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Abstract Research productivity distributions exhibit heavy tails because it is common for

a few researchers to accumulate the majority of the top publications and their corre-

sponding citations. Measurements of this productivity are very sensitive to the field being

analyzed and the distribution used. In particular, distributions such as the lognormal dis-

tribution seem to systematically underestimate the productivity of the top researchers. In

this article, we propose the use of a (log)semi-nonparametric distribution (log-SNP) that

nests the lognormal and captures the heavy tail of the productivity distribution through the

introduction of new parameters linked to high-order moments. The application uses sci-

entific production data on 140,971 researchers who have produced 253,634 publications in

18 fields of knowledge (O’Boyle and Aguinis in Pers Psychol 65(1):79–119, 2012) and

publications in the field of finance of 330 academic institutions (Borokhovich et al. in J

Finance 50(5):1691–1717, 1995), and shows that the log-SNP distribution outperforms the

lognormal and provides more accurate measures for the high quantiles of the productivity

distribution.
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Introduction

In recent years, the evaluation of academic research productivity in different fields of

knowledge has been related to the impact of the results of scientific production (Abramo

et al. 2008; Sabharwal 2013; Campanario 2015). The motivation for studying productivity

lies in the wish to promote academic excellence and render the research from each country

as competitive as possible on the global stage (Frandsen 2005; Kocher et al. 2006; Abramo

and D’Angelo 2014).

The quality of a research study is determined by a great number of variables, from the

personal characteristics of the researcher to national and international policies and trends

(Genest 1997; Dundar and Lewis 1998; Williamson and Cable 2003; Seggie and Griffith

2009; Duch et al. 2012; Kaur et al. 2015). However, the criteria for evaluating research

productivity are combined mainly in two ways. First, the peer review process is assumed as

the principal evaluation method, but this in turn is the object of a certain subjectivity level

(Abramo et al. 2008, Bornmann 2011; Bertocchi et al. 2015; Day 2015).

Alternatively, another way of evaluating scientific activity in terms of productivity is

based on bibliometric analysis. This method consists mainly of quantifying the number of

documents published by a country, institution, research group or individual, as well as the

citations received by such documents (Broadus 1987; Borokhovich et al. 1995; Abramo

et al. 2008; Heberger et al. 2010; Finardi 2013; Kaur et al. 2015; Bertocchi et al. 2015).

The most common bibliometric measurements are those based on publications and cita-

tions, and this information comes from different databases such as Web of Science (WoS),

Scopus, and Google Scholar, among others. However, the heterogeneity in publication and

citation policies between the different fields of knowledge (Kaur et al. 2013; Ruiz-Castillo

and Costas 2014; Mingers and Leydesdorff 2015) make the direct comparison in terms of

the number of published articles and cites ‘unfair’ (Crespo et al. 2012) and raise the need

for the search of more appropriate methods of comparison.

The majority of research productivity studies are focused on a single field of knowledge.

For example, the literature focused on research productivity in economics is abundant

(Hodgson and Rothman 1999; Coupé 2003; Kocher et al. 2006; Ellison 2013). As a result,

and taking into account the existing scientific advancements in each field of knowledge, it

becomes relevant to study research productivity not only from the standpoint of measuring

scientific production results, but also for the purpose of analyzing differences between the

fields of knowledge in question (Sabharwal 2013; Abramo and D’Angelo 2014; Ruiz-

Castillo and Costas 2014; Bertocchi et al. 2015).

In addition, studies on research productivity have taken into account different proba-

bility distribution functions in order to identify patterns in quantitative relationships

between authors and their contributions over a period of time. These studies have deter-

mined that bibliometric indicators such as the number of articles published or the number

of citations received by an author are characterized by distributions with heavy tails (Lotka

1926; Price 1976; Redner 1998; Chung and Cox 1990; Albarrán et al. 2011; Eom and

Fortunato 2011; Da Silva et al. 2012; Ruiz-Castillo and Costas 2014; Campanario 2015).

As a result, the probability distribution models that have been applied the most in the

literature on research productivity are those that obey the following laws: Lotka’s law

(Lotka 1926; Nicholls 1986; Chung and Cox 1990; Kretschmer and Kretschmer 2007), the

power law (Price 1976; Egghe 2005; Albarrán et al. 2011; Aguinis et al. 2015) and

Bradford’s Law (Garfield 1980; Rousseau 1994; Nicolaisen and Hjørland 2007; Campa-

nario 2015). These laws, mainly based on distribution functions such as the exponential or
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Pareto distributions, have been controversial and have generated a strong debate during

more than a century. For instance, Newman (2005) asserted that few real-world processes

follow a power law over their entire range, and in particular not for smaller values of the

variable being measured. Martı́nez-Mekler et al. (2009) argued that, when real data are

used, power laws hold only for an intermediate range of values, whereas the tails of the

distributions tend to deviate from the values expected according to the power law.

Therefore, the authors suggested that the two-parameter law incorporates the product of

two power laws defined over the complete data set: One of these power laws measured

from left to right, and the other from right to left.

Other studies such as those by Kumar et al. (1998), Radicchi et al. (2008), Perc (2010),

Eom and Fortunato (2011) and Birkmaier and Wohlrabe (2014) have proposed the

application of the lognormal distribution to study research activity. Nevertheless, the

evidence on the true distribution of scientific production and citation is still inconclusive

(Albarrán et al. 2011), which might be a consequence of the use of only one- or two-

parameter distributions.

In fact, all of the proposed distributions have the disadvantage that they depend on very

few parameters to capture the entire shape of the productivity distribution, particularly the

right tail of the distribution. This fact might result in more imprecise productivity mea-

surements and unreliable comparisons of productivity between different fields of knowl-

edge. To obtain reliable research productivity estimates, we propose the use of semi-

nonparametric (SNP) approximations of productivity distributions based on the Edgeworth

and Gram–Charlier expansions. These distributions have been applied in very diverse

fields, where the precision of capturing the tails of distributions is important for the correct

measurement of the frequency of extreme values (see Blinnikov and Moessner 1998, or

Mauleón and Perote 2000, as examples of applications to astronomy or finance, respec-

tively). In this article, we propose their use for the first time to measure research pro-

ductivity and to determine with a higher degree of accuracy the quantiles that sort the most

productive researchers in each field of knowledge as a proxy of the level of difficulty

involved in being a top researcher in each field.

For the purpose of holding the parameter flexibility of Gram–Charlier distributions but

restricting the domain to positive values, we propose logarithmic transformations of a SNP

distribution (which we refer to as log-SNP), which are extensions of a lognormal distri-

bution that allow for approximating any empirical distribution through the introduction of

additional parameters. Given that bibliometric indicators usually exhibit relatively long

tails and multimodality (Guerrero-Bote et al. 2007; Lancho-Barrantes et al. 2010; Sab-

harwal 2013), we show that, compared to the lognormal distribution, the log-SNP distri-

bution provides a better fit when characterizing research productivity in top journals.

The productivity distribution

The characterization of a random variable through its probability density function (pdf) and

its fit to the empirical distribution of a series can be achieved using different approaches,

from a parametric perspective based on a frequency distribution with a known functional

shape to a purely nonparametric approach. An intermediate possibility is the use of SNP

approximations in which the functional shape is only partly parametrized, with the rest

being an unknown function (Chen 2007). In this study, we consider an SNP approach in

which the unknown function is modelled based on an orthogonal polynomial series
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expansion. In particular, we will analyze Edgeworth and Gram–Charlier expansions that

have been shown to be valid asymptotic approximations of any empirical distribution

under relatively weak regularity conditions (Sargan 1975; Phillips 1977). Next, we define

the SNP distribution based on the Gram–Charlier series, as well as its logarithmic trans-

formation, and analyze its basic properties.

The SNP distribution

Let {Ps(x)}, x [ R and s 2 N be a family of orthogonal polynomials with respect to a

density function w(x) that satisfies the following relationship1

Z1

�1

Ps xð ÞPj xð Þw xð Þdx ¼ 0; 8s 6¼ j; s; j ¼ 0; 1; 2; . . . ð1Þ

Within this family, Hermite polynomials (HPs) are those that use a standard normal

density distribution, with weight / xð Þ ¼ 1ffiffiffiffi
2p

p e�
1
2
x2

. In particular, the HP of order s, Hs(x),

can be obtained in terms of the derivative of order s of the density function of the standard

normal distribution, as expressed in Eq. (2):

Hs xð Þ ¼ �1ð Þs

/ xð Þ
ds/ xð Þ
dxs

ð2Þ

Next, we show the first eight HPs:

H0 xð Þ ¼ 1 ð3Þ

H1 xð Þ ¼ x ð4Þ

H2 xð Þ ¼ x2 � 1 ð5Þ

H3 xð Þ ¼ x3 � 3x ð6Þ

H4 xð Þ ¼ x4 � 6x2 þ 3 ð7Þ

H5 xð Þ ¼ x5 � 10x3 þ 15x ð8Þ

H6 xð Þ ¼ x6 � 15x4 þ 45x2 � 15 ð9Þ

H7 xð Þ ¼ x7 � 21x5 þ 105x3 � 105x ð10Þ

H8 xð Þ ¼ x8 � 28x6 þ 210x4 � 420x2 þ 105 ð11Þ

It is easy to proof that these polynomials satisfy the mentioned orthogonality property

given that 8s; j ¼ 0; 1; 2; . . .

1 Different weight functions w(x) can be used; for details, see Abramowitz and Stegun (1972, pp. 774–775).
We will consider P0(x) = 1.
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Z1

�1

Hs xð ÞHj xð Þ/ xð Þdx ¼ 0; s 6¼ j

s!; s ¼ j

�
ð12Þ

The HPs also constitute the basis of the Edgeworth and Gram–Charlier (Type A) series,

which allow, under certain regularity conditions (Cramér 1925), the expression of any pdf,

f(x), in terms of an infinite series (Wallace, 1958) as follows2

f xð Þ ¼
X1
s¼0

dsHs xð Þ/ xð Þ; where ds ¼
1

s!

Z1

�1

Hs xð Þf xð Þdx ð13Þ

Moreover, thanks to the orthogonality of the HPs, truncating the series to a specific

order n of the expansion allows for defining a family of SNP distributions, g(x; d), where

d ¼ d1; . . .; dnð Þ02 Rn denotes the vector of the parameters.3

g x; dð Þ ¼ 1 þ
Xn
s¼1

dsHs xð Þ
" #

/ xð Þ�!
n!1

f xð Þ ð14Þ

However, the SNP distribution defined in Eq. (14) is only a density function for a subset

of values of d that guarantee g(x; d) C 0. To solve this problem, different types of

restrictions or positivity transformations have been proposed (Gallant and Nychka 1987),

even though they involve the introduction of unnecessary complexity for empirical

applications that implement maximum likelihood (ML) algorithms (given that in the

optimum ML leads to estimations that guarantee positivity).

The advantages of SNP distributions when fitting frequency functions lies in their

flexible parametric structure that permits to adjust location and scale with different

parameters than those used for skewness, leptokurtosis and even higher order moments.

Figure 1 illustrates the allowable shape of the SNP (depicted with 1000 simulated

observations) compared with a normal distribution. For the sake of comparison, in both

cases we consider the same location and scale parameters, l = 0 and r = 1, but we

introduce additional (even) parameters in the SNP. Particularly, Panels (a1) and (a2)

incorporate d2 = 0.1 and d4 = 0.1 and Panels (b1) and (b2) d2 = 0.1, d4 = 0.01,

d6 = 0.001 and d8 = 0.005. Note also that Panels (a1) and (b1) represent the whole

domain but Panels (a2) and (b2) just a detail of the right distribution tails. It is clear from

these pictures that the SNP not only captures leptokurtosis but also presents wavy and

heavy tails that may adapt the probability pattern of any data generating process.

In addition, the resulting higher number of parameters does not involve more com-

plexity in theoretical or empirical terms. For example, the central moments can be easily

obtained as linear functions of the distribution parameters (see ‘‘Appendix 1’’ section).

Note that the even (odd) moment of order n depends only on the n first even (odd)

parameters. This fact allows for the search of initial values for the optimization logarithms

through the direct application of the method of moments (MM). A closed expression can

also be obtained for the cumulative distribution function (cdf) of the SNP distribution as a

2 For more details about the Edgeworth and Gram–Charlier series, see Kendall and Stuart (1977,
pp. 167–172).
3 It must be noted that given a truncating order, the resulting distribution is purely parametric, but the
truncating order is flexible to achieve a more accurate approximation to a given distribution. Without loss of
generality, we will assume that d0 = 1.
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function of the normal distribution cdf, as shown in Eq. (15) (see the proof in ‘‘Appendix

2’’ section). This allows for a simple calculation of the probabilities and quantiles of the

SNP distribution.

Gx að Þ ¼
Za

�1

g x; dð Þdx

¼
Za

�1

/ xð Þdx� / að Þ
Xn
s¼1

dsHs�1 að Þ

ð15Þ

The log-SNP distribution

Ñı́guez et al. (2012) define a variable z[ 0 as (standard) log-SNP if the variable

x = log(z) is SNP distributed and its pdf defined as in Eq. (14). The resulting distribution

inherits all the good properties of the SNP distribution, including its flexibility in capturing

the extreme values of the distribution, but the density is defined on R?, which is required to

fit productivity data. We will go a step further and similarly define a log-SNP distribution,

but rather over a linear transformation y = rx ? l.

Definition We will say that the variable z[ 0 is log-SNP distributed with location

parameter l [ R, scale r2 [ R and shape parameters d ¼ d1; . . .; dnð Þ02 Rn if its pdf can be

expressed as

Fig. 1 Pdf of normal versus SNP distribution. Figures compare the shape of both Normal (dashed line) and
SNP (solid line) distributions with location and scale parameters, l = 0 and r = 1, and additional
parameters for the latter. Particularly, Panels (a1) and (a2) incorporate parameters d2 = 0.1 and d4 = 0.1
and Panels (b1) and (b2) consider d2 = 0.1, d4 = 0.1, d6 = 0.001 and d8 = 0.005. Panels (a1) and (b1)
represent the whole domain, whereas Panels (a2) and (b2) a detail of the right tails of the distributions. Data
are simulated through 1000 replications
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h z; l; r2; d
� �

¼ 1 þ
Xn
s¼1

dsHs

log zð Þ � l
r

� �" #
1

zr
ffiffiffiffiffiffi
2p

p e
� log zð Þ�lð Þ2

2r2

� �
ð16Þ

Defined in this manner, the lognormal distribution is a particular case of the log-SNP

(for ds = 0, Vs), which allows for a comparison of the improvements in the fit of the latter

to those obtained with the lognormal by using linear restrictions tests such as the likelihood

ratio (LR). This article shows that, as a matter of fact, the parametric flexibility of the log-

SNP allows for significant fit improvements to productivity distributions, as the log-SNP is

capable of representing different shapes (including jumps in the probability mass function

and heavy tails) through the incorporation of parameters in addition to those of a standard

lognormal distribution. These parameters are directly related to the distribution moments4

and constitute additional degrees of freedom for the estimation procedures. For example, if

only ds parameters are considered for s even skewness depends only on parameter r, and

the larger the expansion the heavier (and possibly wavier) the distribution tail is.

Figure 2 presents an illustration (1000 simulated replications) of the log-SNP allowable

shape in comparison with that of the lognormal, both with the same location and scale

parameters, i.e. l = 0 and r = 1. Panels (a1) and (a2) depict a log-SNP with additional

parameters d2 = 0.12 and d4 = 0.11 and Panels (b1) and (b2) incorporate parameters

d2 = 0.28, d4 = 0.44, d6 = 0.07 and d8 = 0.009. In order to emphasize the behavior for

the extreme (positive) values Panels (a2) and (b2) display a zoom on the right tails of the

distribution. For this case, it is clear that the log-SNP allows more flexibility to capture

thick (and wavy) tails. Even more important, biased estimations and misleading results

may be obtained when using a single parameter distribution to fit distribution shape and

heavy tails.

Data and methodology

Data

To test whether a lognormal or a log-SNP distribution fits the best to the performance

distribution of 140,971 researchers who have produced 253,634 publications in 18 fields of

knowledge, we used the data from O’Boyle and Aguinis (2012). These authors classified

the fields of knowledge based on the Journal Citation Reports (JCR), which provide impact

factors (IFs) in different fields of knowledge labeled within the categories of ‘‘sciences’’

and ‘‘social sciences’’. As it is well-known, there are multiple subfields included within one

JCR category, but they identified authors across all subfields so that authors publishing in

more than one area would have all their publications included.

The authors used impact factors from JCR in 2007 to identify the top five journals

within each field.5 They selected field-specific journals to avoid having the search con-

taminated by authors from other sciences. Additionally, the authors used the ‘‘Publish or

4 Log-SNP’s moments can be directly derived as E zt½ � ¼ eltþ
1
2
t2r2

1 þ
Pn

s¼1 ds rtð Þs
� 	

(see Ñı́guez et al.

2013).
5 It should be noted that the different size of journals in the JCR categories represents a shortcoming of the
selection procedure. Nevertheless, it is not clear if other arbitrary selection method would yield to better
results and, anyhow, this issue does not affect the advantages of the methodology proposed in this paper.
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Perish’’ program (Harzing 2008), which relies on Google Scholar, to identify all authors

who had published at least one article in one of these journals between January 2000 and

June 2009.6 Their procedure is not absent of the common problems in bibliometric analysis

produced by the authors’ names ambiguity, e.g. the treatment of synonyms, homonyms,

misspellings, and processing errors. Further techniques might have been used to refine the

database (Momeni and Mayr 2016; Van den Besselaar and Sandström 2016) although they

are not substantial in our methodological framework. Furthermore, focusing on just five top

journals and the combined use of Web of Science and Google Scholar databases may help

to mitigate such problems (Yang and Meho 2006; Harzing and Van der Wal 2008; Harzing

2014; Harzing and Alakangas 2016). With this information, the productivity of the

researchers is measured as the number of articles published by an author in each of the

fields of knowledge during the observation period of 9.5 years.

A limitation of using this measure of productivity is the multiple authorship of

manuscripts, since multiple authorship may bias the results in favor some authors and,

comparatively, in areas where a high number of authors per paper is commonly accepted

by the research community (Ruiz-Castillo and Costas 2014; Mingers and Leydesdorff

2015). The literature on scientific production, however, does not discriminate by multiple

authorship. This procedure is known as ‘‘complete count’’, i.e. the fact that an article is

equally valuable for all its authors regardless the number of authors and their marginal

contribution to the manuscript (Nicholls 1989; Ruiz-Castillo and Costas 2014). On the

other hand, another important issue when analysing research productivity is the relation

between quantity and quality (Kaur et al. 2015). In our study, as well as in O’Boyle and

Aguinis (2012), quality of top researchers is imposed by the fact that we only consider

publications in the five main journals in every field of knowledge. Then comparisons are

Fig. 2 Pdf of lognormal versus log-SNP distribution. Figures compare the shape of both Normal (dashed
line) and SNP (solid line) distributions with location and scale parameters, l = 0 and r = 1, and additional
parameters for the latter. Particularly, Panels (a1) and (a2) incorporate parameters d2 = 0.12 and d4 = 0.11
and Panels (b1) and (b2) consider d2 = 0.28, d4 = 0.44, d6 = 0.07 and d8 = 0.009. Panels (a1) and (b1)
represent the whole domain, whereas Panels (a2) and (b2) a detail of the right tails of the distributions. Data
are simulated through 1000 replications

6 For details about the data treatment, see O’Boyle and Aguinis (2012), p. 86.
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only done in terms of quantity of manuscripts for a given probability in the ‘‘true’’ dis-

tribution (i.e. a quantile), which proxies a level of difficulty taking into account the dif-

ferent practices between the areas.

Table 1 shows the descriptive statistics for the publications of the top researchers

included in our sample. In this table we also record the Median Impact Factor (MIF) of the

top five journals in each of the selected fields of knowledge, based on the JCR of the year

20077 for each of the analyzed categories classified in sciences and social sciences. We

provide this citation index to obtain a broader view of each of the selected fields and,

particularly, its correlation with scientific production.

It can be observed that throughout the 18 fields of knowledge analyzed, the minimum

number of researchers is 1073 for the field of Ethics and the maximum is 30,531 for

Dermatology. For each field, we compute two Mean values on scientific production: Mean

(1) is the mean of publications for each field and for the entire sample of researchers; Mean

(2) is the mean of publications for each field but only for the researchers with a number of

articles above Mean (1). Mean (1) varies from 1.42 to 2.26 and Mean (2) from 2.56 to 5.92.

Furthermore, we compute the percentage of authors with less/more publications than (or

equal) to Mean (1)/Mean (2). We find that, on average, 71.38 % of all researchers have

productivity below Mean (1), whilst researchers with productivity above Mean (2) rep-

resent the 7.76 %. These results support Ruiz-Castillo and Costas’ (2014) findings about

the skewness of field productivity distributions, since a large proportion of researchers

have below mean productivity and only a small percentage of them account for most of the

publications.

Regarding the other statistics in Table 1, the standard deviation of publications has a

range of 0.97–3.38 publications and skewness and excess kurtosis reveals that the pro-

ductivity distributions exhibit positive skewness and leptokurtosis, with the field of

Genetics being the most skewed and leptokurtic of the sample. The maximum number of

articles per researcher varies from 13 (Law) to 120 (Genetics), depending on the field

considered. In addition, we find large differences when considering the MIF indicator (of

the top five journals in each area), which varies from 0.85 (History) to 18.30 (Genetics).

Furthermore, it is clear that the MIF is positively correlated to the maximum number of

articles per researcher. As a result, Genetics has the highest MIF and the maximum number

of publications per researcher, while the MIF of History places 18th and 17th in number of

publications per researcher. In general, fields that belong to the Sciences JCR category

have a larger number of researchers and, then, a larger MIF.

All in all, the results confirm the existence of wide differences in scientific production in

terms of number of articles per author between the different fields of knowledge, which is

consistent with other studies, e.g. Abramo and D’Angelo (2014) or Mingers and Ley-

desdorff 2015). Next we propose a new methodology based on the log-SNP to study how

these differences affect the productivity distribution, especially when measuring the pro-

ductivity of the top researchers.

Methodology

This section presents the methodology applied to characterize the research productivity in

each field of knowledge based on the log-SNP distribution. Details are provided on the ML

estimation methodology and its related goodness of fit measures used to choose between

7 We took the JCR of the year 2007 to be consistent with O’Boyle and Aguinis (2012), as that was the year
used by the authors to select the five main journals within each field of knowledge.
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the different pdfs nested on the family of log-SNP distributions (including the lognormal).

The pdf of the log-SNP distribution is sequentially estimated up to a truncating order of

n = 8.

Let zi be the number of articles published by an author in one of the selected fields of

knowledge; the log-likelihood function8 for a log-SNP(l, r2, d) distributed observation

truncated to the eighth moment is given by:

log L l; r2; d


zi� �

¼ � 1

2
log 2pr2z2

i

� �

� 1

2

log zið Þ � l
r

� �2

þ log 1 þ
X8

s¼1

dsHs

log zið Þ � l
r

� �" #
ð17Þ

The sequential estimation begins with the simplest nested density, the lognormal, and

the ds parameters are recursively added, the initial values of which are selected consistently

with their sample moments counterparts. The inclusion of new parameters in the pro-

ductivity distribution is performed according to accuracy criteria, i.e. the log-likelihood

(logL) and the Akaike Information Criterion (AIC), and linear restrictions tests provided by

the LR statistic. Based on these criteria, n = 8 was selected as the optimum truncating

order, and only the even parameters, d2, d4, d6 and d8, were selected.

Results

Table 2 presents the ML estimates of the parameters of the performance distributions for

each of the fields selected. Panel A shows the estimated parameters for a lognormal

distribution, and Panel B shows the estimated parameters for the log-SNP distribution.

Panel C displays the LR statistic for comparing the log-SNP and the lognormal

distributions.

The results of the estimations reveal that all the models adequately capture the mean and

standard deviation of each of the fields, denoted as parameters l and r, respectively. The

P values clearly indicate that these parameters are highly significant for both distributions.

It is noteworthy that the parameter r, which also capture skewness of the lognormal and

the log-SNP provided that odd parameters are not included, remains very stable for all

productivity distributions. This evidence is consistent with Ruiz-Castillo and Costas (2014)

who found that ‘‘in spite of wide differences in production and citation practices across

fields, the shape of field productivity distributions is very similar across fields’’. However,

as shown in Panel B, for the log-SNP distribution, the ds parameters are also highly

significant for the majority of fields of knowledge. When analyzing the AIC (which

penalizes log-likelihood value with the inclusion of additional parameters) for the two

distributions, we found that this criterion is consistently lower for the log-SNP distribution,

which suggests that the modeling based on this distribution is clearly superior. In addition,

from the LR statistics included in Panel C, we conclude that for all the selected fields,

incorporating the ds parameters improves the accuracy of the model.9

8 The code for the implementation of the maximum likelihood estimation algorithm in R package is
available upon request.
9 Note that we did not include the ds parameters for s odd, after having tested that they were not signifi-
cantly different from zero. This result reinforces the fact that the parameter r captures all relevant features
about the skewness. It must be highlighted that the latter does not contradict the fact that the ds parameters
for s even are highly significant, which means that productivity distributions have very thick tails and thus
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An example of the fit quality obtained for two (randomly selected) fields, Finance

and Dentistry, is captured in Fig. 3. This figure depicts the empirical histogram and pdf

values estimated under a lognormal specification and under the log-SNP. In both cases,

the log-SNP distributions more adequately capture not just the values around the mean

but also the extreme values. Figure 4 shows in detail the right tails of the distribution,

which capture the frequency of the researchers with higher productivity. From these

figures, it is clear that the log-SNP specification allows the better characterization of

the research activity.

Figure 5 shows the comparison between the fitted densities for Finance and Dentistry in

terms of the empirical and theoretical cdfs for both specifications, the log-SNP and the

lognormal. The latter appears to underestimate the cumulative probability (especially for

Dentistry) when compared to the log-SNP.

Figure 4 illustrates how the lognormal distribution underestimates research productiv-

ity, especially for the more extreme values (under the lognormal distribution, a researcher

must publish less articles to be included in the top quantiles of the performance distri-

bution). Table 3 quantifies these effects for the different fields of knowledge by computing

the empirical and estimated quantiles under the lognormal and log-SNP for confidence

Fig. 3 Pdf of research productivity in finance and dentistry. The figure shows the distribution of the
empirical frequencies (histogram) of the productivity of the researchers who published in the five top
journals (in JCR-2007 terms) in finance and dentistry during the period 2000–2009. The estimated pdfs
under the lognormal and log-SNP specifications are depicted in dashed line and solid line, respectively

Footnote 9 continued
require different parameters to provide accurate measures of the ‘‘probability of being a very top researcher’’
in every field.
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levels of 5, 1, 0.1 and 0.05 %.10 Note that, once the productivity distributions are properly

estimated, the definition of a top researcher in every field requires the computation of the

corresponding quantile for a given probability. These quantiles represent bounds of per-

formance in terms of number of articles (regardless the number of authors), provided that

quality is guaranteed by considering only publications on the top 5 reviews in every field.

Furthermore, these quantiles are fairly comparable among different areas.

The values in the table clearly indicate the higher accuracy of the log-SNP distribution

fits, particularly in the tails, and the underestimation of the productivity of top researchers

obtained from the traditional parametric distributions such as the lognormal. For example,

for the field of Agronomy, it can be seen that to belong to the top 0.05 % of researchers

who publish the highest number of articles in the best journals, 15 publications are

empirically required. This limit is much less strict if we assume that the distribution is

lognormal (6 publications) as compared to log-SNP (12 publications). These results are

consistent with the research by Kumar et al. (1998), Perc (2010) and Eom and Fortunato

(2011), who found that the use of the lognormal distribution for modeling bibliometric

indicators underestimates the heavy tails of the distributions.

Fig. 4 Pdf of research productivity in finance and dentistry (right tail). The figure shows the right tail of the
distribution of empirical frequencies (histogram) of productivity of the researchers who published in the five
top journals (JCR-2007 ranking) in finance and dentistry during the year 2000–2009. Fitted lognormal and
log-SNP pdfs are depicted in dashed line and solid line, respectively

10 The quantiles of the log-SNP distribution are obtained from the cdf displayed in Eq. (15) and the Inverse
Transform Method (ITM).

906 Scientometrics (2016) 109:891–915

123



Further results

This article proposes a new methodology to compute research productivity for top

researchers through the quantiles of a new and general distribution called log-SNP. Our

main application compares these measures with those of the lognormal with a sample of

scientific production in 18 (arbitrarily chosen) fields, finding the outperformance of the log-

SNP. Nevertheless, the focus of the paper is done on the technique more than on the

particular results. In order to justify that our result is general we replicated the study with

the productivity data provided in Borokhovich et al. (1995), which refer to academic

institutions (in the field of finance) instead of individual researchers. Particularly, the data

accounts for the number of articles published from 1989 through 1993 in a set of 16 finance

journals by authors affiliated to different institutions at the time of publication. The

journals in finance (excluding real estate and insurance) were selected from those listed in

Heck’s Finance Literature Index for 1993. Only articles and notes were included in sample.

The number of publications attributed to each academic institution was adjusted for the

number of authors. For example, for publications with two authors affiliated to different

institutions every institution received a credit for 0.5 article. Any proportion of an article

that was not attributable to an author affiliated with an academic institution located in the

United States or Canada was deleted from the study. A total of 330 institutions were

included in this sample.

Fig. 5 Cdf of research productivity in finance and dentistry. The figure shows the empirical cumulative
distribution function of the productivity of the researchers who published in the five top journals (JCR-2007
ranking) in finance and dentistry during the period 2000–2009. Fitted lognormal and log-SNP cdfs are
depicted in dashed line and solid line, respectively

Scientometrics (2016) 109:891–915 907

123



T
a

b
le

3
N

u
m

b
er

o
f

ar
ti

cl
es

em
p
ir

ic
al

ly
o

b
se

rv
ed

v
er

su
s

th
o

se
th

eo
re

ti
ca

ll
y

ex
p

ec
te

d
u

n
d

er
lo

g
n

o
rm

al
an

d
lo

g
-S

N
P

F
ie

ld
o

f
k

n
o

w
le

d
g

e
N

O
b

se
rv

ed
N

o
.

o
f

ar
ti

cl
es

to
p

E
x

p
ec

te
d

n
u

m
b

er
o

f
ar

ti
cl

es

L
o

g
n
o

rm
al

to
p

L
o

g
-S

N
P

to
p

5
%

1
%

0
.1

%
0

.0
5

%
5

%
1

%
0

.1
%

0
.0

5
%

5
%

1
%

0
.1

%
0

.0
5

%

A
g

ro
n

o
m

y
8

9
2

3
3

7
1

3
1

5
3

4
5

6
3

4
1

0
1

2

A
n

th
ro

p
o

lo
g

y
5

7
5

5
5

1
0

1
9

2
2

4
6

1
0

1
1

4
9

1
6

1
7

C
li

n
ic

al
p

sy
ch

o
lo

g
y

1
0

,4
1

8
5

1
1

2
7

3
5

4
6

1
0

1
1

4
9

1
7

1
9

D
en

ti
st

ry
1
2
,3

4
5

7
1

5
3

2
3

6
5

8
1

4
1

6
5

1
1

2
9

3
4

D
er

m
at

o
lo

g
y

3
0

,5
3

1
7

1
6

4
0

5
0

5
8

1
4

1
6

7
1

4
2

0
2

2

E
co

lo
g

y
5

7
3

0
4

8
1

7
2

0
4

5
8

9
4

7
1

4
1

6

E
co

n
o
m

ic
s

3
0

4
8

4
8

2
5

2
6

4
5

7
8

3
7

1
3

1
4

E
d

u
ca

ti
o

n
al

p
sy

ch
o

lo
g

y
3

0
3

2
4

8
1

8
1

8
4

5
8

9
4

7
1

4
1

6

E
th

ic
s

1
0

7
3

4
9

2
4

2
5

4
5

7
8

3
8

1
4

1
6

E
th

n
ic

st
u
d

ie
s

2
0

0
3

3
8

1
6

1
6

3
4

6
6

3
5

1
2

1
4

F
in

an
ce

3
0

1
9

6
1

3
2

6
2

8
5

8
1

3
1

5
5

1
1

1
9

2
1

F
o

re
st

ry
1

2
,2

1
1

5
9

1
8

2
2

4
6

9
1

0
4

8
1

5
1

7

G
en

et
ic

s
1

6
,5

7
4

4
8

1
8

2
3

4
5

8
9

4
7

1
4

1
6

H
is

to
ry

6
7

0
8

3
5

8
1

2
3

4
6

7
3

5
8

1
1

L
aw

1
3

5
0

4
7

1
3

1
3

3
5

7
7

3
6

1
1

1
2

L
in

g
u

is
ti

cs
3

6
0

0
5

9
2

2
2

3
4

6
8

9
4

7
1

4
1

6

M
at

h
em

at
ic

s
3

9
7

2
3

6
1

3
1

4
3

4
5

6
3

5
1

0
1

1

S
ta

ti
st

ic
s

1
0

,6
7

9
6

1
3

2
6

3
5

5
7

1
2

1
3

5
1

0
2

2
2

6

T
h

is
ta

b
le

co
m

p
ar

es
th

e
n

u
m

b
er

o
f

ar
ti

cl
es

o
b

se
rv

ed
em

p
ir

ic
al

ly
in

ea
ch

o
f

th
e

fi
el

d
s

w
it

h
th

o
se

th
eo

re
ti

ca
ll

y
ex

p
ec

te
d

u
n

d
er

th
e

lo
g

n
o

rm
al

an
d

lo
g

-S
N

P
d

is
tr

ib
u

ti
o

n
s.

N
n
u
m

b
er

o
f

re
se

ar
ch

er
s.

T
h
e

v
al

u
es

5
,
1
,
0
.1

an
d

0
.0

5
%

ar
e

p
ro

b
ab

il
it

ie
s

fo
r

w
h
ic

h
d
is

tr
ib

u
ti

o
n

q
u
an

ti
le

s
ar

e
co

m
p
u
te

d
.
T

h
e

st
u
d
y

co
rr

es
p
o
n
d
s

to
1
8

fi
el

d
s

o
f

k
n

o
w

le
d

g
e

th
at

b
el

o
n
g

to
th

e
JC

R
ca

te
g
o
ri

es
o
f

sc
ie

n
ce

s
an

d
so

ci
al

sc
ie

n
ce

s
b
et

w
ee

n
th

e
y
ea

rs
2
0
0
0

an
d

2
0
0
9

908 Scientometrics (2016) 109:891–915

123



T
a

b
le

4
In

st
it

u
ti

o
n

al
re

se
ar

ch
p

ro
d

u
ct

iv
it

y
u

n
d

er
lo

g
n

o
rm

al
an

d
lo

g
-S

N
P

In
st

it
u

ti
o

n
al

re
se

ar
ch

p
ro

d
u

ct
iv

it
y

L
o

g
n
o

rm
al

L
o

g
-S

N
P

L
R

l
r

lo
g

L
A

IC
l

r
d

2
d

4
d

6
d

8
lo

g
L

A
IC

P
an

el
A

:
es

ti
m

at
es

o
f

th
e

p
ro

d
u
ct

iv
it

y
d
is

tr
ib

u
ti

o
n

u
n
d
er

lo
g
n
o
rm

al
an

d
lo

g
-S

N
P

A
ca

d
em

ic
in

st
it

u
ti

o
n

s
1

.1
0
2

1
.4

3
1

9
-

9
5

0
.3

8
1

9
0

4
.7

6
1

.1
5
7

4
0

.6
1

2
.2

5
9

3
1

.1
5

9
5

0
.1

9
7

9
0

.0
1
1

-
9

2
0

.1
9

1
8

5
2
.3

8
2

1
5

7
.6

1

(\
0

.0
0
0

1
)

(\
0

.0
0
0

1
)

(\
0

.0
0
0

1
)

(\
0

.0
0
0

1
)

(\
0

.0
0
0

1
)

(\
0

.0
0

0
1

)
(\

0
.0

0
0

1
)

(0
.0

0
1
8

)
(\

0
.0

0
0

1
)

In
st

it
u

ti
o

n
al

re
se

ar
ch

p
ro

d
u
ct

iv
it

y
N

O
b

se
rv

ed
N

o
.

o
f

p
ap

er
s

E
x

p
ec

te
d

n
u

m
b

er
o

f
p

ap
er

s

L
o

g
n
o

rm
al

L
o

g
-S

N
P

5
%

1
%

0
.1

0
%

0
.0

5
%

5
%

1
%

0
.1

0
%

0
.0

5
%

5
%

1
%

0
.1

0
%

0
.0

5
%

P
an

el
B

:
n

u
m

b
er

o
f

ar
ti

cl
es

em
p

ir
ic

al
ly

o
b

se
rv

ed
v

er
su

s
th

o
se

th
eo

re
ti

ca
ll

y
ex

p
ec

te
d

u
n

d
er

th
e

lo
g
n

o
rm

al
an

d
lo

g
-S

N
P

A
ca

d
em

ic
in

st
it

u
ti

o
n

s
3

3
0

3
0

5
0

8
3

8
6

3
2

8
5

2
5

2
3

3
5

2
9

4
5

7
0

7
8

T
h

e
ta

b
le

re
p
o

rt
s

th
e

re
su

lt
s

fo
r

re
se

ar
ch

p
ro

d
u
ct

iv
it

y
o

f
ac

ad
em

ic
in

st
it

u
ti

o
n

s
th

at
p

u
b

li
sh

ed
o

n
a

se
t

o
f

1
6

fi
n

an
ce

jo
u

rn
al

s
b

et
w

ee
n

th
e

y
ea

rs
1

9
8

9
an

d
1

9
9

3
.

P
an

el
A

re
p

o
rt

s
th

e
M

L
es

ti
m

at
es

fo
r

th
e

p
ar

am
et

er
s

o
f

b
o

th
th

e
lo

g
n

o
rm

al
an

d
lo

g
-S

N
P

d
is

tr
ib

u
ti

o
n

s
an

d
th

e
li

k
el

ih
o
o

d
ra

ti
o

fo
r

te
st

in
g

th
e

d
if

fe
re

n
ce

s
b

et
w

ee
n

th
em

.
l

an
d
r

ar
e

th
e

lo
ca

ti
o

n
an

d
sc

al
e

p
ar

am
et

er
s,

re
sp

ec
ti

v
el

y
,

an
d
d

2
,
d

4
,
d

6
an

d
d

8
ar

e
th

e
w

ei
g

h
t

p
ar

am
et

er
s

o
f

th
e

H
er

m
it

e
p

o
ly

n
o

m
ia

ls
.
P

v
al

u
es

ar
e

sh
o

w
n

in
p

ar
en

th
es

es
.

P
an

el
B

co
m

p
ar

es
th

e
n

u
m

b
er

o
f

ar
ti

cl
es

em
p
ir

ic
al

ly
o

b
se

rv
ed

w
it

h
th

o
se

th
eo

re
ti

ca
ll

y
ex

p
ec

te
d

u
n

d
er

th
e

lo
g

n
o

rm
al

an
d

lo
g

-S
N

P
d

is
tr

ib
u

ti
o

n
s.

T
h

e
v

al
u

es
5

,
1

,
0

.1
an

d
0

.0
5

%
ar

e
p

ro
b

ab
il

it
ie

s
fo

r
w

h
ic

h
d

is
tr

ib
u

ti
o

n
q

u
an

ti
le

s
ar

e
co

m
p

u
te

d

lo
g
L

lo
g

-l
ik

el
ih

o
o

d
,
A
IC

A
k
ai

k
e

In
fo

rm
at

io
n

C
ri

te
ri

o
n
,
L
R

li
k

el
ih

o
o

d
ra

ti
o

st
at

is
ti

c,
N

n
u
m

b
er

o
f

ac
ad

em
ic

in
st

it
u
ti

o
n
s

Scientometrics (2016) 109:891–915 909

123



Table 4 reports the results of this new estimation. Panel A displays the ML estimates for

the research productivity on top finance journals for academic institutions. The results are

consistent with those previously obtained for researchers in different fields of knowledge,

i.e. the log-SNP outperforms the lognormal according to the LR test and thus the log-SNP

parameters are highly significant. Panel B compares the number of articles empirically

observed with those theoretically expected under both specifications revealing the out-

performance of log-SNP. In this case it seems that the lognormal overestimates the dis-

tribution tails, particularly for low confidence levels. This result corroborates the evidence

that the use of rigid distributions involve misleading results because are unable to fit

different characteristics of the distribution (particularly extreme values) with a single (or

two) parameter(s).

Figure 6 illustrates the assessment above showing the best fit of the lof-SNP in terms of

the right tails of the pdf (Fig. 6a) and the cdf (Fig. 6b) compared with the empirical

distributions.

Fig. 6 Pdf and cdf of institutional research productivity. The figure shows: a the right tail of the distribution
of empirical frequencies (histogram) of research productivity for academic institutions that have published a
set of 16 finance journals between the years 1989 and 1993. The fitted lognormal and log-SNP pdfs are
depicted in dashed line and solid line, respectively. b The figure shows the empirical cumulative distribution
function of the same sample. The fitted lognormal and log-SNP cdfs are depicted in dashed line and solid
line, respectively
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Discussion and conclusions

Bibliometric analysis has been shown to be a valuable method for evaluating scientific

production and has experienced a growing impact in the academia. However, the literature

indicates that in most cases, the distributions commonly used for measuring productivity

have been shown to underestimate the behavior of the top researchers, given that their

productivity seems to be generated by a distribution with very heavy tails. This fact calls

for the search of more appropriate distributions and methodologies.

This study analyzes the research productivity in 18 fields of knowledge belonging to the

JCR categories of sciences and social sciences between the years 2000 and 2009. The

results show that the level of productivity, as measured by the number of publications per

author, depends on the field of knowledge being studied, which is consistent with previous

evidence. In particular, the fields that belong to the category of sciences have a higher

number of publications per author. In addition, we observe that the MIF indicator is highly

correlated to the maximum number of articles per researcher; that is, the greater the

number of articles published in top journals by each researcher (usually the most cited), the

greater the MIF by field of knowledge.

This study proposes a novel methodology based on the computation of the quantiles of a

flexible log-SNP distribution for measuring the scientific productivity distribution of top

researchers in different fields of knowledge. Such a distribution nests the lognormal and

includes new parameters for accurately capturing the heavy tail of the research productivity

distribution. Our study shows, for both researchers and institutions productivity, that the

log-SNP provides a better fit of research productivity distribution than the lognormal and

quantifies the differences in the measures of the top researchers’ productivity attached to

the distributional hypothesis. We argue that the log-SNP is an accurate data generating

process for the top researchers’ productivity, and thus this process is more reliable than that

of the lognormal (that is nested in our model) since the log-SNP is more flexible when data

are highly skewed and there are possible jumps in the tail due to extreme observations.

Therefore we provide an interesting methodology to measure scientific productivity that

can be used when the performance of authors, institutions or fields have to be compared or

aggregated so as to implement policies based on academic performance.
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Appendix 1

This appendix lists the first eight ds parameters in terms of the central moments of the SNP

distribution. For more information, see Del Brio and Perote (2012).

d1 ¼ l1 ð18Þ

d2 ¼ 1

2
l2 � 1ð Þ ð19Þ
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d3 ¼ 1

6
l3 � 3l1ð Þ ð20Þ

d4 ¼ 1

24
l4 � 6l2 þ 3ð Þ ð21Þ

d5 ¼ 1

120
l5 � 10l3 þ 15l1ð Þ ð22Þ

d6 ¼ 1

720
l6 � 15l4 þ 45l2 � 15ð Þ ð23Þ

d7 ¼ 1

5040
l7 � 21l5 þ 105l3 � 105l1ð Þ ð24Þ

d8 ¼ 1

40320
l8 � 28l6 þ 210l4 � 420l2 þ 105ð Þ ð25Þ

Appendix 2

This appendix derives the cdf of the SNP distribution.

Gx að Þ ¼
Za

�1

g x; dð Þdx ¼
Za

�1

/ xð Þdxþ
Xn
s¼1

ds

Za

�1

Hs xð Þ/ xð Þdx

¼
Za

�1

/ xð Þdx�
Xn
s¼1

dsHs�1 xð Þ/ xð Þ






a

�1

¼
Za

�1

/ xð Þdx� / að Þ
Xn
s¼1

dsHs�1 að Þ

Given that lim
x!�1

Hs xð Þ/ xð Þ ¼ 0 8s� 1; it follows that

Z
Hs xð Þ/ xð Þdx ¼

Z
�1ð Þsd

s/ xð Þ
dxs

dxt ¼ �1ð Þsd
s�1/ xð Þ
dxs�1

¼ �1ð Þs �1ð Þs�1
Hs�1 xð Þ/ xð Þ ¼ �Hs�1 xð Þ/ xð Þ

h
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