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Abstract Research productivity distributions exhibit heavy tails because it is common for
a few researchers to accumulate the majority of the top publications and their corre-
sponding citations. Measurements of this productivity are very sensitive to the field being
analyzed and the distribution used. In particular, distributions such as the lognormal dis-
tribution seem to systematically underestimate the productivity of the top researchers. In
this article, we propose the use of a (log)semi-nonparametric distribution (log-SNP) that
nests the lognormal and captures the heavy tail of the productivity distribution through the
introduction of new parameters linked to high-order moments. The application uses sci-
entific production data on 140,971 researchers who have produced 253,634 publications in
18 fields of knowledge (O’Boyle and Aguinis in Pers Psychol 65(1):79-119, 2012) and
publications in the field of finance of 330 academic institutions (Borokhovich et al. in J
Finance 50(5):1691-1717, 1995), and shows that the log-SNP distribution outperforms the
lognormal and provides more accurate measures for the high quantiles of the productivity
distribution.
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Introduction

In recent years, the evaluation of academic research productivity in different fields of
knowledge has been related to the impact of the results of scientific production (Abramo
et al. 2008; Sabharwal 2013; Campanario 2015). The motivation for studying productivity
lies in the wish to promote academic excellence and render the research from each country
as competitive as possible on the global stage (Frandsen 2005; Kocher et al. 2006; Abramo
and D’Angelo 2014).

The quality of a research study is determined by a great number of variables, from the
personal characteristics of the researcher to national and international policies and trends
(Genest 1997; Dundar and Lewis 1998; Williamson and Cable 2003; Seggie and Griffith
2009; Duch et al. 2012; Kaur et al. 2015). However, the criteria for evaluating research
productivity are combined mainly in two ways. First, the peer review process is assumed as
the principal evaluation method, but this in turn is the object of a certain subjectivity level
(Abramo et al. 2008, Bornmann 2011; Bertocchi et al. 2015; Day 2015).

Alternatively, another way of evaluating scientific activity in terms of productivity is
based on bibliometric analysis. This method consists mainly of quantifying the number of
documents published by a country, institution, research group or individual, as well as the
citations received by such documents (Broadus 1987; Borokhovich et al. 1995; Abramo
et al. 2008; Heberger et al. 2010; Finardi 2013; Kaur et al. 2015; Bertocchi et al. 2015).
The most common bibliometric measurements are those based on publications and cita-
tions, and this information comes from different databases such as Web of Science (WoS),
Scopus, and Google Scholar, among others. However, the heterogeneity in publication and
citation policies between the different fields of knowledge (Kaur et al. 2013; Ruiz-Castillo
and Costas 2014; Mingers and Leydesdorff 2015) make the direct comparison in terms of
the number of published articles and cites ‘unfair’ (Crespo et al. 2012) and raise the need
for the search of more appropriate methods of comparison.

The majority of research productivity studies are focused on a single field of knowledge.
For example, the literature focused on research productivity in economics is abundant
(Hodgson and Rothman 1999; Coupé 2003; Kocher et al. 2006; Ellison 2013). As a result,
and taking into account the existing scientific advancements in each field of knowledge, it
becomes relevant to study research productivity not only from the standpoint of measuring
scientific production results, but also for the purpose of analyzing differences between the
fields of knowledge in question (Sabharwal 2013; Abramo and D’Angelo 2014; Ruiz-
Castillo and Costas 2014; Bertocchi et al. 2015).

In addition, studies on research productivity have taken into account different proba-
bility distribution functions in order to identify patterns in quantitative relationships
between authors and their contributions over a period of time. These studies have deter-
mined that bibliometric indicators such as the number of articles published or the number
of citations received by an author are characterized by distributions with heavy tails (Lotka
1926; Price 1976; Redner 1998; Chung and Cox 1990; Albarran et al. 2011; Eom and
Fortunato 2011; Da Silva et al. 2012; Ruiz-Castillo and Costas 2014; Campanario 2015).

As a result, the probability distribution models that have been applied the most in the
literature on research productivity are those that obey the following laws: Lotka’s law
(Lotka 1926; Nicholls 1986; Chung and Cox 1990; Kretschmer and Kretschmer 2007), the
power law (Price 1976; Egghe 2005; Albarran et al. 2011; Aguinis et al. 2015) and
Bradford’s Law (Garfield 1980; Rousseau 1994; Nicolaisen and Hjgrland 2007; Campa-
nario 2015). These laws, mainly based on distribution functions such as the exponential or
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Pareto distributions, have been controversial and have generated a strong debate during
more than a century. For instance, Newman (2005) asserted that few real-world processes
follow a power law over their entire range, and in particular not for smaller values of the
variable being measured. Martinez-Mekler et al. (2009) argued that, when real data are
used, power laws hold only for an intermediate range of values, whereas the tails of the
distributions tend to deviate from the values expected according to the power law.
Therefore, the authors suggested that the two-parameter law incorporates the product of
two power laws defined over the complete data set: One of these power laws measured
from left to right, and the other from right to left.

Other studies such as those by Kumar et al. (1998), Radicchi et al. (2008), Perc (2010),
Eom and Fortunato (2011) and Birkmaier and Wohlrabe (2014) have proposed the
application of the lognormal distribution to study research activity. Nevertheless, the
evidence on the true distribution of scientific production and citation is still inconclusive
(Albarran et al. 2011), which might be a consequence of the use of only one- or two-
parameter distributions.

In fact, all of the proposed distributions have the disadvantage that they depend on very
few parameters to capture the entire shape of the productivity distribution, particularly the
right tail of the distribution. This fact might result in more imprecise productivity mea-
surements and unreliable comparisons of productivity between different fields of knowl-
edge. To obtain reliable research productivity estimates, we propose the use of semi-
nonparametric (SNP) approximations of productivity distributions based on the Edgeworth
and Gram—Charlier expansions. These distributions have been applied in very diverse
fields, where the precision of capturing the tails of distributions is important for the correct
measurement of the frequency of extreme values (see Blinnikov and Moessner 1998, or
Maule6n and Perote 2000, as examples of applications to astronomy or finance, respec-
tively). In this article, we propose their use for the first time to measure research pro-
ductivity and to determine with a higher degree of accuracy the quantiles that sort the most
productive researchers in each field of knowledge as a proxy of the level of difficulty
involved in being a top researcher in each field.

For the purpose of holding the parameter flexibility of Gram—Charlier distributions but
restricting the domain to positive values, we propose logarithmic transformations of a SNP
distribution (which we refer to as log-SNP), which are extensions of a lognormal distri-
bution that allow for approximating any empirical distribution through the introduction of
additional parameters. Given that bibliometric indicators usually exhibit relatively long
tails and multimodality (Guerrero-Bote et al. 2007; Lancho-Barrantes et al. 2010; Sab-
harwal 2013), we show that, compared to the lognormal distribution, the log-SNP distri-
bution provides a better fit when characterizing research productivity in top journals.

The productivity distribution

The characterization of a random variable through its probability density function (pdf) and
its fit to the empirical distribution of a series can be achieved using different approaches,
from a parametric perspective based on a frequency distribution with a known functional
shape to a purely nonparametric approach. An intermediate possibility is the use of SNP
approximations in which the functional shape is only partly parametrized, with the rest
being an unknown function (Chen 2007). In this study, we consider an SNP approach in
which the unknown function is modelled based on an orthogonal polynomial series
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expansion. In particular, we will analyze Edgeworth and Gram—Charlier expansions that
have been shown to be valid asymptotic approximations of any empirical distribution
under relatively weak regularity conditions (Sargan 1975; Phillips 1977). Next, we define
the SNP distribution based on the Gram—Charlier series, as well as its logarithmic trans-
formation, and analyze its basic properties.

The SNP distribution

Let {Pyx)}, x € R and s € N be a family of orthogonal polynomials with respect to a
density function w(x) that satisfies the following relationship'

/ Py(x)Pj(x)w(x)dx =0, Vs#j,s,j=0,1,2,... (1)
Within this family, Hermite polynomials (HPs) are those that use a standard normal
density distribution, with weight ¢(x) = \/#2—”@‘%"2. In particular, the HP of order s, Hy(x),

can be obtained in terms of the derivative of order s of the density function of the standard
normal distribution, as expressed in Eq. (2):

(=1 d¢(x)

Hy(x) = o) dv (2)
Next, we show the first eight HPs:
Ho(x) =1 (3)
Hi(x)=x (4)
Hy(x) =x* — 1 (5)
Hs(x) = x> — 3x (6)
Hy(x) =x* —6x* +3 (7)
Hs(x) = x> — 10x° 4 15x (8)
Hg(x) = x° — 15x* +45x* — 15 (9)
Hy(x) = x" —21x° + 105x* — 105x (10)
Hg(x) = x® — 28x% + 210x* — 420x% + 105 (11)

It is easy to proof that these polynomials satisfy the mentioned orthogonality property
given that Vs, j=0,1,2,...

! Different weight functions w(x) can be used; for details, see Abramowitz and Stegun (1972, pp. 774-775).
We will consider Py(x) = 1.
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sl, s=j

/x H, (x)Hj () (x)dx = {0’ kel (12)

The HPs also constitute the basis of the Edgeworth and Gram—Charlier (Type A) series,
which allow, under certain regularity conditions (Cramér 1925), the expression of any pdf,
f(x), in terms of an infinite series (Wallace, 1958) as follows?

) —gésHs(x)qb(x), where 5;% / Hy(x)f (x)dx (13)

Moreover, thanks to the orthogonality of the HPs, truncating the series to a specific
order n of the expansion allows for defining a family of SNP distributions, g(x; d), where
d=(dy,...,d,) € R" denotes the vector of the parameters.’

g(x;d) =

1y dﬂ«x)] B0) — () (14)
s=1

n—oo

However, the SNP distribution defined in Eq. (14) is only a density function for a subset
of values of d that guarantee g(x; d) > 0. To solve this problem, different types of
restrictions or positivity transformations have been proposed (Gallant and Nychka 1987),
even though they involve the introduction of unnecessary complexity for empirical
applications that implement maximum likelihood (ML) algorithms (given that in the
optimum ML leads to estimations that guarantee positivity).

The advantages of SNP distributions when fitting frequency functions lies in their
flexible parametric structure that permits to adjust location and scale with different
parameters than those used for skewness, leptokurtosis and even higher order moments.
Figure 1 illustrates the allowable shape of the SNP (depicted with 1000 simulated
observations) compared with a normal distribution. For the sake of comparison, in both
cases we consider the same location and scale parameters, ¢ = 0 and ¢ = 1, but we
introduce additional (even) parameters in the SNP. Particularly, Panels (al) and (a2)
incorporate d, = 0.1 and dy = 0.1 and Panels (bl) and (b2) d, =0.1, dy = 0.01,
de = 0.001 and dg = 0.005. Note also that Panels (al) and (bl) represent the whole
domain but Panels (a2) and (b2) just a detail of the right distribution tails. It is clear from
these pictures that the SNP not only captures leptokurtosis but also presents wavy and
heavy tails that may adapt the probability pattern of any data generating process.

In addition, the resulting higher number of parameters does not involve more com-
plexity in theoretical or empirical terms. For example, the central moments can be easily
obtained as linear functions of the distribution parameters (see “Appendix 1~ section).
Note that the even (odd) moment of order n depends only on the n first even (odd)
parameters. This fact allows for the search of initial values for the optimization logarithms
through the direct application of the method of moments (MM). A closed expression can
also be obtained for the cumulative distribution function (cdf) of the SNP distribution as a

2 For more details about the Edgeworth and Gram—Charlier series, see Kendall and Stuart (1977,
pp. 167-172).

3 It must be noted that given a truncating order, the resulting distribution is purely parametric, but the
truncating order is flexible to achieve a more accurate approximation to a given distribution. Without loss of
generality, we will assume that dy = 1.

@ Springer



896 Scientometrics (2016) 109:891-915

(al) Normal vs SNP (a2) Normal vs SNP
3 8
z z °
g = ®--- Normal g ®--- Normal
] =— SNP o S B— SNP
0 o O o
° el
o J___ e TN s J e
© T T T T 1 e f T T T 1
4 2 0 2 4 20 25 30 35 40
X X
(b1) Normal vs SNP (b2) . Normal vs SNP
=
0 o]
z ° z °
@ ®--- Normal g <~ ®--- Normal
o I B— SNP o ° =— SNP
Q °© 0 o
o
o o oo
° T 1 °© T T T T T T 1
6 4 2 0 2 4 6 0 1 2 3 4 5 6
X X

Fig. 1 Pdf of normal versus SNP distribution. Figures compare the shape of both Normal (dashed line) and
SNP (solid line) distributions with location and scale parameters, u = 0 and ¢ = 1, and additional
parameters for the latter. Particularly, Panels (al) and (a2) incorporate parameters d, = 0.1 and dy = 0.1
and Panels (bl) and (b2) consider d, = 0.1, dy = 0.1, dg = 0.001 and dg = 0.005. Panels (al) and (bl)
represent the whole domain, whereas Panels (a2) and (b2) a detail of the right tails of the distributions. Data
are simulated through 1000 replications

function of the normal distribution cdf, as shown in Eq. (15) (see the proof in “Appendix
2” section). This allows for a simple calculation of the probabilities and quantiles of the
SNP distribution.

a

Gi(a) = / g(x;d)dx
= (15)
- / (j)(x)dx—q’)(a)zdsHs—l(“)

The log-SNP distribution

Niguez et al. (2012) define a variable z > 0 as (standard) log-SNP if the variable
x = log(z) is SNP distributed and its pdf defined as in Eq. (14). The resulting distribution
inherits all the good properties of the SNP distribution, including its flexibility in capturing
the extreme values of the distribution, but the density is defined on R*, which is required to
fit productivity data. We will go a step further and similarly define a log-SNP distribution,
but rather over a linear transformation y = ox + .

Definition We will say that the variable z > 0 is log-SNP distributed with location
parameter i € R, scale ¢” € R and shape parameters d = (dy, .. .,d,)'€ R" if its pdf can be
expressed as
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log(z) 1 —log(0)-10*
1+ d,H; e 2 16
Z ( )} (ZO' 21 ) (16)

Defined in this manner, the lognormal distribution is a particular case of the log-SNP
(for dy = 0, Vs), which allows for a comparison of the improvements in the fit of the latter
to those obtained with the lognormal by using linear restrictions tests such as the likelihood
ratio (LR). This article shows that, as a matter of fact, the parametric flexibility of the log-
SNP allows for significant fit improvements to productivity distributions, as the log-SNP is
capable of representing different shapes (including jumps in the probability mass function
and heavy tails) through the incorporation of parameters in addition to those of a standard
lognormal distribution. These parameters are directly related to the distribution moments*
and constitute additional degrees of freedom for the estimation procedures. For example, if
only d, parameters are considered for s even skewness depends only on parameter o, and
the larger the expansion the heavier (and possibly wavier) the distribution tail is.

Figure 2 presents an illustration (1000 simulated replications) of the log-SNP allowable
shape in comparison with that of the lognormal, both with the same location and scale
parameters, i.e. 4 = 0 and o = 1. Panels (al) and (a2) depict a log-SNP with additional
parameters d, = 0.12 and dy = 0.11 and Panels (bl) and (b2) incorporate parameters
dy = 0.28, dy = 0.44, dg = 0.07 and dg = 0.009. In order to emphasize the behavior for
the extreme (positive) values Panels (a2) and (b2) display a zoom on the right tails of the
distribution. For this case, it is clear that the log-SNP allows more flexibility to capture
thick (and wavy) tails. Even more important, biased estimations and misleading results
may be obtained when using a single parameter distribution to fit distribution shape and
heavy tails.

h(z;p, 0%, d)

Data and methodology
Data

To test whether a lognormal or a log-SNP distribution fits the best to the performance
distribution of 140,971 researchers who have produced 253,634 publications in 18 fields of
knowledge, we used the data from O’Boyle and Aguinis (2012). These authors classified
the fields of knowledge based on the Journal Citation Reports (JCR), which provide impact
factors (IFs) in different fields of knowledge labeled within the categories of “sciences”
and “social sciences”. As it is well-known, there are multiple subfields included within one
JCR category, but they identified authors across all subfields so that authors publishing in
more than one area would have all their publications included.

The authors used impact factors from JCR in 2007 to identify the top five journals
within each field.” They selected field-specific journals to avoid having the search con-
taminated by authors from other sciences. Additionally, the authors used the “Publish or

4 Log-SNP’s moments can be directly derived as E[f'] = e/’ [1+ 3, dy(o1)'] (see Niguez et al.
2013).

5 It should be noted that the different size of journals in the JCR categories represents a shortcoming of the
selection procedure. Nevertheless, it is not clear if other arbitrary selection method would yield to better
results and, anyhow, this issue does not affect the advantages of the methodology proposed in this paper.
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Fig. 2 Pdf of lognormal versus log-SNP distribution. Figures compare the shape of both Normal (dashed
line) and SNP (solid line) distributions with location and scale parameters, 4 = 0 and ¢ = 1, and additional
parameters for the latter. Particularly, Panels (al) and (a2) incorporate parameters d, = 0.12 and d, = 0.11
and Panels (b1) and (b2) consider d, = 0.28, dy = 0.44, dg = 0.07 and dg = 0.009. Panels (al) and (bI)
represent the whole domain, whereas Panels (a2) and (b2) a detail of the right tails of the distributions. Data
are simulated through 1000 replications

Perish” program (Harzing 2008), which relies on Google Scholar, to identify all authors
who had published at least one article in one of these journals between January 2000 and
June 2009.° Their procedure is not absent of the common problems in bibliometric analysis
produced by the authors’ names ambiguity, e.g. the treatment of synonyms, homonymes,
misspellings, and processing errors. Further techniques might have been used to refine the
database (Momeni and Mayr 2016; Van den Besselaar and Sandstrom 2016) although they
are not substantial in our methodological framework. Furthermore, focusing on just five top
journals and the combined use of Web of Science and Google Scholar databases may help
to mitigate such problems (Yang and Meho 2006; Harzing and Van der Wal 2008; Harzing
2014; Harzing and Alakangas 2016). With this information, the productivity of the
researchers is measured as the number of articles published by an author in each of the
fields of knowledge during the observation period of 9.5 years.

A limitation of using this measure of productivity is the multiple authorship of
manuscripts, since multiple authorship may bias the results in favor some authors and,
comparatively, in areas where a high number of authors per paper is commonly accepted
by the research community (Ruiz-Castillo and Costas 2014; Mingers and Leydesdorff
2015). The literature on scientific production, however, does not discriminate by multiple
authorship. This procedure is known as “complete count”, i.e. the fact that an article is
equally valuable for all its authors regardless the number of authors and their marginal
contribution to the manuscript (Nicholls 1989; Ruiz-Castillo and Costas 2014). On the
other hand, another important issue when analysing research productivity is the relation
between quantity and quality (Kaur et al. 2015). In our study, as well as in O’Boyle and
Aguinis (2012), quality of top researchers is imposed by the fact that we only consider
publications in the five main journals in every field of knowledge. Then comparisons are

© For details about the data treatment, see O’Boyle and Aguinis (2012), p. 86.
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only done in terms of quantity of manuscripts for a given probability in the “true” dis-
tribution (i.e. a quantile), which proxies a level of difficulty taking into account the dif-
ferent practices between the areas.

Table 1 shows the descriptive statistics for the publications of the top researchers
included in our sample. In this table we also record the Median Impact Factor (MIF) of the
top five journals in each of the selected fields of knowledge, based on the JCR of the year
2007’ for each of the analyzed categories classified in sciences and social sciences. We
provide this citation index to obtain a broader view of each of the selected fields and,
particularly, its correlation with scientific production.

It can be observed that throughout the 18 fields of knowledge analyzed, the minimum
number of researchers is 1073 for the field of Ethics and the maximum is 30,531 for
Dermatology. For each field, we compute two Mean values on scientific production: Mean
(1) is the mean of publications for each field and for the entire sample of researchers; Mean
(2) is the mean of publications for each field but only for the researchers with a number of
articles above Mean (1). Mean (1) varies from 1.42 to 2.26 and Mean (2) from 2.56 to 5.92.
Furthermore, we compute the percentage of authors with less/more publications than (or
equal) to Mean (1)/Mean (2). We find that, on average, 71.38 % of all researchers have
productivity below Mean (1), whilst researchers with productivity above Mean (2) rep-
resent the 7.76 %. These results support Ruiz-Castillo and Costas’ (2014) findings about
the skewness of field productivity distributions, since a large proportion of researchers
have below mean productivity and only a small percentage of them account for most of the
publications.

Regarding the other statistics in Table 1, the standard deviation of publications has a
range of 0.97-3.38 publications and skewness and excess kurtosis reveals that the pro-
ductivity distributions exhibit positive skewness and leptokurtosis, with the field of
Genetics being the most skewed and leptokurtic of the sample. The maximum number of
articles per researcher varies from 13 (Law) to 120 (Genetics), depending on the field
considered. In addition, we find large differences when considering the MIF indicator (of
the top five journals in each area), which varies from 0.85 (History) to 18.30 (Genetics).
Furthermore, it is clear that the MIF is positively correlated to the maximum number of
articles per researcher. As a result, Genetics has the highest MIF and the maximum number
of publications per researcher, while the MIF of History places 18th and 17th in number of
publications per researcher. In general, fields that belong to the Sciences JCR category
have a larger number of researchers and, then, a larger MIF.

All in all, the results confirm the existence of wide differences in scientific production in
terms of number of articles per author between the different fields of knowledge, which is
consistent with other studies, e.g. Abramo and D’Angelo (2014) or Mingers and Ley-
desdorff 2015). Next we propose a new methodology based on the log-SNP to study how
these differences affect the productivity distribution, especially when measuring the pro-
ductivity of the top researchers.

Methodology

This section presents the methodology applied to characterize the research productivity in
each field of knowledge based on the log-SNP distribution. Details are provided on the ML
estimation methodology and its related goodness of fit measures used to choose between

7 We took the JCR of the year 2007 to be consistent with O’Boyle and Aguinis (2012), as that was the year
used by the authors to select the five main journals within each field of knowledge.
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the different pdfs nested on the family of log-SNP distributions (including the lognormal).
The pdf of the log-SNP distribution is sequentially estimated up to a truncating order of
n=S8.

Let z; be the number of articles published by an author in one of the selected fields of
knowledge; the log-likelihood function® for a log-SNP(p, a?, d) distributed observation
truncated to the eighth moment is given by:

log L(u, 0%,d|z;) = ,%1%,(2,1025)

1 (log(z:) — u\>
__<M> +10g

2 o o

S (O]

s=

The sequential estimation begins with the simplest nested density, the lognormal, and
the d; parameters are recursively added, the initial values of which are selected consistently
with their sample moments counterparts. The inclusion of new parameters in the pro-
ductivity distribution is performed according to accuracy criteria, i.e. the log-likelihood
(logL) and the Akaike Information Criterion (AIC), and linear restrictions tests provided by
the LR statistic. Based on these criteria, n = 8 was selected as the optimum truncating
order, and only the even parameters, d,, dy, dg and dg, were selected.

Results

Table 2 presents the ML estimates of the parameters of the performance distributions for
each of the fields selected. Panel A shows the estimated parameters for a lognormal
distribution, and Panel B shows the estimated parameters for the log-SNP distribution.
Panel C displays the LR statistic for comparing the log-SNP and the lognormal
distributions.

The results of the estimations reveal that all the models adequately capture the mean and
standard deviation of each of the fields, denoted as parameters y and o, respectively. The
P values clearly indicate that these parameters are highly significant for both distributions.
It is noteworthy that the parameter o, which also capture skewness of the lognormal and
the log-SNP provided that odd parameters are not included, remains very stable for all
productivity distributions. This evidence is consistent with Ruiz-Castillo and Costas (2014)
who found that “in spite of wide differences in production and citation practices across
fields, the shape of field productivity distributions is very similar across fields”. However,
as shown in Panel B, for the log-SNP distribution, the d; parameters are also highly
significant for the majority of fields of knowledge. When analyzing the AIC (which
penalizes log-likelihood value with the inclusion of additional parameters) for the two
distributions, we found that this criterion is consistently lower for the log-SNP distribution,
which suggests that the modeling based on this distribution is clearly superior. In addition,
from the LR statistics included in Panel C, we conclude that for all the selected fields,
incorporating the d, parameters improves the accuracy of the model.’

8 The code for the implementation of the maximum likelihood estimation algorithm in R package is
available upon request.

¥ Note that we did not include the d, parameters for s odd, after having tested that they were not signifi-
cantly different from zero. This result reinforces the fact that the parameter ¢ captures all relevant features
about the skewness. It must be highlighted that the latter does not contradict the fact that the d; parameters
for s even are highly significant, which means that productivity distributions have very thick tails and thus
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Fig. 3 Pdf of research productivity in finance and dentistry. The figure shows the distribution of the
empirical frequencies (histogram) of the productivity of the researchers who published in the five top
journals (in JCR-2007 terms) in finance and dentistry during the period 2000-2009. The estimated pdfs
under the lognormal and log-SNP specifications are depicted in dashed line and solid line, respectively

An example of the fit quality obtained for two (randomly selected) fields, Finance
and Dentistry, is captured in Fig. 3. This figure depicts the empirical histogram and pdf
values estimated under a lognormal specification and under the log-SNP. In both cases,
the log-SNP distributions more adequately capture not just the values around the mean
but also the extreme values. Figure 4 shows in detail the right tails of the distribution,
which capture the frequency of the researchers with higher productivity. From these
figures, it is clear that the log-SNP specification allows the better characterization of
the research activity.

Figure 5 shows the comparison between the fitted densities for Finance and Dentistry in
terms of the empirical and theoretical cdfs for both specifications, the log-SNP and the
lognormal. The latter appears to underestimate the cumulative probability (especially for
Dentistry) when compared to the log-SNP.

Figure 4 illustrates how the lognormal distribution underestimates research productiv-
ity, especially for the more extreme values (under the lognormal distribution, a researcher
must publish less articles to be included in the top quantiles of the performance distri-
bution). Table 3 quantifies these effects for the different fields of knowledge by computing
the empirical and estimated quantiles under the lognormal and log-SNP for confidence

Footnote 9 continued
require different parameters to provide accurate measures of the “probability of being a very top researcher”
in every field.
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Fig. 4 Pdf of research productivity in finance and dentistry (right tail). The figure shows the right tail of the
distribution of empirical frequencies (histogram) of productivity of the researchers who published in the five
top journals (JCR-2007 ranking) in finance and dentistry during the year 2000-2009. Fitted lognormal and
log-SNP pdfs are depicted in dashed line and solid line, respectively

levels of 5, 1, 0.1 and 0.05 %.'° Note that, once the productivity distributions are properly
estimated, the definition of a top researcher in every field requires the computation of the
corresponding quantile for a given probability. These quantiles represent bounds of per-
formance in terms of number of articles (regardless the number of authors), provided that
quality is guaranteed by considering only publications on the top 5 reviews in every field.
Furthermore, these quantiles are fairly comparable among different areas.

The values in the table clearly indicate the higher accuracy of the log-SNP distribution
fits, particularly in the tails, and the underestimation of the productivity of top researchers
obtained from the traditional parametric distributions such as the lognormal. For example,
for the field of Agronomy, it can be seen that to belong to the top 0.05 % of researchers
who publish the highest number of articles in the best journals, 15 publications are
empirically required. This limit is much less strict if we assume that the distribution is
lognormal (6 publications) as compared to log-SNP (12 publications). These results are
consistent with the research by Kumar et al. (1998), Perc (2010) and Eom and Fortunato
(2011), who found that the use of the lognormal distribution for modeling bibliometric
indicators underestimates the heavy tails of the distributions.

10 The quantiles of the log-SNP distribution are obtained from the cdf displayed in Eq. (15) and the Inverse
Transform Method (ITM).
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Fig. 5 Cdf of research productivity in finance and dentistry. The figure shows the empirical cumulative
distribution function of the productivity of the researchers who published in the five top journals (JCR-2007
ranking) in finance and dentistry during the period 2000-2009. Fitted lognormal and log-SNP cdfs are
depicted in dashed line and solid line, respectively

Further results

This article proposes a new methodology to compute research productivity for top
researchers through the quantiles of a new and general distribution called log-SNP. Our
main application compares these measures with those of the lognormal with a sample of
scientific production in 18 (arbitrarily chosen) fields, finding the outperformance of the log-
SNP. Nevertheless, the focus of the paper is done on the technique more than on the
particular results. In order to justify that our result is general we replicated the study with
the productivity data provided in Borokhovich et al. (1995), which refer to academic
institutions (in the field of finance) instead of individual researchers. Particularly, the data
accounts for the number of articles published from 1989 through 1993 in a set of 16 finance
journals by authors affiliated to different institutions at the time of publication. The
journals in finance (excluding real estate and insurance) were selected from those listed in
Heck’s Finance Literature Index for 1993. Only articles and notes were included in sample.
The number of publications attributed to each academic institution was adjusted for the
number of authors. For example, for publications with two authors affiliated to different
institutions every institution received a credit for 0.5 article. Any proportion of an article
that was not attributable to an author affiliated with an academic institution located in the
United States or Canada was deleted from the study. A total of 330 institutions were
included in this sample.
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Fig. 6 Pdf and cdf of institutional research productivity. The figure shows: a the right tail of the distribution
of empirical frequencies (histogram) of research productivity for academic institutions that have published a
set of 16 finance journals between the years 1989 and 1993. The fitted lognormal and log-SNP pdfs are
depicted in dashed line and solid line, respectively. b The figure shows the empirical cumulative distribution
function of the same sample. The fitted lognormal and log-SNP cdfs are depicted in dashed line and solid
line, respectively

Table 4 reports the results of this new estimation. Panel A displays the ML estimates for
the research productivity on top finance journals for academic institutions. The results are
consistent with those previously obtained for researchers in different fields of knowledge,
i.e. the log-SNP outperforms the lognormal according to the LR test and thus the log-SNP
parameters are highly significant. Panel B compares the number of articles empirically
observed with those theoretically expected under both specifications revealing the out-
performance of log-SNP. In this case it seems that the lognormal overestimates the dis-
tribution tails, particularly for low confidence levels. This result corroborates the evidence
that the use of rigid distributions involve misleading results because are unable to fit
different characteristics of the distribution (particularly extreme values) with a single (or
two) parameter(s).

Figure 6 illustrates the assessment above showing the best fit of the lof-SNP in terms of
the right tails of the pdf (Fig. 6a) and the cdf (Fig. 6b) compared with the empirical
distributions.
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Discussion and conclusions

Bibliometric analysis has been shown to be a valuable method for evaluating scientific
production and has experienced a growing impact in the academia. However, the literature
indicates that in most cases, the distributions commonly used for measuring productivity
have been shown to underestimate the behavior of the top researchers, given that their
productivity seems to be generated by a distribution with very heavy tails. This fact calls
for the search of more appropriate distributions and methodologies.

This study analyzes the research productivity in 18 fields of knowledge belonging to the
JCR categories of sciences and social sciences between the years 2000 and 2009. The
results show that the level of productivity, as measured by the number of publications per
author, depends on the field of knowledge being studied, which is consistent with previous
evidence. In particular, the fields that belong to the category of sciences have a higher
number of publications per author. In addition, we observe that the MIF indicator is highly
correlated to the maximum number of articles per researcher; that is, the greater the
number of articles published in top journals by each researcher (usually the most cited), the
greater the MIF by field of knowledge.

This study proposes a novel methodology based on the computation of the quantiles of a
flexible log-SNP distribution for measuring the scientific productivity distribution of top
researchers in different fields of knowledge. Such a distribution nests the lognormal and
includes new parameters for accurately capturing the heavy tail of the research productivity
distribution. Our study shows, for both researchers and institutions productivity, that the
log-SNP provides a better fit of research productivity distribution than the lognormal and
quantifies the differences in the measures of the top researchers’ productivity attached to
the distributional hypothesis. We argue that the log-SNP is an accurate data generating
process for the top researchers’ productivity, and thus this process is more reliable than that
of the lognormal (that is nested in our model) since the log-SNP is more flexible when data
are highly skewed and there are possible jumps in the tail due to extreme observations.

Therefore we provide an interesting methodology to measure scientific productivity that
can be used when the performance of authors, institutions or fields have to be compared or
aggregated so as to implement policies based on academic performance.
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Appendix 1

This appendix lists the first eight d; parameters in terms of the central moments of the SNP
distribution. For more information, see Del Brio and Perote (2012).

dy =y (18)

=5 —1) (19)

N =
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1
dy = 3 (13 —3m) (20)
1
dy :ﬁ(ﬂ4—6ﬂz+3) (21)
1
ds = m(us —10p; + 151) (22)
1
dg = m(ﬂé — 15u, +45p, — 15) (23)
1
dn = e (= 215 + 1051, = 105p) (24)
1
dy = 7525 (g = 28415 + 21044 — 4201, + 105) (25)

Appendix 2

This appendix derives the cdf of the SNP distribution.

a

Gx(a):/g(x;d)dXZ /a o(x) dx+Zd /H(x dx

—00
a

_ / qﬁ(x)dx—gdsH:l(x)ﬁf’(x
:/ x)dx — ¢ Zst 1

Given that lim H(x)¢(x) =0 Vs> 1, it follows that

x—+00

S s—1
J R e e
= (=1)(=1)"""Hy 1 () p(x) = —Hy 1 (x)p(x)

—00
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