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Abstract This paper aims to study the collaboration among researchers in a specific Italian

program funding, the Projects of National Interest (PRIN), which supports the academic

research. The paper uses two approaches to study the dynamic complex networks: first it

identifies the observed distribution of links among researchers in the four areas of interest

(chemistry, physics, economics and sociology) through distribution models, then it uses a

stochastic model to understand how the links change over time. The analysis is based on

large and unique dataset on 4322 researchers from 98 universities and research institutes

that have been selected for PRIN allocation from 2000 to 2011. The originality of this work

is that we have studied a competitive funding schemes through dynamic network analysis

techniques.

Keywords Competitive project funding � Dynamic complex systems � Power-law

distribution � Preferential attachment � Stochastic actor oriented model

Background and aim of the paper

Although the study of complex networks can count on a long tradition in various fields of

knowledge, in the last few years, after the introduction of models for power-law (Barabàsi

and Albert 1999) and scale-free networks (Watts and Strogatz 1998), complex networks

have become increasingly important in many fields of science including social sciences,

biology, chemistry, computer science etc. Complex networks are used to describe different

real world systems (Albert and Barabási 2002). By this, we mean complex network sys-

tems with a large number of interconnections and variability over time. Social relationships
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among agents are an example of complexity, where nodes can be people, programs,

projects etc., and links represent their interactions (Watts et al. 2002; Arenas et al. 2004).

This paper studies the collaboration among researchers in a specific Italian funding pro-

gram, the Projects of National Interest (PRIN), which aims to support the academic

research (Reale and Zinilli 2014). Through the PRIN, which represents an important

governmental competitive tool to give resources for collaborative research in different

interest sectors, we want to analyze the factors behind the collaborations among

researchers, during the period from 2000 to 2011. The main aims of this paper are to

understand the distribution of the connections among researchers who decide to collaborate

on project funding application and why the links in the research collaborations, given a set

of covariates, change over time. This paper does not considered the general collaboration

among scholars in Italy, but only those collaborations that have received funding in the

PRIN context. Since researchers join or leave the network and consequently the network

composition changes over time, it is important to understand the networks formation

according to a set of attributes, which have been selected on the relevant literature. We

have studied a competitive funding scheme through dynamic network analysis techniques,

as there is more and more a tendency towards competitive systems regarding project

funding (Lepori et al. 2007). We think a power-law distribution exist with the network

collaborations, there is a spatial dimension that influences the ties, there is no tendency to

collaborate with researchers from other disciplines and we think that there is a dissimilarity

in the H Index in the collaborations. The paper is organized mainly in five steps. First, we

proceed with an analysis of the literature on network collaborations. Secondly, we check if

there is the presence of a power law in our dataset in the four areas of interest (chemistry,

physics, economics and sociology). Thirdly, a model is developed to analyze how col-

laborations are formed in the four areas over time. A stochastic actor-oriented model is

used in the analysis to estimate parameters which are at the base of the mechanism of

change. In this model, we take into account different PRIN calls from 2000 to 2011,

putting into the model a set of control variables. Then, we present the results of estimates

of the longitudinal analysis. Finally, we check our hypothesis and present the conclusions

that derive from the estimates.

Conceptual framework

The current literature focuses on the effectiveness of the approach to examine network

models and patterns of collaboration in scientific communities and to describe the different

roles of researchers in the network (e.g. more isolated or central researchers or those who

have a brokerage role). In the last years, research collaborations have been studied through

several approaches: one approach tends to investigate how we can measure research col-

laboration (a methodological approach); another approach tends to study the impact of

collaboration on productivity (among researchers, between firms and university etc.);

another approach studies what are the indicators that drive the formation of research

collaborations, taking into consideration patterns of geographic proximity and scientific

interaction levels (Andersson and Persson 1993; Newman 2001a, b; Katz and Martin

1997). Scientific collaboration is a set of informal functions (e.g. face-to-face contacts) and

formal activities (e.g. participating in research projects or professional conferences) among

scientists involved in producing knowledge (De Stefano et al. 2013). Usually, researchers

start to collaborate with others through personal contacts developed during their career,
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often begun at professional conferences (Laudel 2006). Most of the studies focus on co-

authorship networks or co-citation/citation networks. According to Gmür (2003, p. 27–28)

the number of co-citations represent an indicator of proximity in terms of content. Hum-

mon and Doreian (1989) have developed new methods (main-path algorithms) to weigh the

links in a citation network of articles. Hummon and Carley (1993) used bibliographic

citations and the SNA technique of path analysis to study the connections between

researchers published in the journal Social Networks. In this paper we focus on collabo-

rations that were born in projects funded on a competitive basis in four disciplinary fields.

An important law (especially in the literature of physical sciences) to model the overall

mechanism of the formation of the network is the power-law degree distribution, which

provides a mechanism for network growth tied to the fact that the new vertices tend to

connect the vertices that already possess a high degree of connections. In particular, when

the probability of being connected to a given vertex is proportional to its degree, such

distribution results can be observed (Albert and Barabási 2002). Of course, this mechanism

may occur with different variations in different real contexts. The power-law is a math-

ematical distribution of the concept of the Matthew effect described by Merton (1968),

which is a possible effect of another concept used in network science, that is a preferential

attachment (Newman 2001a, b). In the scientific collaboration networks, the power law

distribution has been observed more times (Newman 2001a, b), which means the more

connected nodes are destined to have much more connections in the future than the new

nodes in a network. Many empirical studies have also shown distributions of power law at

the upper tail of a distribution (Sinha 2006), other studies have shown that income and

wealth distributions follow log-normal distributions (Chatterjee et al. 2005). However, as

explained by Clauset et al. (2009) detecting a power law distribution in empirical data may

be very difficult and for this reason it is important to compare the power law model with

some other distributions (Newman 2005).

Very often junior researchers are forced to join senior researchers to join a network.

Following this, the first question is:

Q1 is there a power law distribution in the collaborations in a competitive funding

context?

H1 the hypothesis is that exist a power-law distribution to the network collaborations in

competitive systems.

The everyday use of the word collaboration suggests researchers working together to

achieve a common goal (most likely conducting research and developing new scientific

knowledge) (Katz and Martin 1997; Newman 2001a, b, 2004). Funding programs are

always keen ‘‘to increase the level of collaboration engaged in by the researchers whom

they support in the belief that this will bring about better benefits’’, increasing researchers’

chances of funding success (Katz and Martin 1997, p. 2; Laudel 2006; Beaver 2001). We

are aware that the collaboration pattern is the result of a complex interplay of other factors.

Boschma (2005) suggests five forms of proximity: Geographical proximity, cognitive

proximity, organizational proximity, social proximity, institutional proximity. Therefore,

the decision to collaborate with other researchers is influenced by different dimensions of

proximity, which may overlap, reducing the independence concept. Usually, the several

concepts of proximity are applied to inter-firm collaborations, innovation and regional

economic development (Anand and Khanna 2000; Boschma 2005). Fernández and López

(2015) examine the effect of geographical, cognitive, institutional, organizational and

social proximity on scientific collaboration among academic institutions using both
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bibliometric data on co-authorship and EUMIDA data on institutional-level information.

The results show evidence of the importance of geographical, cognitive, institutional and

social proximity in the rise of research collaborations while the effect of organizational

proximity seems to be weaker.

The spatial proximity (or geographical) is an important determinant of collaboration

patterns. Indeed many collaborations are begun in informal contexts, which geographical

proximity facilitates (face-to-face meetings are easier to organize) (Andersson and Persson

1993; Katz 1994; Boschma 2005). Cognitive proximity refers to the degree of similitude of

the knowledge bases of organizations and institutions (Nooteboom et al. 2007). Organi-

zational proximity is defined as the degree of strategic interdependence between two

organizations, and it reduces the uncertainty about the behaviour of the future partner

(Boschma 2005). Social proximity is defined by the existence of direct and informal

personal interaction of the employees or the managers of two different organizations

(Boschma 2005; Boschma and Frenken 2009). Institutional proximity is defined by the

similarity of informal and formal rules shared by actors (North 1990).

In this work we explore the possibility of using geographical proximity and cognitive

proximity to understand how they influence the choice of partners in the PRIN context.

In particular, researchers nearby are more likely to collaborate in the PRIN. Researchers

whose universities are far away are less likely to collaborate together, even if their research

interests are close. The literature on the contribution of spatial distance has analyzed the

importance of distance in time (Scherngell and Lata 2011; Smith and Katz 2000).

Therefore, we look at the geographical dimension of researchers that have collaborated in

the PRIN program by examining the correlation between proximity and the decisions to

collaborate with different partners. The question that we ask is:

Q2 is there spatial correlation in the formation of collaborations in a competitive funding

context?

H2 the hypothesis is that spatial dimension positively influences the evolution of the

collaboration network.

In our case we can mean the cognitive proximity in terms of disciplinary, measured

through the scientific area of belonging of the researchers. The disciplinary proximity

promotes communication and the exchange of knowledge among researchers of the same

scientific area.

Gibbons et al. (1994) note that modern science is adopting new organizational forms

largely using interdisciplinary perspectives instead of disciplinary ones. Different works

have studied collaboration when there is heterogeneity of knowledge and skills (Durfee

et al. 1989; Andersson 2011). Increasingly, there are calls for more interdisciplinary

approaches to research, along with encouragement for greater collaboration among

researchers (Hicks and Katz 1996; Gibbons et al. 1994). The paper investigates the dis-

ciplinary proximity in terms of the researchers affiliated area, if two researchers belong to

the same area they are close if not the opposite applies (similar knowledge bases).

The research question is:

Q3 is there a tendency to collaborate between individuals from different disciplinary

backgrounds in the changing links?

H3 the hypothesis is that in the PRIN there is not a tendency to collaborate with scholars

with different knowledge.
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For chemistry and physics we have the h-index1 for each researcher. In this paper we

use this measure to investigate how the variation in individual scientific impact is related to

the collaboration network. We consider the h-index as prestige, with all its limitations

(Bornmann and Marx 2011). The citation could be viewed like a vote, with the same

meaning has an academic context (Davis 2008); the status of a researcher in a social

context is given by the total number of citations by other researchers (Bollen et al. 2006).

The question is:

Q4 is there an h-index assortativity2 in the choice of partners?

H4 the hypothesis is that there is not an assortativity dimension, but a preferential

attachment about scientific prestige.

Assortativity dimension reflects tendencies for researchers with high h-index to

preferably be tied to other researchers with a high h-index. We think that is exactly the

opposite, those researchers with a low h-index tend to join with those who have a high

h-index (preferential attachment behaviour). We calculated the h-index using all years of

study, this information was taken from Scopus search.

Dataset and methodology

The paper uses two approaches to study the dynamic complex networks: a first interest is to

identify the observed distribution of links among researchers in the four areas of interest

through distribution models, then we will use a stochastic model to understand how the

links change over time. In order to do this, we have built through the PRIN website a large

and novel dataset containing 4322 researchers from 98 universities and research institutes

that have been selected for PRIN allocation from 2000 to 2011. We chose this time period

because it was long enough for a longitudinal analysis and because in subsequent years the

data was not available.

The sample refers to four research areas: chemistry, physics, economics and sociology.

Both physics and chemistry are characterized by consolidating collaborative patterns and

publication habits in international indexed journals. As to the social sciences, the focus is

on areas where collaborations are not so diffused between scholars and the use of indexed

journals is not widespread, since scholars prefer diverse types of output production (e.g.

books). The selection of the aforementioned areas comes from the need to have a sample

representing different characteristics of the epistemic communities. This study concerns an

Italian funding scheme and it cannot be generalized to the entire academic community,

therefore we can consider this work as a proxy of the overall communities.

12 years of PRIN program are observed. Originally, the dataset was in two-mode

network (researchers by project), then we built the dataset in one-mode through a com-

mand implemented in STATA (Zinilli and Cerulli 2015). We consider the PRIN research

team membership as the most viable way of collecting data on collaboration for our

analysis. Data collected on PRIN grants allocated in the considered period allow us to

understand the characteristics of the proponents. In fact each research team has a principal

1 The h-index is a measure used to indicated the impact of a researcher based on how often his/her
publications have been cited.
2 With assortativity effect we mean the tendencies for researchers with high h-index to preferably be tied to
other researchers with high h-index.
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Table 1 Variables used in the SAOM model

Name of
variable

Description of variable Type of variable

H index Only for chemistry and physics, we calculated the h-index based on
all the papers attributable to each author, we took these information
from Scopus search

Discrete data

Size university Small universities are those that have up to 500 researchers, middle-
sized are those that have between 500 and 1500 researchers and
large universities are those that have more than 1500 researchers;
the size is expressed by disciplinary area (e.g. physics, chemistry).
Division by the size of the university was taken from Evaluation of
Research Quality (VQR) for the 2004–2010 (source: http://www.
anvur.org/rapporto/)

Small/medium/
large

Academic role This variable indicates the role by researcher for each year within the
affiliation institute. This information was taken from the PRIN site

Researcher/
Associate
professor/Full
professor

H index 9 role This variable has been created with the aim of isolating the presence
of a modification of the effect of H index determined by seniority

H index x
Academic role

Gender This is a control variable Male(1)/
Female(0)

Geographical
area

This variable is based on ISTAT NUTS classification. Groups of
regions observed at five different levels, obtained by ISTAT
(Italian National Institute of Statistics): North-West, North-East,
Centre, South and Islands. If a researcher comes from North-West
and the partner from Centre we assigned value 1, because they
came from two different geographical area

ISTAT NUTS
classification
(0 = same
geographical
area/1 = other
area)

Interdisciplinary We built this variable on the base of the scientific area-field of
specialization. If two researchers belong to the same area we gave
value 0, in the other case

Dummy
(0 = same
scientific area/
1 = others)

Netchange (Call
PRIN)

We built this variable on the base of the ‘‘Calls’’ because since 2005
it has not been possible to participate to the PRIN for two
consecutive years (value 0 before 2005 and value 1 after 2005). We
considered this effect with control variable on the changing of
connections.in the SAOM model

Dummy (0/1)

Collaboration
(Call PRIN)

We built this variable on the base of the ‘‘Calls’’ because until 2004
the guidelines by government about the number of components for
each group were the same, after this date the guidelines changed.
We considered this effect with control variable on the changing of
connections in the SAOM model

Dummy (0/1)

Funding (Call
PRIN)

We built this variable on the base of the ‘‘Calls’’ because since 2009
applications for funding have changed. We considered this effect
with control variable on the changing of connections in the SAOM
model

Dummy (0/1)

Gender (Call
PRIN)

We built this variable on the base of the ‘‘Calls’’ because since 2007
the Call has required gender equality. We considered this effect
with control variable on the changing of connections in the SAOM
model

Dummy (0/1)
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investigator and one or more responsible for the research units, the gender, academic

position, scientific quality, role in the PRIN, affiliation (we have taken into account that

researchers change institutions during the 12 years under analysis).

To study how the collaborations are formed over time, the package RSiena for ‘‘R’’

environment is used in the analysis. In four models that we have built (a model for each

area) we have included a number of control variables (some labelled like ‘‘Call PRIN’’) to

understand how government guidelines have influenced changes over time. We put these

variables because the exclusion of control variables would compromise the internal

validity of the model and to understand if there is a policy’s effect in the changing link.

Initiatives and directives by government could lead to the establishment of contacts with

people other than the scientifically most interesting ones. A variable of interaction between

h index and the academic role has been added, because there could be the possibility of a

confounding role by researcher’s seniority (is there a modification of the effect of H index

due to seniority?). The goal is to isolate the presence of a modification of the effect of H

index determined by seniority.

Variables used in the model are (Table 1):

The PRIN dataset contains a changing composition, indeed the network can acquire new

researchers over time (joiners), or lose the researchers (leavers). As Bellotti (2012)

explains the PRIN calls have changed since 2005 and after this date it has not been possible

to participate to the PRIN for two consecutive years. To remove problems of convergence

of the estimation algorithm, we had to combine the date for years 2004 and 2005, 2006 and

2007, and 2008 and 2009. Furthermore, we have applied composition change directives in

the RSiena package. Research joiners and leavers during the years could have influenced

the model, although parameters are estimated with careful consideration through imputa-

tion techniques recommended by Huisman and Snijders (2003) (Huisman and Steglich

2008). Before moving forward in the analysis we introduce some basic network termi-

nology. A network is composed of nodes (vertices), in our analysis the researchers, and the

links (edges), belonging to the same research team. It is represented as a n 9 n adjacency

matrix, where the element aij provides information of the existence of a link from

researcher i to researcher j; the network is undirected.

Power-law distribution

In previous years different papers on real complex networks analyzed a self-organizing

processes in the real networks.

The network is undirected, an actor’s degree is the number of other actors to which it is

directly connected. For degree we mean the number of co-workers with which each

researcher collaborated along the years (repeated collaborations with the same partner are

counted only once).

Degree distribution is the probability that a randomly chosen node has x connections.

The probability P(x) that a node in the network interacts with x other nodes decays with the

law:

PðxÞ / ax�c

Where P(x)is the probability to encounter value x and c as the scaling exponent (c � 0).

Scale-free networks are open and dynamically formed by the continuous addition of new

nodes. The likelihood to have a node with x links is function of the number of links ‘scaled’

for the exponent on which the skewness of the distribution depends. It can happen that
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power-law distribution can look like other types of distributions (for instance to exponential

distribution) or the right-skewed distributions can be better fitted with a power law with

exponential cut-off (Giot et al. 2003). In other cases the distribution follows a power-law

only over a lower bound (xmin) that has to be estimated when fitting the empirical data.

Power-law has two important features: (1) it does not have a peak at its average value and it

starts at its maximum value and then decreases all the way to infinity; (2) the rate at which

the power-law decay is much slower than the decay rate of other distributions (for example

with respect to an exponential distribution) and this brings to a much greater likelihood of

extreme events. In order to estimate xmin we have followed different procedures (Clauset

et al. 2009). Below (Table 2) the distributions we have used to compare with power-law, for

each distribution we indicated the basic functional form f(x):

First, to understand if we can speak of a power-law we follow a straight line on

logarithmic axes (log–log plot). Through an observation of the log–log plot of the prob-

ability distribution function we can see if there are values that change and don’t follow the

power law distribution. The slope is the value of the scaling parameter c and a slope

changing reveals the lower bound when there is not a power-law for all its values.

A power law is a linear relationship between logarithms, of the form:

logPðxÞ ¼ �c log xþ log a

In the continuous case, the constant a in the equation is provided by the request of

normalization, namely: Z 1

xmin

p xð Þdx ¼ 1 ! a ¼ c� 1ð Þxc�1
min

In discrete case, as in this study, we have:

pðxÞ ¼ 1 ! a ¼ 1

fðc; xminÞ

with:

fðc; xminÞ ¼
X1

n¼0
ðnþ xminÞ�c

it is clear that c[ 1 otherwise the equation diverges. To have more consistent estimates,

using the methodology by Clauset et al. (2009) to measure power-law behaviour, we have

compared it with some other distributions. To fit a discrete power law to this data and to

understand if there are alternative models fit the data better, we have calculated the xmin

(through the Kolmogorov–Smirnov statistics) that minimizes the distance between

empirical data and the power-law model which best fits it. For a given value xmin, the

scaling parameter is estimated by numerically optimising the log-likelihood (Gillespie

2015). For continuous cases, the optimization takes place through a maximum likelihood

estimator:

Table 2 Functional form by
distribution

Distribution f(x)

Log-normal 1ffiffiffiffi
2p

p
rx
e�ðln x�ln x0Þ2=ð2r2Þ

Exponential e-kx

Poisson lx=x!

Power-law ? cut off x-ae-kx
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ĉ ’ 1 þ n
Xn
i¼1

log
xi

xmin

� �" #�1

where xi = 1,2,3…, n are observations such that xi[ xmin. In discrete cases, we can

estimate ĉ in different ways, one way is through the numerical maximization of the

logarithm of the likelihood function (Clauset et al. 2009):

LðcÞ ¼ �n log fðc; xminÞ � c
Xn
i¼1

log xi

The standard errors for estimated parameters are computed with standard bootstrap

methods with 5.000 replications. Then, a goodness of fit tests is applied and used to

compare power-law fits with fits of other alternatives. A goodness of fit tests shows us

how good is the model with the parameters xmin and c estimated before. As Clauset et al.

(2009) have shown the hypothesis is tested using a bootstrapping procedure. If the

p value generated is large, any difference between the empirical distribution and the

model can be explained from statistical fluctuations. If p ^ 0, the model does not offer a

reasonable fit to the data and other distributions could be more appropriate. Following the

literature the power-law hypothesis is rejected with a p value\0.1. On the other hand, a

large p-value does not mean that power-law is the best model and other alternative

hypotheses could be better, such as the log-normal, the exponential or Poisson. To

compare these distributions, the logarithm of ratio of the likelihoods of data for two

different models are calculated, if the value is positive the power law model is preferable,

if negative it is preferable to the other distribution. To understand if the sign of the value

is significant, a standard technique is to use the Vuong’s test (Vuong 1989). Lower

p values tell us that the sign is a good indicator of which model better measures empirical

data. Instead, higher p value indicates that we are not able to decide which model is

preferable.

Stochastic actor-oriented model

Stochastic actor-oriented models (SAOM) have been built to study the complexity of

network panel data and thus to model change in social networks. The first study with

SAOM of social networks panel data was introduced by Snijders (1996). In SAOM, the

dependent variables are actors’ choices about changes of network relations. Each obser-

vation is represented by an n 9 n matrix x = (xij) where xij represents the link from the

researcher i to the researcher j(i, j = 1, 2, …n). The independent variables can be

endogenous or exogenous. Endogenous variables explain network changes with existing

network structures: an example of endogenous structure is the transitivity or reciprocity.

These types of variables capture the influence of specific local network structures of co-

collaboration on the probability of creating a new tie. Exogenous variables are the actor

covariates, which capture the influence of individual characteristics of researchers on the

probability of creating a new tie, for example same sex, similarity in a specific charac-

teristic, etc. In the SAOM each change in the network is made according to processes of

individual choice. This important assumption is realistic for what we are studying.3 Into the

3 In the models we include variables at a structural level, as well as also control variables.

Scientometrics (2016) 108:633–652 641

123



stochastic actor-oriented model are embedded Markov processes,4 random utility function

and Monte Carlo simulation. The model assumption is that the discrete network obser-

vations (t1, t2,…tn) are only snapshots of an unobserved underlying dynamic sequence, the

evolution between tn-1 and tn is assumed to be continuous and simulated with a Monte

Carlo method. These models for network evolution are outcomes of a Markov process

evolving in continuous time, which a special stochastic process. A continuous-time Mar-

kov process determines the change of the network connections. Given random variables Xt,

with t 2 (0, ?)in a discrete set S, to extend the notion of Markov chain to that of a

continuous time Markov chain we require:

P Xsþt ¼ jjXs ¼ i;Xsn ¼ in;...;Xs1 ¼ i1
� �

¼ P Xsþt ¼ jjXs ¼ i½ �

for all t[ 0, s[ sn[…[ s1 C 0 and i, j, ik 2 S. The quantities P[Xs?t = j|Xs = i]is a

transition probabilities. This is the analogue of the Markov process with discrete time

variable, just that here there is continuous parameter (in this model simulated with a Monte

Carlo method).

The idea behind this type of model is modelling the change process through two

important components: the change opportunity process (rate function) and the change

determination process (objective function).5 The actors are in control of their links and they

each seek to change these links (i.e. create, maintain or dissolve the links) such that their

personal ‘‘satisfaction’’ with the network composition is maximized. An important

assumption in this sense is that the actor has full knowledge of the network, including the

other actors, links and their characteristics. The opportunities to change a link are modelled

according to a Poisson process with rate ki for each actor i. The interpretation is that actor i

to change one of the tie variables occur at a rate of ki(x0), where x0 identifies the state of the

network at a certain time. In the basic model, all the actors have the same opportunity for

change, which is equal to a constant parameter ki = pm. When we include individual

attribute (vi) or structural variables as the degree (
P

jxij) we introduce the heterogeneity in

change opportunities. In these more complex models the rate function is given by:

ki x
0; v

� �
¼ pm exp a1vi þ a2

X
jxij

	 


From the general theory of continuous-time Markov chains (Norris 1997) - following on

a current state x0, and a set of permitted new states C(x0) and the product of the two model

components ki and pi(with pi defines the probability distribution of choices)—follows the

existence of the intensity matrix that describes the rate at which X tð Þ ¼ x0 tends to tran-

sition into ~X t þ dtð Þ ¼ ~x as dt ? 0:

q x0;xð Þ ¼ lim
dt!0

P Xðt þ dtÞ ¼ x j XðtÞ ¼ x
0

n o

dt
x0 6¼ x
� �

where x 2 X, q x0;xð Þ whenever xij 6¼ x0
ij for more than one element (i, j) and q x0;xð Þ ¼

ki x0; v;wð Þpi x0; x; v;wð Þ for graphs x and x0 which differ the element with index (i, j).

Given that an actor i has the opportunity to change a relation, the choice for this actor is to

change one of the link variables x(i,j), because actors can only change one link variable at a

4 Markov process means that change probabilities (future) only depend on the current state of the network
and not on past configurations.
5 Also called evaluation function.
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time. Changing the link variables x(i,j) will lead to a new state x, with x 2 C(x0). In order to

model choice probabilities, a classical multinomial logistic regression specified by an

objective function fi is used (Snijders et al. 2010):

pfX tð Þ changes to x ij has a change opportunity at time t;X tð Þ ¼ x0g

¼ pi x
0; x; v;w

� �
¼ exp fi x

0; x; v;wð Þð ÞP
x02C x0ð Þ exp fi x0; x0 ; v;wð Þð Þ

When actors have the opportunity to change their relations, they choose to form a new

tie to try to maximize their objective function fi. This objective function describes pref-

erences and limits of nodes (our case the researchers). Precisely, relationship choices are

then determined by a linear combination of effects, depending on the current state (x0), the

potential new state(x), individual attributes(v) and attributes at a dyadic level(w). Effects

related to the current state of the network are endogenous, implying a self-reproduction of

network structures, such as transitive closure or betweenness effect. Individual attributes

are effects modelling the propensity of some nodes to create more links. Dyadic effects

indicate the propension of actors with analogous characteristics to form links.

Parameters indicating the strength of each effect in determining the network dynamics

are estimated from longitudinal data using a simulation-based approach inspired by the

method of moments. The solution of the moment equation is obtained by a variation of the

Robbins and Monro (1951) algorithm (for further information see Snijders 2001). The

stochastic algorithm has the task to simulate the development of the network and estimates

the parameters that minimize the distance between observed and simulated networks.

During the iteration phase, the provisional parameters of the probability model are grad-

ually adjusted in a way that the simulated networks fit the observed networks. Then the

parameters are held constant to its final value, with the aim to evaluate the goodness of fit

of the model and the standards errors.

Finally, the parameters estimate by SAOM can be read as non-standardized coefficients

obtained from a classical logistic analysis. Indeed, the parameter estimates are log-odds

ratio, and they can be interpreted like the log-odds of ties change with one unit change in

the relative independent variable.

Empirical results

In this section we show the results of the different research questions. As a first step we

want to visualize our data in order to get an idea of how the data looks. The table below

presents some descriptive statistics of the network structure, where the values are nor-

malized (Table 3).6

In the PRIN, the nodes (researchers) and the number of connections in the natural

sciences are greater than sociology and economics, consistent with the different size of the

community. The average distance is a measure of how far a researcher is from the other

researchers; in physics, there is a smaller distance than the other areas. Indeed, the average

geodesic distance between researchers in the network is 5.94. Clustering coefficient is high

for all disciplinary fields, this coefficient goes from 0 to 1. In PRIN projects each

researcher is linked to everyone else within the project and for this reason the clustering

6 This because over time the government’ guidelines about collaborations are changed.
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coefficient, average geodesic distance and maximum geodesic distance have been calcu-

lated on a whole network and not year by year.7 The mean clustering coefficient is

measured by the fraction of paths of length two in the network that are closed. The ‘‘small

world’’ phenomena, the combination of short average path lengths together with a high

cluster coefficient, seem to be present in physics. This phenomenon happens because a

researcher acts as a shortcut between distant researchers. A possible explanation is because

in physics more researchers have had collaborations of research through past collaborations

with common third researcher. We expect that the closest nodes are those that work

together in large laboratories (they belong to the physics’ experimental sector). On the

other side the most isolated nodes seem to be those belonging to the theoretical physics,

that have less need to collaborate (verified observing the nodes more in depth8).

After this brief description of the states of the network on the four disciplinary fields, the

power-law distribution is presented. The first hypothesis argues that researchers’ network

follows a power-law distribution. Given the definitions above (paragraph ‘‘Power-law

distribution’’) a power law is a linear relationship between logarithms. This plot should

follow a straight line in case of a power law. Figure 1 presents the log–log plot of

chemistry:

The log–log plot shows a straight line only after a specific value, suggesting that a

power-law model will have a good fit after a minimum value. Chemistry follows a power

law from a xmin equal at 5 and with an exponent equal at 2.7. For physics xmin is equal at 9

with a exponent of 3.83 and sociology with a xmin equal at 12 with an exponent of 2.11. In

economics the minimal Kolmogorov–Smirnov value is reached keeping the lower bound at

12 with a scaling exponent of 2.04. The power-law p-value (second column in Table 4) is

not statistically significant for physics, economics and sociology. For that reason alter-

native distributions should be explored.

Chemistry seems present a pure power law with a p value of 0.62 (thus[ 0.1): physics,

economics and sociology don’t have a power law but follow other types of distributions.

From Table 4 we can see that the physics, economics and sociology are not fitted well by

the power-law model according to the goodness-of-fit test used. Physics follows a log-

normal distribution, sociology data fit best to an exponential distribution and economics

there is not a statistical significance. In conclusion, we find that in the PRIN program only

Table 3 Descriptive analysis

Area Nodes
(2000–2011)

Number of
links
(2000–2011)

Maximum
geodesic
distance
(Diameter)
(2000–2011)

Average
geodesic
distance
(2000–2011)

Average
clustering
coefficient
(2000–2011)

Chemistry 1314 5923 28 9.84 0.83

Physics 1185 4426 18 5.94 0.74

Economics 1107 3546 24 9.84 0.79

Sociology 716 2418 20 8.03 0.78

Source Author elaboration

7 If we had calculated the cluster coefficient per year it would have the value 1 because within each project
everybody is linked to everyone else.
8 Centrality indices were calculated (degree, betweenness and closeness centrality) and we noticed that
scientists with lower centrality indices were theoretical physicists.
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the network collaboration of chemistry is fit well by a power-law model between 2000 and

2011, even if p values of other distributions (in chemistry) are so large that the tests cannot

exclude better distributions.

SAOM results

Following the approach by Snijders (2005) initially we included in the model only basilar

network effects, in order to check for endogenous dynamics.9 At a later time, we add

further effects and dropped those that were not significant. In this way it was possible to

avoid model instability when running the algorithm and getting reliable estimates of the

100 101 102
10

0

10
1

10
2

x

P(X=x)

Fig. 1 Log–log plot of
chemistry

Table 4 Power-law and alternative distributions

Degree Power law Log-normal Exponential Poisson Power-law ? cut offa

p* LR p* LR p* LR p* LR p*

Degree chemistry 0.62 -0.83 0.20 -1.22 0.11 -0.37 0.36 -1.12 1.17

Degree physics 0.01 -3.57 0.01 -5.03 2.43 0.97 0.84 -0.35 0.05

Degree economics 0.03 -0.34 0.36 2.29 0.02 2.57 0.01 -2.25 0.22

Degree sociology 0,06 -1.10 0.15 -1.71 0.04 -0.79 0.21 -1.32 0.96

a The pure power-law model is nested within the power-law with exponential cut-off model, and for this
reason the latter always provides a fit at least as good as the former; therefore the LR for power-law with
exponential cut off will be always negative or zero

Source Author elaboration

9 The model was built selecting only some effects which reasonably drive the evolution of the network
among the several effects defined and provided in the package RSiena, through the command ‘‘ef-
fectsDocumentation’’. We chose the ones best suited to our studio and network characteristics.
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parameters. Consequently, the first model presented (Model 1) is very simple and only

includes density, transitive triads, betweenness and the degree assortativity effects. The

density must be included in all objective functions. It is a sort of intercept of the model and

represents the tendency to form arbitrary edges. Transitivity indicates that two researchers

sharing a tie towards a third researcher are more likely to engage in collaborative activities

between them than to other researchers. This effect measures the tendency of researchers to

cluster together. Betweenness effect measures the intermediation dynamics in the evolution

of the network which are present if researchers tend to stay in the middle between indi-

rectly connected couples of researchers. The degree assortativity effect reflects tendencies

for researchers with high degrees to preferably be tied to other actors with high degrees.

For network evolution, the rate function describes the average number of changes in

network ties between measurement points. Below we show the estimates for the chemistry

area (Table 5):

The table above shows that the average rate of change in the final model from 2000 to

2011 is 3; it means that between 2000 and 2011 on average the expected number of

changes was 3 for each researcher. The density effect is negative and significant; this

variable indicates that there is an opportunity cost in the establishment of each relation.

Thus, the tendency of researchers to start a relationship is driven by other variables,

compensating for this cost.

The significant transitivity effect indicates a tendency for transitive closure (specifically,

the transitivity effect indicates a preference for collaborating with friends of friends); we

could say there is trust in sharing common partners of research.

Betweenness effect in the second model is not significant excluding the tendency to

intermediation by researchers.

Degree assortativity does not seem to affect the actors’ choice about changes of network

relations.

Spatial proximity seems to be a relevant variable, it means that there is a tendency to

create collaborative ties based on the location in the same geographical area.

The h-index effect, a positive parameter implies that researchers prefer ties to other

researchers with different values on h-index variable (preferential attachment about the

prestige). The model says that the effect of the interaction is not statistically significant,

therefore the seniority does not change the effect of the H index.

The changing of the funding specification and the thresholds in the number of collab-

orations in the PRIN call seems to influence the partners’ choice.

Below the results of physics (Table 6).

In physics the average rate of change is slightly lower than in chemistry; therefore,

physicists have changed less partners in these years. The variables of control ‘‘Funding’’

and ‘‘Collab’’ seems to have an effect on the choice of partners. The transitivity effect,

h-index and geographical proximity are significant like in chemistry. Even in this case the

variable of interaction between H Index and Academic role is not statistically significant,

therefore the seniority does not change the effect of the H index on changing of ties. The

important difference compared to chemistry is the role played from the endogenous

variable ‘‘betweenness’’. The Betweenness effect in the second model is significant, in this

situation the only node that is connected to both nodes as an advantaged for it can directly

acquire resources from them and manage the flows among them. In physics there are nodes

that can play as intermediaries among indirectly connected couples of nodes.

The last two tables show the SAOM result for economics and for sociology (Tables 7,

8).
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In economics the average rate in the final model in considered years is 3.7; it means that

on average the expected number of changes is almost 4 for each researcher. Even here

there is an influence of the transitive effect and geographical proximity on the changing of

links. In addition to the dummy variable ‘‘Funding’’, in economics the effect of control

variable is added, here called ‘‘collab10’’, which indicates a change in the guideline by

MIUR about the possibility of participating in the PRIN program in two consecutive years.

In this context we can only say that there is an influence of this variable in the change of

the links, but we cannot put this variable in relation with the other variables of the model.

Below the results for sociology.

In sociology the average rate of change is equal to 4.2, it means they tend to change

more than other disciplines. Also here there is a transitive effect and a geographical effect

like in economics. What differentiates sociology are the variables ‘‘interdisciplinary’’ and

‘‘same academic role variables’’.

The negative sign of variable ‘‘interdisciplinary’’ means that there is a low tendency to

collaborate with those researchers who come from other disciplinary fields. The positive

sign of variable ‘‘same academic role’’ means that in sociology, in the PRIN context, a

researcher tends to change the links on the base of academic level; for instance, a

Table 5 SAOM for chemistry

Parameters Model 1 Model 2 (Final)

Estimate b t-ratios Estimate b t-ratios

Rate (2000–2011) 3.150
(average all period)a

3.009
(average all period)

Density -2.610*** (0.104) -0.033 -1.944** (0.037) -0.023

Transitive triplets 0.210*** (0.356) 0.025 0.440** (0.022) 0.044

Betweenness -0.817* (0.616) -0.048 -0.002 (0.729) -0.078

Degree assortativity -0.728 (0.771) -0.055

Size university -0.997 (0.907) -0.390

Collab (Call PRIN) 0.008 (0.044)** 0.090

Funding (Call PRIN) 0.643** (0.064) 0.030

Gender (Call PRIN) -0.010 (0.089) -0.701

Interdisciplinary -0.691 (1.680) -0.136

Netchange (Call PRIN) -2.021 (1.064) -0.090

Same academic role 0.002 (0.207) 0.057

Gender 0.128 (1.063) 0.101

H Index 0.175** (0.014) 0.038

H Index 9 role 1.277 (1.022) 0.558

Geographical proximity -0.115** (0.012) -0.011

‘‘Estimation’’ = average of parameters’ estimations. Standard deviation in parenthesis; ‘‘t-ratios’’ = test for
the convergence of the algorithm (t values\0.1)
a For reasons of space we report the average of the parameters (from 2000 to 2011)

Significance of the estimation values (probability of acceptation of the null hypothesis): ***\0.01;
**\0.05; *\0.10

10 The PRIN calls have changed since 2005 and after this date has not been possible to participate to the
PRIN for two consecutive years.
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researcher prefers to do research with a full professor instead of another researcher

(preferential attachment on the base of academic role). This is a feature found only in

sociology.

Discussion and conclusions

We analyzed data on PRIN funded grants to figure out the collaboration patterns among

researchers in a competitive context. We have noticed that there are different types of dis-

tributions in the four networks highlighting the distinct scientific traditions by the four

academic communities. The first assumption is confirmed only in part; indeed chemistry

seems to follow a power law (although we cannot exclude other distributions) starting from a

minimum value and this could be explained through a preferential attachment of scientific

quality by researchers, namely researchers with a lower profile tend to tie to excellent

researchers to increase the chances of funding. Laudel (2002) speaks about ‘lobby’ in project

funding contexts, this effect can enhance the chances of funding success and could become a

real ‘lobby’, with the risk of influencing research policy and decisions on the allocation of

loans in its favour. Even if analyzing the presence of lobby is out of the scope of the paper, we

can imagine that this kind of effect is also present in Italy and in other countries. Physics

reveals a small-world characteristic (short paths and high cluster coefficient) (Watts and

Table 6 SAOM for physics

Parameters Model 1 Model 2 (Final)

Estimate b t-ratios Estimate b t-ratios

Rate (2000–2011) 3.322
(average all period)

2.856
(average all period)

Density -1.377** (0.033) -0.445 -1.124** (0.021) -0.036

Transitive triplets -0.025** (0.056) -0.028 0.089** (0.002) 0.085

Betweenness 0.127** (0.059) 0.012 0.122** (0.095) 0.019

Degree assortativity -0.364 (1.922) -0.154

Size university -0.352 (0.907) -0.012

Collab (Call PRIN) 0.438 (0.564)* 0.041

Funding (Call PRIN) 0.201*** (0.002) 0.047

Gender (Call PRIN) -2.411 (0.554) -3.051

Interdisciplinary -2.322 (1.731) -5.032

Netchange (Call PRIN) -1.481 (0.064) -0.450

Same academic role 0.121 (0.002) 0.123

Gender 0.125 (1.801) 3.332

H Index 0.075** (0.114) 0.033

H index 9 role 0.845 (0.173) 0.192

Geographical proximity -0.010*** (0.312) -0.021

‘‘Estimation’’ = average of parameters’ estimations. standard deviation in parenthesis; ‘‘t-ratios’’ = test for
the convergence of the algorithm (t values\0.1)

Significance of the estimation values (probability of acceptation of the null hypothesis): ***\0.01;
**\0.05; *\0.10
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Table 7 SAOM for economics

Parameters Model 1 Model 2 (Final)

Estimate b t-ratios Estimate b t-ratios

Rate (2000–2011) 4.012
(average all period)

3.733
(average all period)

Density -2.252*** (0.229) -0.164 -1.655*** (0.993) -0.194

Transitive triplets 1.101** (0.122) 0.082 1.256** (0.428) 0.026

Betweenness -0.511 (0.115) -0.132 -0.122 (0.986) -0.698

Degree assortativity 0.364 (1.922) 1.125

Size university 2.568 (1.336) 2.328

Collab (Call PRIN) 2.339** (0.329) 0.071

Funding (Call PRIN) 1.118** (0.355) 0.054

Gender (Call PRIN) 1.371 (1.809) 2.227

Interdisciplinary -2.137 (0.586) -0.008

Netchange (Call PRIN) -1.320 (0.105) -1.196

Same academic role 0.975 (0.337) 0.023

Gender 0.115 (0.757) 0.029

Geographical proximity -0.225** (0.029) -0.006

‘‘Estimation’’ = average of parameters’ estimations. Standard deviation in parenthesis; ‘‘t-ratios’’ = test for
the convergence of the algorithm (t values\0.1)

Significance of the estimation values (probability of acceptation of the null hypothesis): ***\0.01;
**\0.05; *\0.10

Table 8 SAOM for sociology

Parameters Model 1 Model 2 (final)

Estimate b t-ratios Estimate b t-ratios

Rate (2000–2011) 4.956 (average all period) 4.236 (average all period)

Density -1.256** (0.079) -0.029 -1.655** (0.993) -0.094

Transitive triplets 0.056** (0.236) 0.033 2.256** (0.336) 0.026

Betweenness -0.286 (0.786) -0.028 -0.322 (0.982) -0.082

Degree assortativity -1.542 (0.034) -0.076

Size university 1.904 (1.336) -0.039

Collab (Call PRIN) 0.120 (0.329) 0.001

Funding (Call PRIN) 0.034** (0.780) 0.051

Gender (Call PRIN) 1.371 (0.029) 0.006

Interdisciplinary -0.458(0.193)* -0.001

Netchange (Call PRIN) -1.117 (1.028) -0.059

Same academic role 0.018** (0.637) 0.023

Gender 0.125 (0.957) 0.001

Geographical proximity -0.803*** (0.568) -0.026

‘‘Estimation’’ = average of parameters’ estimations. Standard deviation in parenthesis; ‘‘t-ratios’’ = test for
the convergence of the algorithm (t values\0.1)

Significance of the estimation values (probability of acceptation of the null hypothesis): ***\0.01;
**\0.05; *\0.10

Scientometrics (2016) 108:633–652 649

123



Strogatz 1998) but does not exhibit a power-law degree distribution according to the Clauset

et al. (2009) method. In physics some nodes are closer than the other fields, there is one large

team that form the majority of the collaborations. This could be explained by the presence of

large laboratories in physics, which require many researchers (therefore more connections).

The cluster coefficient is present in all areas, this means that the friends of friends will have a

larger probability to collaborate together. Altogether, however, the presented results are in

agreement with Kronegger et al. (2012), supporting the conclusion that the dynamic social

networks are governed by different forms between disciplines (in our case the network

structure has different distribution for each area of study). Each field of study is affected by

their own characteristics and academic culture. The second hypothesis is confirmed for all

disciplinary fields. Data show that geographical proximity is an important driver for the

longitudinal evolution of the network in all disciplinary fields. Even if we are in a national

context (relative distance), physical proximity plays a key role in the formation of collabo-

rations. It confirms the effects of face to face mentioned by Laudel (2006); for instance,

researchers who work in the same department.

The third hypothesis is also confirmed; an interdisciplinary component does not play a role

when a researcher chooses a partner of research. This does not mean that the projects are

mostly disciplinary, but simply that researchers do not change the links on the base of

partner’s area. Finally, the last hypothesis about H-index is confirmed, there is no system of

connection with those who have the same H-index. Therefore, there is a preferential

attachment about the scientific prestige in chemistry and physics. Gender variable has been

used as a control variable and it is not significant in the four models. This suggests that there

are not mechanisms of gender homophily even if we cannot exclude an effect of interaction

between gender and differences in rank (different academic role). This interaction could

invalidate the effect on the dependent variable, because females are found less in powerful

positions (e.g. positions of full professor) compared to males and so they might be less

attractive. Moreover, research policies (isolated through the calls) drive the collaborative

processes, as demonstrated by the significance of some control variables (e.g. Funding and

Collab); this means that changes in the calls also influence the choice of research partners.

This paper concerns a specific Italian funding scheme in four areas of interest and the

results are not valid for other funding schemes, in Italy and abroad; it cannot be generalized

to the entire academic community.

Acknowledgments This work has benefitted from helpful comments and suggestions by Emanuela Reale. I
would also like to thank Thomas Scherngell and Michael Barber for their advice during my visiting in
Vienna granted by the Eu-SPRI PhD Circulation Award.

References

Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern
Physics, 74, 47.

Anand, B., & Khanna, T. (2000). Do firms learn to create value? The case of alliances. Strategic Man-
agement Journal, 21, 295–315.

Andersson, K. A. (2011). The formation of collaboration networks among individuals with heterogeneous
skills. Working Papers. IDEAS: https://ideas.repec.org/p/cmu/gsiawp/938084531.html#biblio.

Andersson, A., & Persson, O. (1993). Networking scientists. The Annals of Regional Science, 27(1), 11–21.
Arenas, A., Danon, L., Dı́az-Guilera, A., Gleiser, P., & Guimerá, R. (2004). Community analysis in social
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