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Abstract Quantitative measurements of bibliometrics based on knowledge entities (i.e.,

keywords) improve competencies in tracking the structure and dynamic development of

various scientific domains. Co-word networks (a content analysis technique and type of

knowledge network) are often employed to discern relationships among various scientific

concepts in scholarly publications to reveal the development and evolution of scientific

knowledge. In relation to evolutionary network analysis, different link prediction methods

in network science can assist in the prediction of missing links and modelling of network

dynamics. These traditional methods (based on topological similarity scores and time

series methods of link prediction) can be used to predict future co-occurrence trends among

scientific concepts. This study attempted to build supervised learning models for link

prediction in co-word networks using network topological similarity metrics and their

temporal evolutionary information. In addition to exploring the underlying mechanism of

temporal co-word network evolution, classification datasets containing links with

both positive and negative labels were also built. A set of topological metrics and

their temporal evolutionary information were produced to describe instances of classifi-

cation datasets. Supervised classifications methods were then applied to classify the links

and accurately predict future associations among keywords. Time series based forecasting

methods were used to predict the future values of topological evolution. Results in relation

to supervised link prediction by different classifiers showed that both static and dynamic

information are valuable in predicting new links between literary concepts extracted from

scientific literature.
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Introduction

The creation of scientific knowledge has become more dynamic and interdisciplinary, as

new avenues of scientific research emerge from new connections forged among disjoint

and existing areas of science (Pan et al. 2012). Synthesising existing pools of scientific

concepts often aids the creation of new hypotheses in scientific research (Choi et al. 2011).

Numerous digital libraries and the exponential growth of scientific literature have liberated

and massively enriched these ever-expanding concept pools and account for the rapid shift

in scientific research trends from individual to multi-disciplinary domains. Today, scien-

tists postulate new hypotheses encompassing concepts from multiple domains; for exam-

ple, diverse concepts from the domains of physics, computer science and social science

have contributed to the rise of ‘network science’. The eminent source of any scientific

concept is the scientific article in which the author(s) first conceptualise their work using

appropriate keywords. These descriptor keywords represent the thematic context of science

and are also known as knowledge entities (Ding et al. 2013). Many of these knowledge

entities are created with a degree of independence; however, due to the amalgamation of

various scientific domains, interrelationships among these entities are often unknown, even

to their originators. Further, innovative scientific questions can now be answered through

re-combinations and the association of concepts from multiple articles across interdisci-

plinary domains (van der Eijk et al. 2004).

Bibliometrics, a term first coined by Belgian librarian Paul Otlet in 1934 (Rousseau

2014), uses quantitative methods to map the structure of this interdisciplinary research

trend (Van Raan 2003; Abbasi et al. 2011; Uddin et al. 2012, 2013). One bibliometric

method for finding associations among interdisciplinary scientific concepts is based on the

notion of co-occurrence; that is, the simultaneous appearance of feature items. Of various

co-occurrence based techniques in bibliometrics (Waltman et al. 2010), the co-word

analysis (Callon et al. 1983)—a content analysis technique, is a contemporary and quan-

titative linguistic method that provides both an intuitive (Wu and Leu 2014) and cognitive

picture (Rip and Courtial 1984) of literary content. The term ‘intuitive’ reflects the fact that

co-word network ostensibly discerns the intrinsic and complex relationships among dif-

ferent concepts from literature, and ‘cognitive’ denotes the intellectual and subjective

information in regards to these relationships. Further, it maps the strength of associations

between knowledge items from textual data by pursuing the interrelationships of science

(He 1999). Combination of relational bibliometrics and network science to build a network

of knowledge entities resulted in co-word network which is also designated as the

knowledge network of science (Wang et al. 2010; Uddin et al. 2015; Khan et al. 2016).

Leydesdorff (2002) conjectured that the dynamics of science is reflected through scientific

literature and co-word networks are capable of modelling the dynamics of scientific

knowledge structures (Leydesdorff 1996). Thus, from the aforementioned perspectives, co-

word networks offer an effective approach not only to discern correlations among various

research themes and trends but also map the evolution of knowledge across various

domains (Su and Lee 2010). Due to the network encoding of relationships among key-

words/key-concepts from scientific texts, it is also applicable to network and graph related

measurements. Further, Wang et al. (2010) also found that co-word networks conform to

and have an affinity with ‘small world’ and ‘scale free’ effects (two important properties of

complex networks).

Similar to science itself and like many other real-world complex networks, co-word

networks are highly dynamic. The evolution and development of science and technology
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create new knowledge from previously accumulated and ubiquitous information (Lee et al.

2009). New relationships concurrently emerge among prevailing concepts with the

knowledge growth over time. Related to this self-organizing development of science

exhibiting growths, shrinkages and emergent behaviours (Sun et al. 2012), co-word net-

works also evolve both temporally (Ronda-Pupo and Guerras-Martin 2012) and spatially

(e.g., power-law cluster-size distributions) (Van Raan 1997). New scientific concepts add

new nodes and new hypotheses generate new links in co-word network. On the other hand,

aggregated studies (conducted in respect of a single hypothesis that can be related to other

hypothesis) reinforce the relationship among corresponding keywords/concepts, and new

scientific domain engenders the rise of new subject categories within a network. From the

perspective of modelling network dynamics and its evolution, evolutionary network

analyses (e.g., link prediction) have been the subject of considerable discussion in the

network science community (Zelinka et al. 2012). Link prediction is a time-evolving

network analysis model that addresses the problem of predicting the likelihood of future

associations among nodes that are missing from a network in its current state. Link pre-

diction also attempts to identify the extent to which network evolution can be modelled

using features intrinsic to the network topology itself (Liben-Nowell and Kleinberg 2007).

An state-of-the-art categorisations of various link prediction techniques is discussed in

survey article by (Wang et al. 2015). These techniques have mostly been based on topo-

logical similarity patterns between node pairs of static networks. Temporal link prediction

in dynamic networks use time series based link prediction methods (Tylenda et al. 2009;

Soares and Prudêncio 2012) that take account of the time-aware evolutionary history of

network topologies and also employ different forecasting methods. Researchers have used

both supervised and unsupervised methods to assess the viability of these techniques for

link prediction.

The majority of the aforementioned link prediction techniques have successfully

explored different social scholarly networks, including, co-authorship (Yu et al. 2014),

scientific collaboration (Yan and Guns 2014), citation (Shibata et al. 2012) and information

networks (Davis et al. 2011); however, little attention has been paid to co-word networks.

Similarly, the use of link prediction across co-word networks to understand the evolu-

tionary mechanism has attracted little interest from the network science community. Thus,

this study sought to analyse supervised link prediction methods across co-word networks

by using a set of features that arose from the network topology. The temporal evolution of

network structural information was used to predict future links among different literary

concepts. The performance of supervised link prediction was also analysed and compared

across dynamic and static networks. This study sought to contribute to the literature by: (1)

providing an understanding of the evolution of co-word networks in regards to different

types of links constructed using author selected keywords from the scientific literature; (2)

predicting topological evolution of future links by utilizing time series forecasting meth-

ods; (3) defining positive (i.e., links that truly occur in future) and negative (i.e., links that

do not appear in future) classes of links in classification datasets considering topological

features of both static and evolving networks; and (4) experimenting and evaluating a set of

supervised learning methods to classify these links to predict future associations among

keywords successfully. The primary contribution of this research relates to link prediction

across both static and dynamic co-word networks using network topological information;

however, this could also be valuable in generating new hypothesis for literature based

discovery (Smalheiser and Swanson 1998), and forecasting emerging trends (Kontostathis

et al. 2004). Further, this study identified a list of important topological features that

contribute to co-word network evolution.
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Link prediction and topological features

Link prediction is one of the most fundamental frameworks of evolutionary network

analysis. Existing link prediction methods can be broadly categorised into similarity based

strategies, maximum likelihood algorithms and probabilistic models. Despite most of these

methods consider only a static snapshot of a network and ignore the dynamic evolutionary

information, they are used in many real-world applications, including scientific collabo-

rations (Wang and Sukthankar 2014), medical informatics (Kastrin et al. 2014) and

information and network security (Huang and Zeng 2006). To overcome the issues asso-

ciated with static networks, researchers have also considered the time-aware evolution of

network topologies in dynamic networks (Li et al. 2014). Some analyses have also used the

temporal evolution of link occurrences to predict the probability of occurrences for both

new and repetitive links in the future (Huang and Lin 2009; Güneş et al. 2016). These

methods use the time series approach for link prediction to emulate the dynamic behaviour

of complex networks. They also use link creation time to analyse the effect of the elapsed

time since a link first appeared and/or how recentness can affect the formation of new links

around associated nodes.

Irrespective of the nature of analysis using the different methods described above,

researchers have exploited both the node attributes and network structural information of

observed links at a specified time T to predict the appearance of new links at the time

T ? 1. Network topology based structural similarity metrics represent the basic and

widespread building block of link prediction models. In respect to link prediction, these

metrics have shown significant performance improvements compared to other metrics, as

they provide objective information about the actual connections in the network. Co-word

networks that manifest the network representation of associations among different scien-

tific concepts are also thought to be expedient to network topology based link prediction

methods. Thus, in this study, a set of network topology based features was used to predict

future associations among scientific concepts. The simplest topological metrics represent a

structural similarity between node pairs that depend solely upon network structure.

According to their characteristics, these metrics can be subdivided into two broad cate-

gories: (1) local or neighbourhood-based metrics; and (2) global metrics containing the

ensemble of network path and random walk. The following section describes the metrics

explored in this study and the corresponding equations used to compute the similarity

between the nodes. The topological similarity score between non-connected nodes u and

v is denoted by score (u, v) and calculated separately for each metric.

Local metrics

The local similarity metrics used in this study are listed below.

CommonNeighbours

The CommonNeighbours metric (Newman 2001) is the most widespread, basic and sim-

plest type of metric used in link prediction. It measures the number of nodes with which

two adjacent nodes have a direct association. If dðuÞ denotes the set of neighbours to node

u, then, using this metric, the similarity score between node u and v is:

score ðu; vÞ ¼ jdðuÞ \ dðvÞj
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AdamicAdar

The AdamicAdar (Adamic and Adar 2003) metric is similar to the CommonNeighbours

metric, except that the high degree of common neighbours is less weighted. The reasoning

behind this is that a popular common interest provides less evidence of a strong link

between two nodes in a network. The similarity score for node u and v using AdamicAdar

is defined as:

scoreðu; vÞ ¼
X

z�d uð Þ\d vð Þ

1

log dðzÞj j

Resource Allocation

An empirical investigation by Zhou et al. (2009) revealed that many links are assigned

similar scores for node similarity when only the information of the nearest neighbour is

used. To address this issue, they presented a new measure named ‘Resource Allocation’ to

exploit the next nearest neighbour information. Using this method, the similarity score

between two nodes is calculated as:

score u; vð Þ ¼
X

z�dðuÞ\dðvÞ

1

d zð Þj j

Global metrics

In addition to node-neighbourhood information, the network paths between two nodes can

also be used to measure the similarity/affinity between node pairs. Similarly, network

interactions between node pairs can be computed by random walks on graphs that represent

the diffusion of information from one node to the other. A random walk uses transition

probabilities from a node to its neighbours to denote the destination of a random walker

from a current node. A description of the global metrics used in this study follows.

Katz

The Katz (1953) metric is a variant of the shortest path distance and is also based on the

ensemble of all paths. It directly sums all the paths that exist between a pair of vertices.

However, to penalise the contribution of longer paths in the similarity computation, it

exponentially damps the contribution of a path by a factor of bl, where l is the path length

and b is the damping factor. The similarity score between node u and v using this metric is

computed as:

score u; vð Þ ¼
X1

l¼1

bl � jp lð Þ
u;vj ¼ b1p 1ð Þ

u;v þ b2p 2ð Þ
u;v þ b3p 3ð Þ

u;v þ � � �

Here, pl
u;v denotes the path of length l between node u and v. This study used b ¼ 0:005.
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RootedPageRank

Rooted PageRank is a modification of PageRank (Chung and Zhao 2010), a core algorithm

used by search engines to rank search results. For link prediction purposes, the random

walk assumption of the original PageRank is altered by a similarity score between two

vertices (u and v) that is measured as the stationary probability of v in a random walk that

returns to u with a probability of (1 - a) in each step, moving to a random neighbour with

probability a. The proximity score between node pairs u and v is calculated in this method

as follows:

score ðu; vÞ ¼ �Hu;v � pv

Here Hu,v is the expected time/step for random walk from u to reach v and pv is the

stationary distribution weight of v under the following random walk condition:

with probability a jump to u

with probability 1 � a jump to random neighbour of the current node

�

This study used a ¼ 0:005.

SimRank

SimRank (Jeh and Widom 2002) adopts the idea that nodes linked to similar nodes are

similar. SimRank method begins with the assumption that any node is maximally similar to

itself and employs a decay factor of c to determine how quickly similarities or weights of

the connected nodes decrease as they get farther away from the original nodes. In link

prediction, the proximity score using SimRank is computed as follows:

score ðu; vÞ ¼
1 if u ¼ v

c �
P

a2dðuÞ
P

b2dðvÞ score u; vð Þ
d uð Þj j d vð Þj j otherwise

8
<

:

In this study, the parameter c was set to 0.8.

Aggregated features

In addition to topological proximity measures, individual network attributes can provide

useful information to support link predictions. Centrality measures are the simplest of these

attributes. As these attributes pertain to an individual node in a network, some aggregation

functions need to be used to combine the attribute values of the corresponding nodes in a

node pair. In this study, we used the sum function to aggregate the following centrality

measures of each node in a node pair.

Degree centrality

The number of neighbours in the neighbourhood adjacent to a particular node defines its

nodal degree or degree of connections and measures its participation in the network.

Degree centrality assists in quantifying the momentum of knowledge convergence and

diffusion by measuring knowledge flow from source nodes to target nodes. The intuition

behind using degree centrality is that, the possibility of acquiring more connections by
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nodes in a network will increase the likelihood of forming new links. The degree centrality

Cd
u of a node u is calculated as follows.

Cd
u ¼

P
v:v6¼u puv

n � 1

where puv ¼ 1 if there exists a link between node u and v or 0 otherwise and n = number

of nodes.

Closeness centrality

The closeness centrality of a keyword in co-word network is defined by the inverse of the

length of the shortest paths to/from all the other keywords. Higher closeness centrality

indicates a higher influence on the other actors in the network. Thus, closeness centrality

measures the momentum of influence or being influenced. The more influence a node has

over other nodes, the more likely it is that the other nodes will be steered to form links. The

degree centrality Cc
u of a node u is calculated as follows.

Cc
u ¼ n � 1

Pn�1
v¼1 g u; vð Þ

where g u; vð Þ denotes the shortest-path distance between node u and v and n denotes the

number of nodes in the network

Time series and forecasting models

Failure to acknowledge the dynamicity of a network resulting from changes in its past

behaviour may lead to poor performance in regards to the accuracy of predicting future

links among nodes. Researchers have used time series analyses and forecasting methods to

overcome this issue and follow the frequently changing behaviour of network structure

(Soares and Prudêncio 2012; Güneş et al. 2016). Using time series to acquire historical

information in relation to the topological changes of non-connected node pairs can increase

the accuracy of time series based link predictions. In time series forecasting, past obser-

vations of a time variable can be analysed to develop a model that describes the underlying

relationship and extrapolation can be used to predict the future values of the variable. In

this study, a univariate time series of topological similarity scores was built for non-

connected node pairs in relation to individual co-word networks for each year of the

training period. A separate time series was built for each similarity metric (see ‘‘Link

prediction and topological features’’ section). Three well-known forecasting models with

different underlying assumptions were then used to compute the final score for each metric.

This became the input for the classification dataset. The three forecasting models used in

this study are described below.

Exponential smoothing

Brown, Holt and Winter (De Gooijer and Hyndman 2006) developed the method of

exponential smoothing in the late 1950s. Since then, it has motivated some successful

forecasting methods. In this method, forecasts are the weighted averages of previous

observations and the weights of the observations decay exponentially with time. Single
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exponential smoothing (SES) with a weight of a is the simplest exponential smoothing

method. The forecast equation can be defined as:

ŷt ¼ ayt�1 þ ð1 � aÞŷt�1

where ŷt represents the forecasted value that depends on both the previous observations and

previous forecasts. Linear exponential smoothing (LES) is a variation of this method that

refines SES with a b component and considers any short trends in the series. The fore-

casting equation for LES can be described as:

ŷtþhjt ¼ lt þ hbt

lt ¼ ayt þ 1 � að Þ lt�1 þ bt�1ð Þ

bt ¼ b lt � lt�1ð Þ þ 1 � bð Þbt�1

where lt is an estimate of the level of the series at time t, bt denotes an estimate of the trend

(i.e., the slope) of the series at time t, a is the smoothing parameter for the level and b is the

smoothing parameter for the trend in which 0� a; b� 1.

Notably, there are 15 variations of the exponential smoothing process and interested

readers should refer to the work by Hyndman et al. (2008) for comprehensive details on

this method.

Auto regressive integrated moving average (ARIMA)

First popularised by Box and Jenkins (1976), the auto regressive integrated moving

average (ARIMA) model is a well-known linear forecasting technique in the area of short

term forecasting. It projects future values of a time series based entirely on its own inertia

and performs well where correlations between past patterns are stable. Under the ARIMA

model, the future values of a variable are determined using a linear combination of past

values and past errors. The model can be expressed as follows:

yt ¼ h0 þ u1yt�1 þ u2yt�2 þ � � � þ upyt�p þ et � h1et�1 � h2et�2 � hqet�q;

where yt = actual value, et = random error at time t, ui and hj are the coefficients and

p and q are the integers for the auto regressive (AR) and moving average (MA) polyno-

mials. ARIMA (p, d, q) represents an ARIMA model where p equals the number of

autoregressive terms, q equals the number of lagged forecast errors in the prediction

equation and d equals the number of non-seasonal differences needed for stationarity.

Random forecasting

As the time series data was short in length and, in some instances, the topological similarity

value was zero for keyword pairs due to their absence in corresponding networks, this

study used random walk forecasting. Forecasts in this method are based on the last

observed value of the time series. Random walk forecasting can be achieved if n = 1 is

used in the moving average (MA) model. The forecast can be defined as:

yt ¼ yt�1
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Data acquisition

For data collection, ‘Scopus’ (Elsevier 1880) (the largest abstract and citation database of

peer-reviewed literature, including scientific journals, books and conference proceedings)

was used. Scopus delivers a comprehensive overview of the world’s research output in

science, technology, medicine, social science, the arts and humanities. The search strings

for Scopus were ‘Project Management’ and ‘Topic Model’. The latter denotes a technique

that has been widely used to discover the main themes pervading large and unstructured

texts and organise documents. The following constraints were imposed when searching the

Scopus database: (i) the articles had to be published in English journals; (ii) the articles had

to be published between the years 2010 and 2015 (inclusive); and (iii) the search terms had

to be present in the articles’ titles and abstracts. Titles, abstracts and associated author

selected keywords were extracted for the 6 year period. The third dataset, ‘Obesity’, came

from a previous research (Khan et al. 2016). However, the entire 20 years of this dataset

was not used; rather, author selected keywords and articles published between the years

2008 and 2012 (inclusive) were extracted. In addition to data for this 5-year period, data for

the year 2013 was also extracted from Scopus to achieve a similar duration of 6 years (the

same period as that used in the other datasets). For the sake of brevity, these three research

sections are referred to as OBS, PMG and TM for obesity, project management and topic

model, respectively. Table 1, sets out the basic statistics in relation to the number of ex-

tracted articles and the author selected keywords for the three datasets.

Research methodology

This section introduces the research methodology and its functional parts (including

keywords extraction, pre-processing, co-word network construction, classification dataset

construction, forecasting and time series dataset construction) used to model network

topological evolution and the supervised learning methodology used to classify positive

and negative classes of link instances.

Keyword extraction

The main objective of the keyword extraction phase was to select a set of keywords that

represent the characteristics of the selected articles. The relevant keywords act as con-

stituents and can be used to generate co-word networks. Each extracted author selected

keywords (as attached to each article) that represent how the author(s) understand their

research work and its thematic contexts. To be computationally effective from the

Table 1 Statistics of three datasets

Dataset name No. of articles No. of keywords

OBS 44,482 15,022

PMGT 5764 11,253

TM 1613 3668

OBS obesity, PMGT project management, TM topic model
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perspective of link prediction, keywords that appeared in at least more than one article

were selected. Keywords that do not appear in more than one article are considered

unsuccessful in gaining the attention of other scientific authors and will not significantly

affect the prediction of future links.

Text pre-processing

Text transformation is important in retrieving information and discovering the structured

non-trivial knowledge from texts. General data cleansing tasks were performed on the

author selected keywords that include removing punctuation and accents from words and

changing plural nouns to their singular form. Additionally, different representations of

some keywords were standardised (e.g., Cocitation $ Co-Citation, Coword $ Co-word

and Neighbor $ Neighbour) and different semantically similar concepts with similar

meaning were normalised into one keyword (e.g., Longitudinal Study $ Longitudinal

Analysis $ Longitudinal Method, Bayesian Analysis $ Bayesian Method $ Bayesian

Approach). For some concepts, the abbreviated form was considered in place of the

concept (e.g., SVM $ Support Vector Model/Machine, Body Mass Index $ BMI). The

plural representations of some keywords were also changed to their single form (e.g.,

Strategies $ Strategy, Studies $ Study, Processes $ Process).

As stated by Liben-Nowell and Kleinberg (2007), it is impractical to seek predictions

for edges whose source and destination nodes are not present both in the training and test

intervals. In light of this and due to the aforementioned filtering processes (see ‘‘Keyword

extraction’’ and ‘‘Text pre-processing’’ sections), a list of relevant keywords (as nodes for

three datasets) was selected (see Table 2 for statistics).

Keyword co-occurrence network

Co-occurrence is the measurement that attempts to identify objects that tend to occur

together. A keyword co-occurrence network (or simply a keyword network) is a co-word

network in which the extracted author selected keywords act as nodes and their co-ap-

pearance within an article denote an edge in the network. Subsequent co-appearances in

articles of particular keyword pairs increase the respective edge weight.

In the context of link prediction, the training phase for the first 5 years of each dataset

and the final year as the test phase were defined. Consequently, the year range of

2010–2014 was used as the training phase for both the PMGT and TM datasets and the

year 2015 was used as the test phase. In OBS, the period of 2008–2012 was defined as the

training phase and the year 2013 as the test phase. Thus, the co-word networks for both the

Table 2 Node and edge statistics of co-word networks for the three datasets

Dataset name ET ET?1 Positive edges Negative Edges Nodes

OBS 100,623 34,382 18,543 10298 K 4545

PMGT 18,199 3885 2830 3234 K 2608

TM 2440 518 321 207 K 679

ET represents the number of edges in the training phase and ET?1 represents the number of edges in test
phase. Positive edges represent new co-occurrences appeared in the test phase but not in the training phase.
Negative edges represent all other potential non-existent edges in both training and test phase
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training and test phases were built separately for the three datasets. GT (VT, ET) is used as

the notation for the training network and GT?1 (VT, ET?1) as the notation for the test

network for the rest of the study, where VT represents the set of keywords appearing in both

phases and E represents their co-occurrences in articles.

Supervised link prediction

The approach of Al Hasan et al. (2006) was adopted to set up supervised link prediction. In

this experimental domain, the interaction between nodes (i.e., keywords) was defined as

their co-appearances in research articles. As stated above, for the sake of link prediction,

the training phase was defined as T and the test phase as T ? 1. The classification dataset

was prepared by choosing pairs of keywords from VT that appeared together in articles

during T ? 1, but not in T. Each such pair could have either a positive or negative label

[I(u,v) = 1/0] depending on its presence in the test phase T ? 1. Co-occurrence of keyword

pairs within an article in T ? 1 represented a positive instance in the classification dataset;

for example, in the OBS dataset, there were 4545 keywords, 100,623 edges in T and 34,402

edges in T ? 1. Of the 34,402 edges, 18,563 unique edges were found in T ? 1 that were

non-existent in T and represented positive instances in the classification dataset. The

approximate number of links with negative class label in this case was 10298 K. Table 2

summaries the statistics of nodes and edges for both training and test phases along with the

number of positive and negative class link instances for the three datasets.

Supervised methods of link prediction problem need to predict possible future links by

successfully discriminating links with positive label [l(u,v) = 1] from links with negative

label [l(u,v) = 0] within a classification dataset. Thus, supervised link prediction turns into

a binary classification task that involves learning positive and negative instances by

exploiting interesting features describing them. This study employed network intrinsic

features (see ‘‘Link prediction and topological features’’ section) of the node pairs to

describe individual data point in the classification dataset. Network structural features were

used to generate values of topological similarity score, scorei (u, v)—the ith feature for

each instance in the dataset. Linkpred (Guns 2014) software was used to generate scorei (u,

v).

Similar to social networks, in the context of link prediction over co-word networks, the

test network GT?1 was extremely sparse where only a small segment of nodes formed

associations in T ? 1. Consequently, a large number of potential links were non-existent.

The surging number of negative class instances (compared to the number of positive class

instances) resulted large class skewness in the classification dataset for the supervised link

prediction. It is evident from Table 2 that the number of links with negative class label far

outweighed the number of links with positive class label across each of the three datasets.

This represents the most infamous problem of supervised link prediction; that is, the class

imbalance problem. Lichtenwalter et al. (2010) asymptotically imposed a higher limit on

the ratio between the positive and negative samples in a classification dataset. This study

initially restricted its workload ratio of positive and negative class labels to 1:10 as fol-

lowed by (Wang et al. 2007).

Static and evolving (dynamic) networks

This study used well-known topological metrics to analyse the temporal evolutions of co-

word networks. The training phase of the three datasets was split into five different time

windows (n = 5) with each window denoting a year. The co-word network GT in the
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training phase was split into smaller networks for each time window t = 1, 2,…, n. The

evolution of GT in relation to different time window t was defined as GT = [G1
T, G2

T,…,Gn
T].

These individual splits of training network were referred to as subgraphs. Next, a time

series of topological similarity values was built in relation to each of these subgraphs for

each of the non-connected node pairs from the classification datasets. Finally, three

forecasting models (see ‘‘Time series and forecasting models’’ section) were applied to

these time series to predict their final values. These values were used as input for the

classification datasets to describe each instance. In relation to the three forecasting models

(i.e., ARIMA, exponential smoothing and the random walk), three classification datasets

were produced. For the sake of simplicity, these three datasets are named GARIMA, GETS

and GRWF, respectively in this study. An R forecast package (Hyndman and Khandakar

Table 3 Co-word network evolution with respect to nodes, edges, new keywords and different link for-
mation mechanisms

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

TM

Keywords (K) 311 192 238 259 295 257

New keywords (Knew) – 96 103 66 69 26

Old keywords (Kold) – 96 135 193 226 231

Edges (E) 743 383 500 583 690 601

Edges among Knew (Enew) – 57 60 14 19 6

Edges among Knew and Kold (Ecommon) – 193 244 169 181 77

New edges among Kold (Eold) – 143 217 419 490 518

PMGT

Keywords (K) 1170 1207 1135 1237 1243 1185

New keywords (Knew) – 581 333 277 184 59

Old keywords (Kold) – 626 802 960 1059 1126

Edges (E) 4055 4145 4136 4276 4347 4195

Edges among Knew (Enew) – 400 118 101 54 10

Edges among Knew and Kold (Ecommon) – 1872 1218 923 1084 547

New edges among Kold (Eold) – 2041 2800 3253 3548 3885

OBS

Keywords (K) 3131 3249 3548 3697 3847 3813

New keywords (Knew) – 834 401 136 41 2

Old keywords (Kold) – 2415 3147 3561 3806 3811

Edges (E) 21,948 23,879 27,005 32,999 35,628 34,402

Edges among Knew (Enew) – 185 63 7 0 0

Edges among Knew and Kold (Ecommon) – 4053 2208 908 339 20

New edges among Kold (Eold) – 19,641 24,734 32,084 35,289 34,382

Enew = number of links formed within the new keywords arrived each year, Ecommon = number of links
formed between a new keyword in each year and an old keyword from the previous year(s), and
Eold = number of links among the old keywords arrived in the preceding year(s) of a particular year.
K = total number of keywords in a particular year; Knew = number of new keywords in each year and
Kold = number of old keywords arrived before a particular year, E denotes the total number of links in a
particular year where E = Enew [ Ecommon [ Eold. Year 1–5, denotes the training phase and year 6 denotes
the test phase for each dataset
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2008) was used for the forecasting purposes. This package automatically considers all

variations before selecting the best ARIMA and exponential smoothing model for the data.

Three datasets built in this way represent the classification datasets considering dynamic

networks. A fourth classification dataset was also built in which topological similarity

scores of non-connected node pairs were computed using the static snapshot of GT. As it

was built on a static version of the network, this dataset is named Gstatic for the rest of this

study.

Classification algorithms

An abundance of classification algorithms exist in supervised learning. The performance of

these algorithms may vary depending on the datasets, feature values and associated pat-

terns present in the dataset. This study used simple logistic regression, Naı̈ve Bayes, K-

nearest neighbours (KNN), Random Forest and Bagging algorithms. The latter three

algorithms use ensemble based methods. More sophisticated classification algorithms such

as support vector machine and neural network algorithms can also be used in future study.

WEKA—the well-known machine learning software, was used for the classification pur-

pose (Hall et al. 2009). The performances of these classifiers were then compared using

different performance measurement metrics.

Results

This section describes the results of this study. First, the co-word networks of the three

main datasets were analysed to understand their evolutionary nature. Second, the results of

the forecasting models were explored. Third, the performances of the classification

methods were analysed.

Co-word network evolution

Table 3 sets out the analysis of the evolving nature of the co-word networks. This

table shows the growth and shrinkage of the co-word networks in relation to the nodes (i.e.,

keywords), edges (i.e., keyword co-occurrences), new keyword arrivals and the different

mechanisms for forming links among keyword pairs. The nature of associations among

keywords revealed three main variations of link formations: (1) a new link can be estab-

lished between a pair of new keywords that arrived in each year; (2) a recently arrived

keyword can form a link with an old keyword introduced in the previous year(s); and (3) a

new link can emerge between two old keywords from the pool of old keywords that are yet

to be linked. The term ‘old keyword’ Kold represents the set of keywords introduced in the

preceding year(s) of a particular year; for example, in PMGT, in the year 2014, the total

number of old keywords was 1059. These keywords arrived within the period of

2010–2013 (inclusive). In Table 3, the numbers of edges formed according to the afore-

mentioned three different mechanisms were named Enew, Ecommon and Eold, respectively.

The latter mechanism, denoted by Eold, dominated the other two across the three datasets as

the networks evolved over time. Eold contained two types of links: (1) new links among

enduring keywords from the past; and (3) repetitive links that had already appeared in the

preceding years. The number of links among the new keywords in each year was trivial and

it was evident that majority of the new arrivals predominantly formed links with old
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keywords (i.e., Ecommon in Table 3). The introduction of more new keywords Knew does not

necessarily generate more new hypotheses for scientific research. The new premises of

scientific researches emerged from new combinations of existing scientific concepts.

Research growths relied on efficiently synthesising multi-disciplinary and prevalent con-

cepts. In relation to medical research (e.g., obesity), both the number of new concepts and

associations among them (emerging each year) did not attract any additional attention until

they became more familiar and popular within the corresponding research community. As

new concepts were introduced and became better acquainted in subsequent years, they

tended to gain more attention from the cross-disciplinary scientific research community.

Three datasets showed that with the temporal evolution of co-word networks, the number

of new keywords declined, but the use of old keywords from the previous year(s) was

widely extended (see Table 3). In the OBS dataset, the number of new keyword arrivals

declined to zero in the final year (i.e., 2013). Simultaneously, in the same year, the number

of co-occurrences among old keywords almost doubled compared to the year 2009. This

phenomenon shows the evolving nature of scientific research.

The arrival of new keywords is indeterminate and unpredictable, but a reasonable

amount of new keywords found to have formed links with the popular keywords from the

set of old keywords. As stated above, co-word networks conform to the properties of

complex networks (i.e., preferential attachment) where rich get richer. They also maintain

a power law degree distribution. Further, it also demonstrates that co-word networks are

highly assortative or dis-assortative. The assortativity co-efficient measures the level of

homophily (tendency to bond with similar counterpart) of the network based on node

attributes. Generally it is measured in regards to the number of direct neighbours (degree)

of nodes in the network. A network is highly assortative when high degree nodes, on

average, connect to other high degree nodes and similarly, low degree nodes, on average,

show tendency to connect with low degree nodes. On the contrary, in a disassortative

Fig. 1 The relative percentage of new links from Ecommon and new keywords in Knew, arriving in each year,
acquired by the top old keywords from Kold arrived in the preceding intervals. The top old keywords here
denote the top 30 % popular keywords, high in degree centrality, from the preceding year(s) before each
interval. Dark colored bar represents the percentage of links and light colored bar represents the percentage
of new keywords acquired by the popular old keywords in each year. The year-wise measurement exclude
the first year of each dataset
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network (negative assortativity), nodes with high degree tend to form association with the

low degree nodes (Noldus and Van Mieghem 2015). In this study, we observed disas-

sortative co-word networks. For example, OBS has assortativity rate -0.122 and -0.118

recorded in 2008 and 2013 respectively. TM has assortativity rate -0.132 and -0.229

recorded in 2010 and 2015 respectively. Finally, in PMGT, the disassortative index was

recorded -0.086 in 2010 and -0.095 in 2015. We observed that the disassortativity index

was decreasing in OBS. Later, we will find in this study that the number of new keyword

appearance decreases temporally prompting the existing keywords to form associations

among them. However, in PMGT and TM disassortativity index was increasing that sig-

nifies the degree heterogeneity in forming association among keywords.

This study attempted to analyse the trend and pattern of forming associations among

new keywords (arriving each year) in relation to the top 30 % of old keywords from the

previous year(s). These top keywords were selected based on their degree centrality with

respect to their corresponding co-word network in preceding year(s) of a particular year.

Next, this study sought to determine the effect of these top old keywords in persuading new

keywords in each year to form links. Figure 1 shows the relative percentage of acquired

links (acquired by these top keywords) of the total links in Ecommon in each year excluding

the first. This dark bars in the figure for each dataset represent the percentage of new links.

The light coloured bars in the figure represent the percentage of new keywords from Knew

in each year that participated in these acquired links. It is apparent from Fig. 1 that as the

co-word networks evolved temporally, the rich, old keywords from the preceding

year(s) remained rich, as the majority of the new keywords tended to form associations

with these rich, old keywords. Similar results were found across all three datasets; how-

ever, it is evident that not all links in Ecommon emerged from these top degree nodes. Some

Table 4 Number of new and unique links (Eunique), appearing in each year, from pairs of old keywords in
Kold (see Table 3) with different length of geodesic distance

Year 2 Year 3 Year 4 Year 5 Year 6

TM

Unique edges among old keywords, Eunique 93 154 283 310 321

Node pairs within GD = 2 47 83 175 210 218

Node pairs within GD[ 2 33 62 96 85 99

Node pairs with no path 13 9 12 15 4

PMGT

Unique edges among old keywords, Eunique 1611 2135 2475 2733 2895

Node pairs within GD = 2 807 1291 1641 1890 2154

Node pairs within GD[ 2 706 780 813 816 740

Node pairs with no path 98 64 21 27 1

OBS

Unique edges among old keywords, Eunique 14,130 16,260 19,889 20,633 18,543

Node pairs within GD = 2 12,239 14,807 18,775 19,977 18,241

Node pairs within GD[ 2 1857 1440 1114 656 302

Node pairs with no path 34 13 0 0 0

GD represents the length of geodesic distance between keyword pairs in the co-word network of the
previous years(s)
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new links also developed between the new keywords and unpopular keywords from the

previous year(s); for example, in the TM dataset, the co-word network in 2012 (i.e., Year

3) had 244 edges (marked as Ecommon in Table 3). In 120 of these 244 edges (i.e., 49 %),

one end contained a new keyword that arrived in 2012 and the other end contained a

keyword from the top 30 % of high degree keywords in 2010–2011. Further, 76 of the 103

new keywords (approximately 74 %), arrived in 2012 participated in these 120 edges.

Figure 1 also shows that the majority of new keywords (i.e., on average 60–90 %) tended

to associate with the top nodes from the preceding year(s) across the three datasets;

however, not all links with old and new keywords emerged from these top nodes.

Although new keywords arrived each year; however, most of the new links developed

among the prevailing old keywords. This aspect of co-word network evolution suggests

that existing and commonly familiarised concepts are widely employed to validate new

hypotheses in scientific research. In some instances, the relative percentage of new asso-

ciations among old keywords exceeded 90 % (Eold in Table 3). Thus, this study next

sought to explore the effect of distance between pairs of these old keywords before the

formation of links between themselves. Specifically, this study attempts to analyse whether

the old keywords tended to form associations with remote counterparts or other old key-

words from close neighbourhoods. If two keywords are more than two ‘hops’ away in their

shortest path, the neighbourhood and the local topological metrics are inconsiderable.

Conversely, if two keywords are within two hops of each other than the neighbourhood

effect is considered higher in forming links. In such circumstances, local topological

similarity metrics (rather than global topological similarity metrics) provide a better pre-

diction of new links.

Table 4 sets out the number of links between keywords within different geodesic dis-

tances for each year for three datasets. For this purpose, only the links between old

keywords that were unique to a particular year were considered and repeating links were

ignored; for example, in the PMGT dataset of 2012, 2800 links (Eold in Table 3) emerged

from 802 old keywords (Kold) from the preceding duration 2010–2011. Of these links, 2135

edges were new and unique links that had been absent in 2010–2011. The remaining 665

links represented the duplicate or repeating links of the previous year(s). Of these 2135

links, 1291 links had keywords those were two steps away from each other in the

2010–2011 network, 780 links had keyword pairs those were three hops away in their

geodesic distance and 64 links emerged among keywords for which no path existed (see

Table 4). Evidently, we observed that at least 50 % of the new links among the old

keywords occurred between two nodes those were previously two steps away from each

other. This percentage increased with the temporal evolution of co-word networks; how-

ever, there were some node pairs with no geodesic path existed in the network. The non-

existence of geodesic path between keyword pairs may have occurred because all the

keywords within a particular domain were not considered; however, this would have been

practically infeasible in the context of this study and would be a resource intensive task.

This study also attempted to explore the aforementioned two mechanisms of link for-

mations with the help of co-word networks from datasets (see Figs. 2, 3). This excludes the

mechanism of link formation between new keyword pairs. Figures 2a, b present two

snapshots of OBS subgraphs in 2008 and 2010 using three target keywords; that is,

‘Vascular Disease’, ‘Dementia’ and ‘Alzheimer’s Disease’. Figures 2c, d present two

snapshots of TM subgraphs in two intervals; 2010–2013 and 2014–2015, using four target

keywords; that is, ‘Big Data’, ‘Topic Detection’, ‘Topic Analysis’ and ‘Topic Mining’.

These keywords are marked blue in four figures. The green coloured keywords from

Fig. 2b, d represent the corresponding keywords coloured red in Fig. 2a, c. The red
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coloured keywords formed new links with neighbours of neighbours. Although, new links

evolved at different path length, however, these red keywords acquire new connections

with target keywords that are linked by the important mediator keywords (coloured navy)

like ‘Obesity’ in the OBS domain and ‘Latent Dirichlet Allocation’ or ‘Topic Model’ in the

TM domain; for example, ‘Cognitive Impairment’ previously associated with ‘Dementia’

in Fig. 2a formed a new link with ‘Alzheimer’s Disease’ in Fig. 2b, a direct neighbour of

‘Dementia’ in Fig. 2a. Most interestingly (not represented in the figures), we found that

majority of the keywords that formed new links in Fig. 2b, d with the three target key-

words, were formerly associated with the navy coloured keywords, common neighbour to

the three target keywords, or one of the top old keyword with high centrality measures.

The well-known concept of ‘Preferential Attachment’ is observable in co-word network

evolution in Fig. 3a, b. These figures provide two snapshots of the co-word networks for

the PMGT dataset in 2011 and 2014. These two figures represent the top nodes in the two

subgraphs in relation to their degree centrality. The colour code represents the sequential

order of degrees; blue represents nodes with the highest number of connections, black, the

Fig. 2 Snapshots of co-word networks from OBS dataset in the year a 2008 and b 2010 and TM dataset in
the duration c 2010–2013 and d 2014–2015. Each network in a and b represents a subnetwork snapshot for
three keywords namely ‘Vascular Disease’, ‘Dementia’ and ‘Alzheimer’s Disease’ in the respective year.
Similarly, each network in c and d represent a subnetwork snapshot for three keywords namely ‘Topic
Mining’, ‘Topic Analysis’, ‘Topic Detection’ and ‘Big data’ in the respective duration. The red coloured
keywords from the networks on the left are the corresponding green coloured keywords in the networks on
the right. The navy coloured keywords are the top old keywords in both dataset with high degree centrality
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second highest and red being the third highest. It is evident that five of the top eight

keywords (coloured blue) match both intervals (i.e., 2011 and 2014). Other keywords have

greater connections with temporal evolution; however, a relative percentage of the top

degree nodes from Fig. 3b can be found among other top nodes in Fig. 3a (e.g., for the

keywords ‘Performance’ and ‘Construction Industry’). These figures establish the second

mechanism of link formation (described above); that is, most new keywords form asso-

ciations with the top nodes of the preceding intervals.

Time series and forecasting results

In building the time series dataset for forecasting purpose, the topological similarity values

for both positively and negatively labelled links were first calculated. If two keywords,

incidental to an edge, co-appeared together in any subgraph (i.e., G1
T, G2

T,…, Gn
T) of the

training phase then a value for their topological similarity (or zero otherwise) was

obtained. It was observed that in PMGT and TM the majority of the keywords did not

appear as pairs in all five subgraphs of the training phase. Therefore, a link, either with a

positive or negative label, present in at least one subgraph of five and the topological

similarity values for the nodes incidental to it was greater than zero [i.e., score (u, v)[ 0],

was considered to be a member of the time series data for forecasting purpose; for

example, two keywords from the TM dataset (i.e., ‘Latent Dirichlet Allocation’ and

‘Climate Change’) were found forming a link in T ? 1, denoting a positive instance of the

classification dataset. Conversely, these two keywords did not appear together within any

subgraph in T. As these two keywords did not form an edge within any subgraph of the

training phase, their temporal information of topological evolution was unknown and thus

not considered in the time series. However, keywords such as ‘Construction Industry’ and

‘Turnover’ in the PMGT dataset formed a link both in the 2014 (training phase) and the

2015 (test phase). As both keywords co-appeared together within one of the subgraphs in T,

this link was considered as a prospective link for time series construction. This link had a

topological similarity score for the year 2014 and zero for rest of the four subgraphs.

Table 5 sets out the total number of links with positive and negative labels in the

Fig. 3 Two subnetworks with top (n % 35) keywords with high degree centrality in PMGT dataset in the
year a 2011 and b 2014. The colour code (i.e., blue, black, red) represents the sequential order of degree
centrality of keywords in the respective co-word network with blue coloured keywords having highest
number of connections in each year
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forecasting datasets for OBS, PMGT and TM. Figure 4a–c show the different estimates

from the three forecasting methods (i.e., ARIMA, exponential smoothing and random

walk) for three different time series. These time series were built on the degree of con-

nections in each year, acquired by the top three keywords in the study (i.e., ‘Obesity’,

‘Project Management’ and ‘Latent Dirichlet Allocation’). The dotted lines in the fig-

ures represent the lower bound of the forecasted predictions with 80 % confidence interval

in relation to the three methods used in this study.

Classification performance

In supervised link prediction, each future potential non-connected node pair has either a

positive label or negative label. Depending of their appearances in the test phase, if a

potential node pair truly appears in the test phase, it is labelled as positive class instance in

the classification dataset and a negative class instance otherwise (Al Hasan et al. 2006). As

stated above, there were four classification datasets (i.e., GARIMA, GETS, GRWF and Gstatic)

with both positive and negative classes of links. The first three datasets consider topo-

logical evolution in dynamic networks and the fourth dataset considers a static network.

Pairs of keywords (representing positive and negative instances in the datasets) were

chosen at random from a list of qualifying links. The feature vectors were computed

considering the local, global and aggregated metrics for each keyword pair incidental to

those links. Next, five well-known classifiers (see ‘‘Classification algorithms’’ section)

were used and their performances were measured to classify the positive and negative

examples of links. For all classifiers, a tenfold cross-validation and the mean scores were

used to determine the accuracy of the results. Tables 6, 7 and 8 compare the performance

of different classifiers on GARIMA, GETS, GRWF and Gstatic using the TM, PMGT and OBS

datasets.

Earlier in this study, it was observed that future associations among keywords evolve

not only from similar and adjacent nodes, but also from dissimilar and distant nodes

(Fig. 2). Consequently, both local and global topological similarity features can be used to

model co-word network evolution. These features can be engineered to distinguish

between positive and negative classes of links. The tables show that network structural

metrics can be used as an important set of features in supervised link prediction in relation

to co-word networks. Considering different classifiers, ensemble classifiers were observed

to perform better than basic linear classifiers such as logistic regression. Instead of finding

the optimum value for the parameters of ensemble classifiers, the default parameters for all

datasets were run. This parameter optimisation task should be the subject of future

exploration.

In the random forest analysis, the number of trees was set as 150 with a depth level of

five. In the KNN analysis, the number of neighbours (K) was set to five. While in the

Table 5 Total number of positive and negative edges considered as part of the time series for forecasting
purpose and build the final classification datasets

Dataset name Positive edges Negative edges

OBS 13,032 106,376

PMGT 737 761

TM 77 144
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bagging analysis, a decision tree was used as a base classifier. Of the three ensemble

classifiers, the bagging analysis of the TM and OBS datasets and the random forest analysis

of the PMGT dataset showed superior performances. In relation to the linear classifiers,

Fig. 4 Forecasted values of nodal degrees predicted by the three forecasting models for three important
keywords in this study, a Obesity, b Latent Dirichlet Allocation and c Project Management. The forecasted
values represent the lower bound of the range of possible values at 80 % confidence interval. The dotted
lines represent the prediction by three different forecasting models i.e., ARIMA (red), Exponential
Smoothing (maroon) and Random Walk (blue)

Table 6 Performance of different classification algorithms for TM dataset

Classifier Accuracy AUC Precision Recall F-score

GARIMA

Logistic Regression 0.74 0.716 0.625 0.277 0.384

Naive Bayes 0.77 0.692 0.700 0.389 0.500

Bagging 0.78 0.784 0.579 0.611 0.595

Random Forest 0.78 0.821 0.563 0.504 0.529

K-Nearest Neighbour 0.76 0.726 0.458 0.611 0.524

GETS

Logistic Regression 0.76 0.747 0.503 0.421 0.457

Naive Bayes 0.77 0.789 0.733 0.579 0.647

Bagging 0.78 0.839 0.667 0.737 0.700

Random Forest 0.81 0.849 0.654 0.684 0.661

K-Nearest Neighbour 0.75 0.727 0.505 0.579 0.537

GRWF

Logistic Regression 0.72 0.771 0.667 0.202 0.308

Naive Bayes 0.77 0.778 0.688 0.550 0.611

Bagging 0.73 0.778 0.714 0.500 0.588

Random Forest 0.73 0.833 0.786 0.550 0.647

K-Nearest Neighbour 0.73 0.777 0.600 0.600 0.600

GStatic

Logistic Regression 0.74 0.791 0.786 0.500 0.611

Naive Bayes 0.79 0.824 0.813 0.591 0.684

Bagging 0.81 0.826 0.882 0.682 0.769

Random Forest 0.83 0.848 0.727 0.727 0.727

K-Nearest Neighbour 0.78 0.814 0.608 0.636 0.622
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logistic regression outweighed Naı̈ve Bayes in PMGT. Despite its high performance in

document classification, Naı̈ve Bayes had poor accuracy in the OBS and PMGT datasets.

The inferior performance by Naı̈ve Bayes is subject to inter-dependencies among different

features. This algorithm performs well when features are independent and if dependences

are distributed evenly in classes; however, it is incompetent at handling feature interac-

tions. The poor logistic regression performance was due to the linearly inseparable feature

values. Despite having a single parameter, bagging is prone to over fitting and computa-

tionally expensive, as it considers all available features to split a node in decision trees.

Conversely, random forest, a special case of bagging, randomly considers only a subset of

the best features of those available. Thus, its performance was superior to that of bagging

in some cases.

In a supervised classification problem, evaluation metrics can be broadly categorised

into two main classes: (1) fixed threshold metrics such as accuracy, precision and recall;

and (2) k-equivalents and threshold curves such as a receiver operating characteristics

(ROC) curve, a precision-recall (P–R) curve and the area under the ROC curve (AUC)

(Yang et al. 2015). Precision has been defined as the proportion of true positive predictions

Table 7 Performance of different classification algorithms for PMGT dataset

Classifier Accuracy AUC Precision Recall F-score

GARIMA

Logistic Regression 0.67 0.715 0.724 0.549 0.624

Naive Bayes 0.64 0.720 0.821 0.348 0.489

Bagging 0.66 0.738 0.684 0.638 0.66

Random Forest 0.70 0.764 0.673 0.679 0.676

K-Nearest Neighbour 0.65 0.656 0.602 0.607 0.604

GETS

Logistic Regression 0.67 0.727 0.686 0.553 0.612

Naive Bayes 0.64 0.713 0.767 0.364 0.494

Bagging 0.66 0.756 0.676 0.645 0.667

Random Forest 0.71 0.771 0.671 0.622 0.646

K-Nearest Neighbour 0.66 0.703 0.652 0.622 0.637

GRWF

Logistic Regression 0.67 0.765 0.733 0.561 0.635

Naive Bayes 0.65 0.754 0.807 0.400 0.535

Bagging 0.69 0.778 0.704 0.691 0.697

Random Forest 0.72 0.816 0.747 0.717 0.732

K-Nearest Neighbour 0.64 0.731 0.643 0.696 0.668

GStatic

Logistic Regression 0.68 0.748 0.741 0.567 0.642

Naive Bayes 0.63 0.736 0.792 0.369 0.503

Bagging 0.62 0.677 0.638 0.576 0.605

Random Forest 0.69 0.733 0.659 0.696 0.677

K-Nearest Neighbour 0.63 0.652 0.605 0.585 0.595
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of all the positive predictions. Conversely, recall has been defined as the proportion of true

positive predictions of all true levels. The F-score is the harmonic mean of precision and

recall. This score is sometimes considered a better performance measure than the accuracy

metric, especially when the class populations in the training set are biased. ROC graphs are

two-dimensional graphs in which the true positive rate is plotted on the Y axis and the false

positive rate is plotted on the X axis to show the relative trade-offs among the two class

values. This graph directly depicts the screening capability of the predictors. Conversely,

P–R curves, often used in information retrieval, can be used as an alternative to ROC

curves for models with a large skew in the class distribution. P–R curves can sometimes

expose differences between classifiers that are not apparent in the ROC curves. The AUC,

an important traditional measure, is used in imbalanced classification problems. It relates

the true positive rate and true negative rate of a classifier. AUC is the second most popular

metric (after accuracy) used in binary classification. Accuracy only classifies the class label

right or wrong; however, AUC quantifies the uncertainty associated with classifiers by

introducing a probability value. In relation to a random classifier that has an equal prob-

ability of 0.5 in successfully classifying the positive and negative class labels, the more a

classifier exceeds this threshold the better it gets. In relation to the tenfold cross-validated

Table 8 Performance of different classification algorithms for OBS dataset

Classifier Accuracy AUC Precision Recall F-score

GARIMA

Logistic Regression 0.91 0.772 0.716 0.171 0.276

Naive Bayes 0.89 0.794 0.461 0.383 0.419

Bagging 0.97 0.954 0.933 0.756 0.835

Random Forest 0.94 0.917 0.936 0.509 0.659

K-Nearest Neighbour 0.96 0.885 0.923 0.607 0.733

GETS

Logistic Regression 0.89 0.783 0.560 0.086 0.149

Naive Bayes 0.82 0.811 0.324 0.643 0.431

Bagging 0.95 0.923 0.887 0.631 0.738

Random Forest 0.93 0.902 0.968 0.336 0.499

K-Nearest Neighbour 0.94 0.853 0.833 0.504 0.628

GRWF

Logistic Regression 0.89 0.779 0.577 0.103 0.175

Naive Bayes 0.88 0.824 0.459 0.437 0.448

Bagging 0.95 0.934 0.916 0.682 0.782

Random Forest 0.93 0.892 0.946 0.383 0.545

K-Nearest Neighbour 0.95 0.875 0.90 0.57 0.70

GStatic

Logistic Regression 0.91 0.819 0.602 0.145 0.234

Naive Bayes 0.90 0.841 0.387 0.416 0.401

Bagging 0.96 0.916 0.958 0.756 0.845

Random Forest 0.94 0.916 0.984 0.369 0.537

K-Nearest Neighbour 0.91 0.748 0.591 0.213 0.315
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accuracy measure and AUC, higher values in TM and OBS datasets were observed. The

worst result was found in the PMGT dataset. To determine the reason for these results, the

distributions of feature values for the positive and negative samples were analysed. Both

the highest performing (i.e., GARIMA in OBS) and the lowest performing dataset (i.e.,

GStatic in PMGT) in relation to accuracy and AUC were selected. Figure 5 presents the

distribution of positive and negative class density for three important topological features

in each dataset according to the Random Forest classifier. Feature importance is discussed

further below. The features selected for the highest performing dataset were AdamicAdar,

CommonNeighbours and Katz. Conversely, for the low performing dataset, the three most

important features were AdamicAdar, Resource Allocation and SimRank. For the sake of

the comparison, the feature distribution was normalised so that the areas under both curves

were similar. Classifiers can pick patterns where there is significant difference between

both class distributions. The overlapping region between the class density of the positive

and negative samples in Fig. 5 were the reason for the misclassification. In the lower

performing dataset, the overlapping regions were comparably higher.

In relation to the other performance measures, most classifiers were observed to have

comparatively higher precision than recall indicating a higher number of false negatives

than false positives across most of the dataset. There were also some exceptions where

recall was higher than precision; for example, in the GETS classification dataset, Bagging

and KNN in TM and Naı̈ve Bayes in OBS had higher recall denoting the existence of

higher false positives. A higher precision, but lower recall value indicates the conservatism

of a classifier whereas a higher recall, but lower precision indicates liberalism. These two

Fig. 5 Positive and negative class density of three topological features in high performing (top) and low
performing (bottom) datasets. The high and low performing datasets are GARIMA in OBS and GStatic in
PMGT respectively. Topological features are selected according their importance in Random Forest
classifier
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measures generally varied inversely with each other; that is, as one increases the other

decreases and vice versa. This trend was observed across most of the classification datasets.

It is difficult to achieve high recall and high precision simultaneously. The trade-off

between precision and recall is important, as a classifier is tuned to stay between the

extremes of conservatism and liberalism with the application of labels. Figure 6a–d rep-

resent the P–R and ROC curves and show the screening capability of the classifiers.

Figure 6a, b represent the P–R curves of classifiers in the low and high (left to right)

performing datasets selected above. Similarly, the bottom row represents the ROC curves.

For the low performing dataset, the performances of the classifiers were similar to each

other; however, in the high performing dataset, the difference between the linear and

ensemble classifiers was precise.

Feature importance

Once it was observed that topological features that depend on co-word network structures

are useful in predicting future links among keywords from scientific literature, the study

sought to compare these eight features to judge their relative strength in the classification

task. Table 9 sets out the quantitative comparisons of these metrics in relations to several

algorithms for measuring feature importance. The values in the table denote the rank of

importance for each feature demonstrated by the different algorithms. The ranks appear in

decreasing order where one denotes the highest rank and eight denotes the lowest rank. To

present the rank of feature importance, the best performing classification datasets from

TM, PMGT and OBS were selected in relation to accuracy score and AUC (i.e., GStatic,

GRWF and GARIMA). The rows with the name of classifiers in the table denote the

importance of features according to the respective classifier. The table shows that in TM,

global topological metrics such as Katz and SimRank out-performed the local metrics.

Fig. 6 P–R Precision–Recall curves (top) and ROC curves (bottom) of different classifiers in both low
performing (left) and high performing (right) datasets
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Conversely, the local similarity metrics, such as AdamicAdar and ResourceAllocation

were useful features for the other datasets. Katz and AdamicAdar appeared to be the most

important features for both the linear and ensemble classifiers. This signifies the fact we

observed in Fig. 2 where different links were formed at different length among keywords.

Although different metrics were found important in different datasets, however, Root-

edPageRank was found to be the least important feature. It is understandable that this

metric is dependent on transition probabilities that vary in relation to network structure and

nodal importance. Therefore, time series forecasting method would have little impact in

providing meaningful prediction for this type of feature.

Performance improvement in dynamic networks

One of the main benefits of link prediction in dynamic networks, based on time series

forecasting rather than a static snapshot of the whole network, is performance improvement

in predicting future links among nodes. As observed above, there were better outcomes for

link prediction task in relation to performance metrics in some classification datasets built

upon dynamic networks (i.e., GARIMA and GRWF). These datasets were constructed based

on the historical evolution of different metrics considered in ‘‘Time series and forecasting

models’’ section. Notably, in PMGT and OBS, GRWF and GARIMA were observed to have

higher performance measures than GStatic; however, in some respects, GStatic, unsurpris-

ingly, out-performed the dynamic datasets. This fact is true when a set of topological

Table 9 Rank of different network topological features used in this study for different datasets

AA CN RA Katz RPR SR DC CC

GStatic in TM

Chi Square Attribute Value 5 6 7 1 8 4 3 2

Gain Ratio 7 4 8 1 3 5 6 2

Information Gain 5 6 7 1 8 4 3 2

Random Forest 6 7 5 1 8 3 4 2

Bagging 4 6 5 3 7 2 8 1

GRWF in PMGT

Chi Square Attribute Value 1 6 2 4 7 3 5 8

Gain Ratio 1 6 2 3 8 5 7 4

Information Gain 1 6 2 3 7 4 5 8

Random Forest 1 6 3 4 8 2 5 7

Bagging 1 7 5 3 8 2 6 4

GARIMA in OBS

Chi Square Attribute Value 2 1 3 5 8 6 4 7

Gain Ratio 3 4 1 5 8 6 2 7

Information Gain 4 6 1 5 8 2 3 7

Random Forest 2 3 6 1 7 5 4 8

Bagging 2 3 5 1 6 8 4 7

The ranks are ordered in decreasing order with 1 denoting the highest importance. The features are AA
AdamicAdar, CN CommonNeighbours, RA Resource Allocation, RPR RootedPageRank, SR SimRank, DC
Sum of Degree Centrality, CC Sum of Closeness Centrality
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features is considered together and classifiers tune themselves to pick the best patterns

from the best performing feature(s). Table 10 compares the three classification datasets

from dynamic networks using important features from Table 9 and their respective GStatic

in OBS and PMGT. In relation to AUC, the table shows that the time-aware information

outweighed the static information in supervised link prediction tasks for some network

structural metrics.

Discussion

A knowledge graph (alternatively, a network) is a specific kind of knowledge represen-

tation technique that uses a semantic network structure comprising textual content (e.g.,

keywords, concepts) as nodes and causal relationships among nodes as links or edges

(Popping 2003). Researchers speculated that there is a reciprocal relationship between

causal relationships and statistical co-occurrence patterns (McNorgan et al. 2007; Cheng

et al. 2009). Non-trivial co-occurrence pattern among keywords is a complex structure that

represents their semantic affinity (Montemurro and Zanette 2013) and relatedness (Schulz

et al. 2014). Therefore, co-word networks are considered as knowledge networks com-

prised of micro knowledge entities (Ding et al. 2013) like keywords or key concepts.

Science mapping—an effective tool for science strategy and evaluation that uses the

network of links between scholarly documents to understand the structure of science

(Börner et al. 2003), provides spatial representations of relationships among various

knowledge entities and displays the structural and dynamic aspects of scientific research

(Cobo et al. 2011). Further, Noyons and van Raan (1994) noted that with the help of co-

word networks, science mapping facilitates the extraction of important features where time

series analyses of these features can provide a dynamic view of the structural changes in

scientific knowledge.

Table 10 Relative average performances of three classification datasets, built upon dynamic networks with
forecasting models, with respect to static network in the training phase

AUC (OBS) AUC (PMGT)

GARIMA GETS GRWF GStatic GARIMA GETS GRWF GStatic

Random Forest

AdamicAdar 0.733 0.722 0.721 0.764 0.781 0.753 0.777 0.727

CommonNeighbours 0.709 0.701 0.712 0.753 0.669 0.668 0.686 0.725

Resource Allocation 0.784 0.777 0.778 0.777 0.756 0.768 0.730 0.729

Katz 0.733 0.775 0.781 0.681 0.687 0.664 0.736 0.714

Sum of Degree Centrality 0.752 0.748 0.754 0.729 0.700 0.707 0.674 0.705

Naı̈ve Bayes

AdamicAdar 0.650 0.644 0.658 0.683 0.726 0.699 0.702 0.712

CommonNeighbours 0.662 0.631 0.650 0.678 0.669 0.668 0.664 0.705

Resource Allocation 0.754 0.745 0.744 0.682 0.724 0.679 0.645 0.689

Katz 0.647 0.742 0.757 0.661 0.692 0.668 0.715 0.705

Sum of Degree Centrality 0.695 0.683 0.708 0.723 0.699 0.664 0.607 0.647
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Scientific knowledge changes over time and most of these changes are incremental

although some revolutionary and fundamental changes do occur. Since the study of

sociology of science (Latour and Woolgar 2013), quantitative analysis of scientific liter-

ature at macro-level (disciplinary) shifted increasingly towards micro-analysis (keywords)

with its focus on scientific communications (Leydesdorff and Milojević 2015). Formal

communication among scientific communities through scholarly publications is found

significant in scientific knowledge creation and innovation. Co-word analysis is a form of

scholarly communication that extracts thematic concepts of scholarly contents and their

linkages directly from the textual contents. Constituents of co-word network such as author

selected keywords provide the conceptualization of these contents that authors intend to

convey the world. Therefore, co-word network is a useful and objective approach in

identifying the dynamics of conceptual structures in various disciplines and socio-cognitive

structures of science. It concurrently reveals the patterns of scientific knowledge growth

through the collective understanding of scholarly communities. Thus, it can be argued that

co-word network is conducive of identifying emerging research topics if it is explored from

the aspect of network dynamics. Further, Canals (2005) noted that knowledge diffusion

occurs over network structures, as the process of knowledge diffusion involves interactions

among networked agents. Therefore, in this study, we attempted to comprehend the

dynamics of co-word network in relation to future nodal relationships and link formations

mechanisms among keywords that can contribute to an understanding of the knowledge

evolution mechanism. Thus the two main topics in this study are co-word networks and

link prediction.

Earlier in this study, we mentioned that co-word networks display scale-free and small-

world phenomenon. In this study, we have observed that co-word network also conforms to

preferential attachment process found in real world complex networks. This demonstrates

that co-word networks evolve through a self-reinforcing mechanism. Preferential Attch-

ment also denotes that high degree nodes are very densly connected to each other and the

nodes with low degree centrality rarely connects to each other. Therefore, in this study, we

also observed that most recent and contemporary keywords form associations with popular

keywords within the research domain as co-word network evolves temporally. It signifies

the ‘‘Rich Club Phenomenon’’ in terms of co-word network evolution. Concurrently, it

raises the degree heterogeneity (deviations from the regular network in terms of degree) of

a network where the degree distribution follows a power law. Further, the dis-assortativity

(negative assortativity) of co-word networks built in this study denotes the tendency of

forming linkages between dissimilar keywords in regards to their degree centrality.

On the other hand, link prediction is a time-evolving model for network analysis

problems that directly predicts links in the future based on previous trends to model

network dynamics. When dynamics is concerned it is also imperative to include the

temporal information in analysis. Thus, this study built and analysed the evolution of co-

word networks in relation to both static and time-aware network structural information. It

also attempted to perform link prediction task by using this information to predict future

associations among keywords/key-concepts extracted from scientific literature. In this

study, three scholarly datasets were obtained from Scopus on the topics of ‘Obesity’,

‘Project Management’ and ‘Topic Model’. Each dataset comprised 6 years of scientific

articles and associated author selected keywords. After the necessary text pre-processing

and data standardisation tasks, co-word networks of the author provided keywords were

constructed based on the co-appearances of keywords in the same article. For the purpose

of the link prediction, the range of publication years was divided into two non-overlapping

sub-ranges; that is, the training phase and test phase. This study attempted to use different
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topological metrics in relation to keyword pairs from the co-word network in the training

phase to predict future associations in the test phase. These topological metrics are based

on network structure and defined in relation to neighbourhood, ensembles of network path,

random walk and centrality measures. These features were used to describe instances of

classification datasets comprising both positive and negative classes of links. These clas-

sification datasets were then fed into supervised learning models so that the two classes of

links could be classified. Supervised link prediction is a binary classification task and may

be selected over unsupervised link prediction for two reasons (Lichtenwalter et al. 2010).

Firstly, under the supervised method, algorithms are able to capture the interacting rela-

tionships among different topological properties and, secondly, supervised approaches are

adaptive whereas unsupervised methods are invariant. Additionally, if a classifier is trained

using a single unsupervised method, it is capable of outperforming the ranks generated by

sorting the scores of the respective method.

To build the classification datasets in this study, topological features of both dynamic

and static networks were considered. To emulate the dynamic network perspective, the

training network was split into five smaller units with one subnetwork for each year of

training phase. Based on these splits, the topological evolutions were determined for each

non-connected node pair, either with a positive or negative class label, of the classification

dataset. This constructed a time series of topological metrics for each non-connected node

pair. Three forecasting models were then used to predict their final value as input to the

classification datasets. Thus, three classification datasets were constructed considering the

time-aware network evolution information. A final classification dataset was also built that

considered the aggregated static version of these splits. Of the three datasets, the PMGT

dataset had a similar number of positive and negative samples, whereas the OBS and TM

datasets had negative samples out-numbering the positive ones by a certain ratio. Of the

many possible variations for the ARIMA and exponential smoothing model, the best

variation was identified by the R forecast package. As the time series was short in duration,

a random walk method of forecasting was also used. The difference among the three

forecasting models used in this study was also noted. Future studies should explore the

applicability of other prevailing forecasting methods, including multiple variations of the

methods used in this study. These forecasting methods could also be used to predict the

future values of the network specific properties that allow emerging trends to be predicted;

for example, time series of nodal degrees, citation counts per keywords or trends in author-

keyword relationships could be used with forecast models to predict their future values that

will enable growth in scientific research across different concepts to be identified.

The result section sought to understand the co-word network evolution. Co-word net-

works were observed to evolve with the accumulation of new keywords (arrived at each

interval) and different types of association among keywords. In this study, three types of

links formed among keywords in a co-word network: (i) a link between a pair of new

keywords; (ii) a link between a new and old keyword; and (iii) new associations within the

old keywords. The old keywords at each interval denote the set of keywords already

introduced in the preceding intervals. Some repetitive links may evolve among old key-

words at every interval; however, the results showed that new links always emerge from

the recombination of old keywords. The number of new links among existing keywords

increased with time, especially where most keywords came from similar or closely related

domains. Further, the old popular keywords also attracted new keywords and most of the

new keywords formed associations with already familiar and popular old keywords. This

allowed co-word networks to demonstrate ‘preferential attachment’. Similar to other

complex networks, the co-word networks were found to conform to the power law
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phenomenon; that is, popular keywords had more connections than the others; however, a

few new keywords gained popularity as time evolved. We also observed the impact of

geodesic distance between keywords in evolving networks over developing future asso-

ciations among them. We found that most of the new links among existing keywords

emerged between 2-hop distant keywords. This fact suggests the importance of neigh-

bourhood around keywords in co-word network impacting on the formation of new

associations. However, some new links emerged between keywords with distance more

than 2-hops from each other and simultaneously many keyword pairs at distance two did

not associate with each other in future signifying the ‘small world’ property of co-word

network.

In relation to classification, five different classifiers were used. This included a simple

linear classifier (logistic regression) and some ensemble classifiers. The ensemble classi-

fiers showed superior performances across the three datasets. The performance of dataset

with imbalanced class samples was greater than that of the dataset with balanced class

labels. This study also attempted to identify feature importance in relation to different

algorithms and individual classifiers. Different classifiers performed in different ways

depending on the structural variations of the co-word network and the density of class

distributions. In some cases, classifiers preferred the local similarity metrics, while some

preferred global metrics. In terms of aggregated feature importance, degree centrality was

preferred over closeness centrality in most cases. In majority datasets, RootedPageRank

was found as the least important features. This is evident as it relies on random walk in

network and produces different results in relation to transition probabilities in different

types of networks. Moreover, transition probabilities, depending to nodal importance, vary

with network structure. Time series forecasting of this metric could contribute a little

towards meaningful predictions. Further, historical information of topological evolution

helped to improve link prediction performances. The performance measures of dynamic

networks sometimes superseded the measures of the static network; however, in some

cases, the static network topological information was also found useful in predicting future

associations among keywords.

This study sought to contribute to understandings of co-word network evolution,

identify important network structural and topological features along with their temporal

evolutionary information to describe instances in classification datasets and use supervised

learning models to accurately predict future links among keywords from scientific litera-

ture. The methods and results of this study will facilitate to predict the future links between

literary concepts. This will also benefit the identification of emerging trends, information

retrieval and building associative concept spaces. The future research should seek to

identify more generic features other than features used in this study such as, statistical

significance of keywords, citation count, the number of authors attracted to keywords, to

build predictive science mapping.
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