macro level for modeling?

It is sometimes said that small time horizons and/or relying on associative and narrative

knowledge would offer a bit of leeway to say something about the future. However, how

should that work? Surprises can arise at any time. Why should associative people telling

stories have better access to anything than policy analysts? There is no really convincing

reason why this sort of planning escapism could work.

The general verdict says we cannot predict and plan due to a long list of features such

as:

• complexity,

• emergence,

• surprise,

• self-reference,

• choice,

• long causal chains,

• un-intended effects,

• multi-level feedbacks,

• high contingency/ambiguity,

• randomness,

• deciding in turbulent environments based on uncertainty and incompleteness of

knowledge,

• no central definition and control of objectives, desired futures, and strategies,

• and so on (no claim for completeness).

Each of the features per se—but, of course, the moreso their combination—prevents any

knowledge of the future. The options for planning are nil if we take this in. There is no

certainty of prediction. Analytical approaches have to acknowledge that any forecasts and

predictions on planning success or failure are difficult if not impossible. Planning is futile.

Policy modelling for complex social systems

Complexity science has provided some new mathematical approaches and tools to chal-

lenge our common belief that there is only something to learn about the future when

looking at a deterministic system, which would naturally exclude any real-world social

phenomenon. Only deterministic systems—this belongs to our usual set of convictions—

can be predicted and manipulated.

Complexity science says it is even worse: not even deterministic systems (see El Farol

example above) can be accurately predicted! For complex social phenomena, the situation

scales up. Scholars from complexity science (Bar-Yam 1997, 2004; Braha et al. 2008;

Casti 1995; Flake 1999; Stewart 1989; Waldrop 1992) locate social processes in turbulent

environments with high uncertainty and ambiguity. They assign to social processes

characteristics such as multi-scale dynamics with high contingency and non-linearity,

emergence, all kinds of feedbacks, pattern formation, path dependency, recursive closure,

and self-organization (Frenken 2006; Lane et al. 2009). Scholars such as Brian Arthur (cf.

Arthur 1989, 1998), building on mathematical concepts originating from physics and

engineering science (Gell-Mann 1994; Kauffman 1993, 1995; Prigogine and Stengers

1984; Holland 1995), impressively demonstrated what this means for the predictability of
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social dynamics, namely non-predictability. However, their message is that this is not the

end of the story. All of these features, which might prevent us from ‘‘solving’’ a complex

social equation analytically where we neither know about the relevant variables (nor could

we handle any relevant numbers even if we knew them) nor about the applicable functions

for calculating the future state, do not disallow the simulation of the phenomenon in

question using all the knowledge we have.

In a simulation, we can deal with many variables, many interactions, much feedback,

randomness etc. We can mimic what we see as relevant processes on the computer and

observe what the model is doing. In a simulation, we can actually exploit the features

which have originally prevented us from ‘‘solving’’ the situation analytically, to understand

the situation and its ‘‘production algorithm’’ by seeing it at work.

This is especially the case for simulations where we ‘‘grow’’ the macro parameters by

micro level dynamics. Here we can implement action and interaction of actors (agents) on

the micro level, and we can observe long causal chains, un-intended effects, and multi-

level feedbacks, and see macro parameters emerging from these dynamics. In fact, this

addresses the core issue of most social science theories—the micro–macro problem, which

already asked in its origins how ‘‘social order’’ does emerge from individual behavior (cf.

Weber 1921), or—more modernly put—how macro features arise from micro dynamics

(cf. Giddens 1988).

This is where empirical research enters the scene. The El Farol situation cannot be

solved analytically, but it can be simulated and understood. We can observe what happens

and follow it through—step-by-step and in many different runs—to see the options and

possibilities of what can happen and what cannot.

And what if, for example, we make the El Farol simulation a little more realistic using some

empirical information? What if we look for the empirical distribution of this cognitive capacity

and give it to our 100 jazz fans? This would probably do something to the random fluctuation

around 60, which does not help us in planning at all, but does help us decide whether we visit the

next concert or not. The more we know empirically about the micro dynamics, the more realistic

our computer simulation can be—and the better for our planning purposes.

Would this be the ‘‘carte blanche’’ to announce that prediction and planning is possible

for the social realm? Certainly not, but it might be a wake-up call to look again carefully

and in detail at the long list of reasons why we cannot predict and plan, and to dis-entangle

the set of issues from the general verdict, which says that nothing is possible (planning and

prediction) because anything is possible (in terms of future). We also need to re-assess

where we are simply doing what we have done before, and where we are doing something

different and new. What does it imply to inform our artificial computer worlds populated

by agents with insights from empirical research?

In the past decades, the task set of STI Policy has been changed considerably.

Knowledge has not only been advanced to be the central resource for economic growth,

creating new jobs and markets; research and innovation is expected to address societal

challenges and solve societal problems such as climate change issues, health care, and food

and energy supply. STI Policy is supposed not only to ensure the production and avail-

ability of the precious resource of ‘‘knowledge’’ but also to organize the combination and

interaction of necessary knowledge fields, which are required to address complex ques-

tions, and to organize their use that new knowledge can be translated into action.

Scientific policy advice (cf. Weingart and Lentsch 2009; Wrasai and Swank 2007; Jasanoff

2004; Weaver et al. 2001) directed towards STI Policy is required to provide a systematic

monitoring and impact assessment of STI contexts. These include ex-ante evaluation and

assessments of potential futures, options, developments, and scenarios for these contexts to
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inform political debates and decisions including future resources, which are particularly

unavailable, i.e. new knowledge, the emergence of the new in research and innovation.

Interestingly, it is exactly this area which can serve as a most reliable example of the

difficulty to model the future, because complexity of social reality refutes a ‘‘blue-print for

social engineering on the grand scale’’ (Popper 1972: 267) where the call for simulation

experiments gets louder. Simulation studies are tendered by political actors to evaluate ex-ante

the impacts of STI Policy: ‘‘Policy impact simulation: An important goal of evaluation research

is to make evaluations relevant to policy options for intervention in RTD and innovation.

Evaluations must relate observed parameters and impacts to the characteristics of the inter-

vention. It must be possible to deduce what could and should be changed in the intervention to

improve impacts. Accordingly, much more use should be made of ex-ante network analysis to

simulate the impacts of intervention policy changes’’ (European Commission Workshop

Report ‘‘Using Network Analysis to Assess Systemic Impacts of Research’’, March 2009: 18).

The demand for simulation refers to ‘‘what if’’-questions of policy interventions (ex-

ante evaluation), which can only be answered if development scenarios are realistically

modelled for experimentally estimating policy options for possible ‘‘futures’’. This is about

identifying potentials, chances, and options, but also about avoiding undesirable devel-

opments in terms of an ‘‘early warning system’’. Policy strategies and the related effects

and impacts are subject to experimental testing. Further below, this contribution will show

how simulation studies answer these needs.

Social simulation using agent-based modelling

In social science, empirically-based experiments are hardly possible—they may only take

place in a very limited way if at all. The usual characteristics of experiments are (1)

reproducibility, (2) controlled and thoroughly understood experimental setting, and (3)

controlled and thoroughly understood experimental process. Social science has problems

with all three aspects. They would need to deal with social contexts, i.e. social interactions

between people and groups of people. To reproduce an experiment with identical initial

conditions, the reproduction would need to happen with exactly the same people due to

different socialization and experience backgrounds of individuals. This crowd, however,

would now have the experience and insights from the first run of the experiment, which

would probably change its behavior during the second run of the experiment, and most

definitely has already changed their initial condition.

Social interactions have features which cannot be directly observed, such as expectations,

learning, knowledge flows, choice between alternative options of how to act, deciding under

uncertainty, etc. Furthermore, interaction processes are non-linear: they are characterized by

much feedback (e.g. between micro and macro level), many loops (e.g. in defining and re-defining

action contexts), long causal chains, un-intended effects, and self-reference (see above).

These characteristics of the social world generate an infinite excess of possibilities and

options (not everything is but too many things are possible) in processing interaction

contexts. This makes planning and prediction rather difficult if not impossible. They also

prevent a controlled and thoroughly understood experimental setting, and a controlled and

thoroughly understood experimental process in the social realm. Reproducible experiments

cannot be guaranteed at any time. It is already the fact of empirical ‘‘un-observables,’’ and

at that, the missing understanding of fundamental processes of interaction contexts makes

this impossible.
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Computer simulations share some but not all of the difficulties of empirically-based

social experiments. Models and simulations have considerably improved with regard to

their capacity to represent complex interaction contexts. They can help to understand their

social dynamics and to identify potential access points for intervention on the micro level

of actors. Today, we are able to model complex non-linear dynamics; this includes the

modeling of possible and likely extrapolations in time horizons and experiments with

parameter changes. Simulations representing computational worlds as ‘‘artificial societies’’

(cf. Doran and Gilbert 1994) can now rely on quantitative methods of informing models by

huge datasets coming from e-humanities and BigData technologies for representing

empirical structures in great detail. Furthermore, agent-based simulations are closely

connected to qualitative methods of interpretative sociology. With this support from the

empirical research realm, scenario analysis becomes much more than an event corridor

between ‘‘best case’’ and ‘‘worst case’’—simulation experiments rather aim at under-

standing the micro dynamics on the actor level that lead to observable structure.

Nevertheless, it would be too optimistic to conclude from being confined to a closed

world—the computer—and being constructed from software programs written by pro-

grammers that simulation experiments fulfill all requirements for controlled design of

experimental setting and experimental process as listed above. Among other issues, there

are computational limitations, ‘‘It is impossible to determine whether portions of the code

have ever been executed by black-box testing. Code that has not been executed during

testing is a sleeping bomb in any software package. Certainly, code that has not been

executed has not been tested’’ (Cole 2000: 23f). Each simulation program contains soft-

ware bits that have never been subject to any testing and that therefore cannot be claimed

to be understood or ‘‘under control’’.

Simulations are used in many scientific disciplines and cover a wide area of functions.

Concerning the latter, the computational representation of real-world systems in order to

experiment with parameter variations for predictive purposes about future behavior of the

system is only one of the existing and the common functions of computer simulations (cf.

Gilbert and Troitzsch 2005). Within scientific disciplines, simulation applications show

huge methodological diversity. Just for sociology, Gilbert and Troitzsch list the advantages

and limitations of seven popular simulation techniques with current examples in ‘‘Simu-

lation for the Social Scientist’’ (2005). Among them are the well-known equation-based

system dynamics models, micro simulations, the queuing models coming from engineering

science, cellular automata, and multi-agent systems.

Due to the purpose dealt with here, we will only look at the latter in more detail. This

type of simulation is used to model complex systems of interactive agents (cf. Epstein and

Axtell 1996; Bonabeau 2001; North and Macal 2007; Macal and North 2009). Each agent

of an agent-based model (ABM) is an independent autonomous computer program and has

properties (variables) and behaviors (algorithms, ‘‘rules’’). In multi-agent systems the agent

programs interact with each other and with an environment implemented in the system. An

‘‘agent’’ can be everything with ‘‘agency’’ (having properties as a unit and having

behavior): a human being, collective actors such as organizations, households or states (but

also other objects such as cars as agents in traffic simulation).

Using ABMs, we can relate the dynamic behavior and the structure of a system to the

properties and behaviors of individual agents and their interaction. This type of modelling

is especially appropriate where the mutual responsiveness between micro behaviors of

agents and macro behavior of the system is under investigation. Here, it is possible to trace

system behavior to the combination of individual action points and decisions on the actor

level, and to how changes on the system level affect the behaviors of agents. There are
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ABMs with very simple, homogenous agents, which—each per se—only muster few

properties and simple behavior but can produce complex system behavior in their inter-

action (example: segregation behavior in US-American cities using the Schelling model,

cf. Schelling 1971).

However, there is also a large community using ‘‘intelligent’’ agents in the wake of

Artificial Intelligence approaches and so-called ‘‘expert systems’’. Here, many heteroge-

neous types of agents are represented, which are equipped with a large number of prop-

erties—among them, for example, anticipation and learning—with individual and

changing knowledge bases and a multitude of behavioral options. These heterogeneous

complex agent types interact in dynamic environments. This second approach is the one of

choice whenever the aim is to model human or organizational behavior as realistically and

as detailedly as possible. This especially applies where the objective is to change this

behavior. Only when we understand and computationally represent the properties/behav-

iors of agents and the resulting dynamics, can we identify where changes on the micro

level, i.e. the level of agents, lead to changes on the system level. Although ABMs are used

in many scientific disciplines, we can find ABMs of the second type mostly in social

science due to their capacity to mimic complex human and social behavior. They go with

the label of ‘‘social simulation’’.

To represent empirically observable and analysed behaviors of actors on the micro level

of social phenomena within a simulation, computational agents—their properties and

behaviors—of the simulation have to be informed (calibrated) by empirical data. The more

we know theoretically and empirically about the case to be modelled, the richer and more

detailed the case can be represented on the computer. With such a simulation, we build

‘‘artificial worlds’’ using software, which follows the knowledge we have about these

worlds. This is the place where social simulation has to rely on social theory and empirical

social research.

For example, agent-based simulations with intelligent agents used for representing a

particular social phenomenon as realistically as possible is closely connected to the

hermeneutic approaches and qualitative methods of interpretative sociology. The latter

serves as an ‘‘informant’’ for calibrating agents: it is necessary to understand actors and

their behaviours to model agents. To use simulations as a ‘‘social laboratory’’ means that

computational agents have to have relevant action orientations, knowledge, intentions,

strategies, fears, hopes, etc.; they need to have options for behavior to act and interact,

which their empirical ‘‘pendants’’—the actors—also use. For this, agents in simulations

often have highly complex ‘‘interieurs’’, such as so-called Belief-Desire-Intention (BDI)

structures (cf. Wooldridge 2000; Balke and Gilbert 2014). These are agent architectures,

which show how the conceptual level of action orientation translates into actual beha-

viour. The architectures, drawn from social theory, then need to be calibrated with

empirical details from qualitative research, which works with methods such as case

studies, interviews, document and discourse analysis. Of course, quantitative social

research also plays an important role in calibrating agent models. If, for example, we

want to simulate a bigger social context such as the EU-funded research landscape in

Europe, for a detail-prone representation of the current landscape the model will need

statistical data about number and type of funded organisations, projects, thematic areas

etc. Here, the ‘‘artificial societies’’ (Doran and Gilbert 1994) represented in simulations

of computer worlds can today rely on quantitative methods to use huge amounts of data

from the e-humanities and BigData technologies for a detailed representation of

empirical structures.
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Integral parts of these simulations are also the complex, non-linear interactions between

agents and environment (e.g. EU research policy, availability of funding, etc.); environ-

mental conditions need to be calibrated quantitatively and qualitatively, too. Models from

social simulation calibrated this way can help to understand social dynamics of the

empirical system and identify possible access points for intervention on the micro level of

actors. For this, both structural and procedural aspects of the social phenomenon to-be-

modelled need to be informed empirically. The more empirical knowledge that goes into

the simulation of both aspects, the more similar the ‘‘computer world’’ becomes to our

empirical world of experience. It becomes a ‘‘sociotope’’, an artificial world, which

resembles the empirical one in decisive aspects. The quality of a simulation is partly

decided by its ‘‘recognition value’’ with the stakeholders: if the stakeholders recognise

essential elements of their every-day experience in the simulation, they accept and value

the possibility to learn from and with the simulation and gain additional knowledge for

shaping the empirical system (cf. Ahrweiler and Gilbert 2005).

To fulfil this expectation, the calibrated model needs to be ‘‘similar’’ to the empirical

system at a certain point in time; it needs to produce structures and dynamics that the

empirical system shows or has shown without further intervention in the next time periods

(zero hypothesis). We then can use this reproduction of the empirical system by simulation

as benchmark, as ‘‘baseline scenario’’, to experiment with interventions.

If we can observe a qualitative correspondence between the empirical structures and the

structures produced by the agent-based model (similarity of dynamics, iso-morphy of

structures), we can call our simulation experiments ‘‘history-friendly’’:

‘‘‘History-friendly’ models are formal models which aim to capture—in stylized form—

qualitative theories about mechanisms and factors (…) They present empirical evidence

and suggest powerful explanations. Usually these ‘‘histories’’ (…) are so rich and complex

that only a simulation model can capture (at least in part) the substance, above all when

verbal explanations imply non-linear dynamics’’ (Malerba et al. 1999). Interventions can

then target procedural aspects, e.g. changing agent behaviour, or structural aspects, e.g.

changing of agent numbers in the starting configuration, of the agent system, or envi-

ronmental conditions such as available resources.

The advantages of using techniques from social simulation for innovation research

are confirmed by many agent-based models (cf. Ahrweiler 2010: 233–315). These

models implement, for example, the interaction of knowledge and actors, of outputs and

organizations, of network formation and evolution. They simulate the interdependencies

of existing innovation policies and funding strategies, of future innovation policy sce-

narios and alternative technology paths to improve innovation performance. For

example, to understand and describe the structures and dynamics of knowledge-inten-

sive industries, the [SKIN] model would be required to constantly monitor their net-

working behaviors. For some of the most important features here (the creation and

diffusion of knowledge), such observations are difficult up to impossible. In the face of

this challenge, an agent-based simulation continuously produces dynamic data stemming

from the theoretical framework underlying (mostly from innovation economics, science

and technology studies, and economic sociology) and relying on empirical calibration

data. With this, an ABM offers observation and experimental opportunities, which are

not available in the empirical field. A recent overview and a critical discussion of

existing simulation models concerning innovation is provided in the book by (Watts and

Gilbert 2014).
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Simulation experiments using the SKIN model

The agent-based simulation platform SKIN (acronym for Simulating Knowledge Dynamics

in Innovation Networks) works with heterogeneous, ‘‘intelligent’’,2 and complex agent

types, which act and interact in a computational world resembling as much as possible the

empirical world. There is a close relationship between theory,3 empirical data, and sim-

ulation. Due to this, SKIN claims to be relevant for providing policy advice. SKIN

reproduces the research and innovation worlds of empirical actors on the computer. By

calibrating the model with empirical data sets, it allows realistic and detailed experiments

to answer ‘‘what if’’-questions of STI Policy.

The SKIN model

The SKIN model is concerned with simulating knowledge profiles, science and research

landscapes, and innovation networks on different scales. The ‘‘basic SKIN model’’ has

been presented elsewhere (cf. Pyka et al. 2007; Gilbert et al. 2007; Ahrweiler et al. 2011a).

On its most general level, SKIN is an ABM with knowledge-intensive organizations as

agents, which try to produce new basic or applied knowledge, and/or which try to produce

new products and processes via innovation. Agents are located in permanently changing,

complex social environments where their efforts need to find approval; e.g. in the market if

they target innovation, or in the scientific community if they try to publish their research

results.

SKIN agents are knowledge-intensive, learning organizations. Each agent owns an

individual dynamic knowledge profile. In the model, an agent’s individual knowledge

base—a vector in a multi-dimensional space—is called its ‘‘kene’’ (cf. Gilbert 1997),

which the agent uses as source and object for its research and innovation activities. The

abstract knowledge profile can be ‘‘fed’’, i.e. calibrated or informed, by empirical data.

‘‘Data points’’ are ‘‘units of knowledge’’ (e.g. core competences, capabilities, codified and

tacit knowledge, explicit and implicit knowledge), which are produced, used, and

available.

For example, we can directly work here with publication and patent or other source data

for specific actors and contexts. Using methods from bibliometrics, scientometrics, patent

analysis etc., structural knowledge profiles of organizations can be collected, analyzed, and

evaluated.4 Interpretative social science can furthermore contribute to shedding light on

knowledge profiles by making the context of meaning and the connectivity to actions

accessible and ‘‘understandable’’ via interviews with actors, case studies, and document/

discourse analysis. Using this modeling approach, SKIN represents and simulates the

knowledge profiles of organizations active in research and innovation where, in aggre-

gation and extrapolation, knowledge profiles of countries, regions, municipalities, and

2 Intelligent does not equal ‘‘rational’’. The term means that the agents are equipped with mechanisms to
develop and choose between strategies and options to act according to their displayed capacities observed in
the empirical realm.
3 Examples about how social theories inform SKIN agents: the implementation of theories of Organiza-
tional Learning presented by March/Olsen and Argyris/Schön in Gilbert et al. 2007; or the implementation
of organizational theory approaches presented by W.W. Powell concerning mechanisms of partner choice in
networks (Ahrweiler et al. 2011a, b).
4 EU Cost Action ‘‘KnowEscape: Analyzing the dynamics of information and knowledge landscapes’’
www.knowescape.org shows the scope of these methods for description and analysis stemming from
e-humanities and BigData technologies.
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clusters can be re-constructed and simulated. Simulating knowledge profiles belongs to

every SKIN application. The kene is dynamic: an agent can learn—either alone by

incremental or radical research—or together with other agents by exchanging and

improving knowledge in partnerships and networks.

Within these collaborative arrangements, SKIN agents have a large number of strategies

and mechanisms available; for example, to choose partners, to engage in partnerships, to

initiate knowledge exchange, to generate collaborative knowledge outputs, or to distribute

innovation rewards. These interactions and the resulting social structures can be calibrated

by empirical data as well. Information on the structures and dynamics of the science and

research landscape on the actor and system level is broadly provided for countries, regions,

sectors, and clusters. ‘‘Data points’’ are actors, interactions, and networks in research and

innovation. Social Network Analysis (SNA) is a common tool to analyze this type of

empirical data identifying and visualizing central actors (hubs), clusters, the position and

role of new entries in the research and innovation landscape etc. However, it only

addresses the structural aspects of the science and research landscape. Actors, processes,

and causal chains producing these network structures are in between ‘‘snapshots’’ of two

network states following each other. Information on actors, their expectations, objectives,

competences, strategies, cooperation behavior etc. and about their action contexts, the

processes, cultures, and institutional frameworks they are embedded in must be made

transparent, accessible, and ‘‘understandable’’ again with the help of complementary

qualitative methods such as interviews with actors, case studies, and document or discourse

analysis.

Summarizing, agents in any SKIN application interact on both the knowledge level and

the social level. Both levels are inter-linked in many different ways. SKIN is all about

actors, knowledge, and networks. This general architecture is quite flexible, which is why

the SKIN model has been called a ‘‘platform’’ (cf. Ahrweiler et al. 2014) It features

applications as different as modelling the Vienna biotech cluster (Korber and Paier 2014),

the simulation of Irish university-industry networks (Ahrweiler et al. 2011b), and also the

ex-ante evaluation of EU-funded research projects and the research landscape they produce

(Ahrweiler et al. 2015).

Example: a SKIN simulation study for European STI policy

This last example will be discussed here in more detail. It is about a contractual research

study tendered by the former Directorate General for Information Society and Media (DG

INFSO; now called DG CONNECT) of the European Commission about ex-ante evalua-

tion of potential policy interventions for the new research funding scheme Horizon 2020 in

the area of information and communication technologies (ICT).

For many years, the Evaluation Unit of DG INFSO had a tradition of tendering studies

on impact assessment of EU funding in ICT, mostly using Social Network Analysis as a

methodological tool for evaluation of funded projects and organizations in the Framework

Programmes (FP). They targeted structuring effects of FP ICT networks (RAND Europe

2004–2005), their international reach (CESPRI 2005), the linkages between EU research

and deployment and regional innovation systems (CESPRI 2006), ex-post evaluation of the

IST thematic priority for FP6 (IST-FP6), or ICT Network Impact on Structuring a Com-

petitive ERA (SMART 2009/0034). SNA was supposed to show central actors (hubs) and

clusters, analyze and visualize the position and role of particular actor types (e.g. new

member state actors, SMEs etc.), look at cohesion and density of networks, etc. (cf. for

results of the mentioned studies Breschi and Cusmano 2004; Breschi et al. 2007; Cassi
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et al. 2008). Empirical data for these SNA exercises has been always provided by DG

INFSO.

However, by the end of FP7, a certain dissatisfaction with the used methodology for

evaluation purposes became obvious with DG INFSO. SNA only captured the structural

aspects of the research landscape. Actors, processes, and causes producing these structures

were invisible between frozen snapshots of two network states following each other.

Policymakers became convinced that it would be useful to know about these procedural

aspects to find appropriate options and access points for interventions and changes. Fur-

thermore, SNA only allows the evaluation of the structures produced by certain funding

policies ‘‘ex post’’; ex-ante evaluation is only possible in the very limited ways of sta-

tistical modelling. The future was not appropriately addressed.

The following discussions in DG INFSO led to their request for the policy impact

simulation already quoted at the end of ‘‘Planning and prediction as a policy challenge’’

section (European Commission 2009).

The task of the tender study DG INFSO commissioned accordingly consisted of the

usual network analysis for impact assessment of EU-funded ICT research in the Seventh

Framework Programme (FP7) and also of a simulation based on these data and findings for

ex-ante evaluation of policy interventions for the new Framework Programme called

Horizon 2020.

Agents in INFSO-SKIN are research organizations such as universities and research

institutions, research departments of big firms, and small and medium enterprises. The

model (cf. Fig. 1) simulates the social context in EU-funded research: Calls of the Euro-

pean Commission specify the funding conditions, such as the desired expertise and

capability combination of research consortia, the minimum number of partners in project

Fig. 1 Flowchart of INFSO-SKIN (calibrated with empirical data on 1183 EU-funded research projects,
3783 funded organisations (universities and research institutions (RES agents), research departments of big
firms (large diversified firms LDF agents) and small and medium enterprises (SME agents), and 11244
project participations between 2007 and 2012) Source: Ahrweiler et al. 2015
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consortia, the duration of projects, the deadlines for proposal submission, the thematic

areas, etc. The research organizations in the European Research Area build proposal

consortia following these requirements and submit proposals, which will be evaluated.

Successful consortia start with their project work and produce research results for the

scientific community and deliverables for the Commission.

The procedural aspects to inform agent properties and behaviors for this specific social

context had already been subject to investigation and covered by quantitative and quali-

tative studies on actors in EU-funded science and research within a number of previous

projects conducted by the study team, among them the EU project ‘‘Network Models,

Governance, and R&D Collaboration Networks’’ (NEMO). This was used to model the

agents and their social interaction context as realistically as possible (cf. Scholz et al.

2010).

Using a dataset provided by DG INFSO on details of funded projects answering the

Calls 1–6 of the European Commission, the simulation model INFSO-SKIN was supposed

to re-produce and evaluate the research landscape following funding policies of the

Seventh Framework Programme (FP7).

Calibration aimed at computationally and artificially reproducing the structures of the

empirically observed research networks before starting with any simulations—this just

meant to reproduce the database with the model. The data set was capable of calibrating the

knowledge base, the social configurations, and the contexts of agents at a given point in

time. Due to the comfortable situation of the time series data being available for Calls and

Work Programmes of the EC, it was possible to validate the simulations step-by-step by

comparing the artificially produced simulation data with the empirical data. The following

Figure shows how INFSO-SKIN reproduced the empirical database with simulation data.

The Emp/Sim table demonstrates which output parameters were of special interest to

the clients of the study (the simulation produces many more). For them, it was interesting

how policy changes to-be-tested would affect the number of participants and participations

in research projects (Participants), the number of submitted proposals answering Calls

(Proposals), the number of funded projects (Projects), the knowledge landscape (Knowl-

edge and Capabilities), and the network measures for the whole program as funded

structure of the European Research Area (Network).

This model, extrapolated into the future without any policy changes, was taken as an

empirically grounded benchmark for further experiments to answer the evaluative ques-

tions about potential policy changes by DG INFSO.

For the selected set of ‘‘what if’’-questions, the benchmark question is the so-called

zero-hypothesis: what if there are no changes? This is just an extension of the time horizon:

the Baseline Scenario. Answering the benchmark question is important for two reasons,

both related to the fact that we do not have data about the future: (1) To test the sus-

tainability and stability of network structures by extending time lines, and (2) To use this

scenario as a benchmark for comparing its outputs to results of further experiments—this

time with policy changes.

We tested the following questions or potential policy interventions against this

‘‘baseline scenario’’: (1) What if more/fewer/different knowledge fields received funding

(question concerning prioritization of research funding)?; (2) What if bigger/smaller pro-

ject groups than now were to be funded?; (3) What if more/less money was made available

for particular programs/project types/actors?; (4) What if policy efforts which try to attract

small and medium enterprises to participate in EU-funded research were finally met with

success? Results of simulation experiments show likely scenarios following from these
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interventions as policy options for Horizon 2020 (cf. Ahrweiler et al. 2015) and were

presented to the European Cabinet.

The next sections exemplarily present simulation results of the evaluative questions (1)

and (4), which were produced by parameter variations in the simulation experiments.

The policy background of question (1) had been a ‘‘technology push approach’’ of the

European Commission: ‘‘Current EU funding programmes have put considerable effort in

tackling societal challenges, predominately through a thematic technology push. Bringing

researchers from across Europe together in collaborative networks has been at the heart of

this approach and will continue to be vital in sustaining a European research fabric.

Experience has shown, however, the limitations of this approach in achieving the necessary

flexibility, creativity and cross-disciplinary research needed’’ (European Commission DG

Research and Innovation (Ed.) (2011). Green Paper on a Common Strategic Framework for

EU Research and Innovation Funding. Analysis of public consultation. Luxemburg:

Publications Office of the European Union, p. 8). Stakeholders of DG INFSO asked: what

if there were going to be changes in thematic areas of funding? How would the current

research landscape in ICT of the ERA react to this? What if more/less/other thematic areas

were going to be funded than the eight chosen thematic areas in FP7? (Fig. 2).

The next Figure shows results for one of the many output parameters, namely how

knowledge flows between agents will be affected if more or less thematic areas will be

funded in the future compared to the present state (one of the dimensions of the output

parameter ‘‘Knowledge’’, cf. Table in Fig. 3 below).

Simulation experiments were surprising and counter-intuitive for the DG INFSO

stakeholders. The expectation had been that prioritization of research funding (fewer

themes, same money) would have resulted in much more drastic changes concerning the

knowledge base and other output parameters. In contrast, the simulation showed a

remarkable resilience of the research landscape and its knowledge base. The conclusion

drawn was that prioritization of research is basically a political discussion and decision if it

stays within a certain realm—a corridor, which could be precisely located in the simulation

(Fig. 3).

Also, simulation results concerning question (4) provided interesting results for the

stakeholders from von DG INFSO: the policy background for this question had been the

long-time attempt of the European Commission to integrate innovative research-intensive

SMEs in EU-funded research: ‘‘Through their flexibility and agility, SMEs play a pivotal

role in developing novel products and services. Outstanding and fast growing SMEs have

the potential to transform the structure of Europe’s economy by growing into tomorrow’s

multinational companies (….) although particular attention has been paid to increasing

SME involvement throughout FP7, SMEs are still finding it challenging to participate’’

(Green Paper on a Common Strategic Framework for EU Research and Innovation

Funding: Analysis of public consultation 2011, p. 10). The Evaluation Unit of DG INFSO

had already issued a few tender studies to find out about the reasons for the ‘‘policy

failure’’ of why EU funding was not as attractive as expected for SMEs, and why the

measures taken had not been as successful as expected. Furthermore, a discussion started

among the stakeholders whether the policy efforts and costly incentive structures to draw

SMEs into EU research would be really worthwhile and pay off in the way expected

anyway (Fig. 4).

Would the effects on the European Research Area indeed be as positive as expected if

there was more SME participation? There were certain doubts—a case for the simulation

with INFSO-SKIN. The related simulation experiments started with considerably more

research-intensive and highly-specialized SMEs in the starting population than could be
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seen in the empirical distribution. The simulation showed that these ‘‘additional’’ SMEs

over-proportionally participated in proposals and, especially, in successful project con-

sortia. Furthermore, they had positive effects on knowledge and network parameters. This

result supported the SME policy advocates in the stakeholder group who represented the

Green Paper position and argued against the critics of these policies within the group.

Summarizing, simulation results have informed stakeholder discussions about likely

future effects of policy changes. Some of these effects were surprising and counter-intu-

itive. New knowledge was generated for the stakeholders. Complex contexts were made

available and accessible via experimentation. Simulations had helped and practiced how to

deal with them. A further gain for stakeholders were the insights into so-called empirical

‘‘un-observables’’, which were made accessible and observable within the simulation.

Supporting the generation of new knowledge and facilitating knowledge flows between

actors (learning, diffusion) are central policy targets of STI Policy related to important

overall objectives (scientific excellence of European research, cohesion in a high-quality

Fig. 2 Empirical dataset for calibrating INFSO-SKIN Source: DG INFSO
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Fig. 3 Validating INFSO-SKIN: Left Emp STREP means empirical data in FP7 (ICT; funding instrument
STREP, which are small targeted project consortia); Sim STREP shows the similarity of simulated data for
this area and this funding instrument. Blue entries mean that there have been no empirical data for this
category; the simulation, however, produces artificial data for the category. Right network visualizations of
the empirical and the simulated FP7 network Source: Final Report 2011; European Commission. (Color
figure online)

Fig. 4 Example result for question (1) above: Y-axis knowledge flows between agents; X-axis time line of
funding instrument; red line = Baseline Scenario, green line = more themes, blue line = fewer themes
Source: Final Report 2011; European Commission. (Color figure online)
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European research landscape, high learning and innovation capacity of European research

organizations etc.). Simulations enabled observation of knowledge gains and knowledge

flows, and showed the success or failure of policy measures targeting at them.

Conclusions and outlook

Experiments can be used to give an indication of the likely effect of a wide variety of

planning measures. Using the above methods, we can deal with most of the complexity

features of the ‘‘verdict’’ list of reasons that refute predictability and planning5 presented in

‘‘Science, technology and innovation for society’’ section above. The foundation why we

can do this rests on two pillars: new (mathematical) tools and (interpretative) social

science.

Social simulations, such as the one presented above, indeed offer a construction envi-

ronment similar to a ‘‘social laboratory’’, where, on the one hand, the stream of data is

produced by the lab, and, on the other, is also analyzed and interpreted by it as well. This

applies to any laboratory approach with its specific relation between theory and data (cf.

Latour und Woolgar 1979; Knorr-Cetina 1984). The big advantage of computer simula-

tions is that, here, the construction machinery is explicit, codified (indeed by ‘‘code’’),

visible, and can be controlled (and that is ‘‘written’’) by the observer (with the limitations

already mentioned). Models and simulations are the second-order constructions of mod-

elers and simulators—however, different from ‘‘analogous model construction’’ laid out as

an algorithm, i.e. codified, explicit, observable, testable, to be manipulated and controlled.

Using computer simulations, stakeholders, for example from STI Policy, can use sce-

nario modeling as a worksite for their own reality constructions. Experiments can point to

likely effects of many different planning details. ‘‘What if’’-questions can be posed (ex-

ante evaluation)—an option otherwise hardly available in the policy worlds of planning

and prediction. Empirical ‘‘un-observables’’, such as knowledge flows and learning, can be

observed in the model: we can watch what they are doing. This is an important advantage:

mostly, simulations have to provide insights especially into issues that empirical obser-

vations do not reveal or do not reveal sufficiently. For example, we cannot directly observe

‘‘learning’’, but we usually look for selected indicators which measure consequences of

learning. This then allows the conclusion that learning must have taken place. In social

simulation, i.e. in the running theory of learning on the computer, these processes can be

observed together with the data produced by them. They become ‘‘observables’’ (for

remaining limitations cf. Knepell and Arangno 1993).

A ‘‘realistic’’ ABM with its artificial data gets into contact with empirical data in at least

four ways: (1) quantitative and qualitative empirical data is used to calibrate the model; (2)

data is processed in simulation experiments for producing particular scenarios (sensitivity

analyses, ex-ante evaluation); (3) simulations produce artificial data, which need to be

analyzed and interpreted, and which need to be validated against empirical data; and (4)

simulation models are evaluated and validated by their users (cf. Ahrweiler and Gilbert

2005, 2015): for the stakeholders to trust the model (and its results), they need to under-

stand the mechanisms represented in the model, feel that they have an input into the design

5 Some features of complex systems will not go away, however. Among these are all ‘‘surprise’’ features
based on external shocks, agency, and creativity (cf. Ahrweiler 2010). They will always refute the absolute
reliability of any predictions. The methods above only allow ‘‘weak prediction’’ in the sense outlined.
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of the agent rules and characteristics, and agree that the baseline simulations of FP7 are

sufficiently close to what they observe actually happens.

Studies using the SKIN platform have demonstrated that validation is easier in cases

where the simulation model looks as similar as possible to the world experienced by STI

policymakers in their daily practices and routines. The simulation must display the same

degree of complexity, the same structures and processes identified as relevant by the

stakeholders, the same objects of concern, and the same areas of intervention. Below a

certain ‘‘similarity threshold’’, the model is discarded as a ‘‘toy model’’, which is not

realistic and is under-determined by empirical data. In the eyes of the stakeholders, the

quality of the model is the better the more of its features can be validated against empirical

data, and that means more than just anecdotal evidence. This is, of course, independent of

the fact that there will be always necessary selection and abstraction processes of model

building, empirical ‘‘un-observables’’ which we will never get any validation data for, and

random and probability features of the model, which will lead to its empirical under-

determination. Interacting with stakeholders from STI Policy, it is important to find the

appropriate trade-off between empirical under-determination and credibility and trust for

the model.

To trust the quality of the simulations means to trust the process that produced its

results. This process is not only the one incorporated in the simulation model itself. It is the

whole interaction between stakeholders, study team, model, and findings (cf. Ahrweiler

and Gilbert 2015), and it is the relevant assessment mechanism for the quality of the model.

This clearly indicates further areas for work: the entire interaction process between STI

policymakers, researchers, data, model, and findings needs to be addressed and investi-

gated systematically in order to understand the dynamics and improve efficiency. It is a co-

design process.

Requirements coming from the stakeholders also point to other large areas, which need

further work in using simulation studies for policy. In the case of INFSO-SKIN, the policy

makers could not watch the running model (a run lasted 48 h), and they did not want to

look at huge amounts of data presented in Excel sheets or at a multitude of tables and

charts. New visualization tools and interactive technologies were needed to present sim-

ulation experiments and their results in an attractive, customized and efficient fashion.

Agent-based simulation can help to shed light into the darkness of the future—not in

predicting it, but in coping with the challenges of complexity, in understanding the

dynamics of the system under investigation, and in finding potential access points for

planning of its future offering ‘‘weak prediction’’. There is a certain restriction in this as

well: it is impossible to predict a certain system state in the future. Statements such as ‘‘this

is what the biotech industry in the US will look like in 10 years from now’’ are simply

unsound. The type of knowledge that is instead produced is confined to statements such as

‘‘this class of future scenarios is more likely to happen than alternative ones given certain

conditions,’’ or ‘‘in this parameter setting, the system is reacting strongly to any inter-

vention on parameter x,’’ etc. It is mandatory to point out the difference to the stakeholders

for letting them understand the limitations and caveats of policy modelling, and prevent

over-reliance on model results.

Recognizing the predictive limitations has to be complemented by a reluctance to

formulate normative statements: policy decisions remain decisions under uncertainty even

if the contexts are more transparent and accessible after simulation. This means that the

responsibility of democratically-legitimized political actors as decisionmakers cannot be

replaced by any ‘‘policy recommendations’’ coming from a scientific project. Final policy

decisions should be made based on expert political opinion and value discussions informed
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by scientific advice. In the case of the simulation study above, future discussions with the

former stakeholders will reveal the extent to which model results impacted the actual

process of finalising Horizon 2020 policies. Stakeholder feedback will help understand

utility and impact, and provide a means to optimize the model, tailor its performance to the

needs of policymakers more closely, and make it a better fit to what is required to support

data-driven decision making.
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Nørgård, J. S., Peet, J., & Ragnarsdóttir, K. V. (2010). The history of the limits to growth. Solutions, 2(1),
59–63.

North, M. J., & Macal, C. M. (2007). Managing business complexity: Discovering strategic solutions with
agent-based modeling and simulation. Oxford, UK: Oxford University Press.

OECD (1996). The knowledge-based economy: General distribution OCDE/GD (96)102. Paris.
OECD (2009a). Policy responses to the economic crisis: Investing in innovation for long-term growth. Paris.
OECD (2009b). Interim report on the OECD Innovation Strategy. Paris.
Popper, K. (1972). The open society and its enemies. In J. Katz, A. M. Capron, & E. SwiftGlass (Eds.),

Experimentation with human beings: The authority of the investigator, subject, professions, and state
in the human experimentation process (pp. 266–268). Russel Sage Foundation: New York, NY.

Prigogine, I., & Stengers, I. (1984). Order out of chaos. New York: Bantam Books.
Pyka, A., & Ahrweiler, P. (2008). Innovation networks. An introduction. International Journal of Foresight

and Innovation Policy, 4(3/4), 1–8.
Pyka, A., Gilbert, N., & Ahrweiler, P. (2007). Simulating knowledge-generation and distribution processes

in innovation collaborations and networks. Cybernetics and Systems, 38(7), 667–693.
Romer, P. (1990). Endogenous technical change. Journal of Political Economy, 98(5), 71–102.
Rossi, F., Russo, M., Sardo, S., & Whitford, J. (2010). Innovation, generative relationships and scaffolding

structures: Implications of a complexity perspective to innovation for public and private interventions.
In P. Ahrweiler (Ed.), Innovation in complex social systems (pp. 150–161). London: Routledge.

Sandbach, F. (1978). The rise and fall of the limits to growth debate. Social Studies of Science, 8(4),
495–520.

Saviotti, P. P. (2010). Complexity, the co-evolution of technologies and institutions and the dynamics of
socio-economic systems. In P. Ahrweiler (Ed.), Innovation in complex social systems (pp. 57–70).
London: Routledge.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1, 143–186.
(An abridged version was published in 1969 as: Models of Segregation. The American Economic
Review, 59(2), 488–493).

414 Scientometrics (2017) 110:391–415

123



Scholz, R., Nokkala, T., Ahrweiler, P., Pyka, A., & Gilbert, N. (2010). The agent-based Nemo model
(SKEIN): Simulating European framework programmes. In P. Ahrweiler (Ed.), Innovation in complex
social systems (pp. 30–314). London: Routledge.

Solow, R. M. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economics, 70,
65–94.

Solow, R. M. (1957). Technical change and the aggregate production function. Review of Economics and
Statistics, 39, 214–231.

Squazzoni, F., & Boero, R. (2010). Complexity-friendly policy modelling. In P. Ahrweiler (Ed.), Innovation
in complex social systems (pp. 288–297). London: Routledge.

Stewart, I. (1989). Does god play dice? The mathematics of chaos. Cambridge, MA: Blackwell.
Turner, G. M. (2008). A comparison of the limits to growth with thirty years of reality. Canberra, Australia:

Commonwealth Scientific and Industrial Research Organisation (CSIRO) Sustainable Ecosystems.
Van der Meulen, B. (1998). Science policies as principal-agent games: Institutionalization and path

dependency in the relation between government and science. Research Policy, 27(4), 397–414.
Waldrop, M. M. (1992). Complexity: The emerging science at the edge of order and chaos. New York:

Simon and Schuster.
Watts, C., & Gilbert, N. (2014). Simulating innovation: Computer-based tools for rethinking innovation.

Cheltenham, UK: Edgar Elgar Publishing.
Weaver, K., Stares, P., & Kokusai Koryu Senta, N. (Eds.). (2001). Guidance for governance: Comparing

alternative sources of public policy advice. Tokyo: Japan Center for International Exchange.
Weber, M. (1921). Soziologische Grundbegriffe. Tübingen, Germany: Wirtschaft und Gesellschaft.
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