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Abstract Altmetrics or other indicators for the impact of academic outputs are often

correlated with citation counts in order to help assess their value. Nevertheless, there are no

guidelines about how to assess the strengths of the correlations found. This is a problem

because the correlation strength affects the conclusions that should be drawn. In response,

this article uses experimental simulations to assess the correlation strengths to be expected

under various different conditions. The results show that the correlation strength reflects

not only the underlying degree of association but also the average magnitude of the

numbers involved. Overall, the results suggest that due to the number of assumptions that

must be made, in practice it will rarely be possible to make a realistic interpretation of the

strength of a correlation coefficient.

Keywords Citation analysis � Correlation � Altmetrics � Indicators � Discretised
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Introduction

New indicators are often developed within scientometrics from new data sources, such as

altmetrics (Kousha and Thelwall 2015; Thelwall and Kousha 2015a, b), or with a new

method to process existing data, such as the h-index (Hirsch 2005). A standard technique to

assess the value of any new quantitative indicator is to measure the extent to which it

correlates with human judgements or an existing indicator of better known value. This has

been proposed as a useful general approach for patent citations (Oppenheim 2000),

hyperlink counts (Thelwall 2006) and altmetrics (Sud and Thelwall 2014). A positive
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correlation suggests that the new indicator at least partially reflects the quality that the

better known indicator signifies. For example, a statistically significant positive correlation

between a new indicator and citation counts suggests that the new indicator relates to

scholarly impact or quality, at least if the correlation is for articles from a field for which

citation counts tend to reflect scholarly quality. Nevertheless, statistical significance does

not give evidence about the extent to which the new indicator signals scholarly quality. For

this, the magnitude of the correlation coefficient is important. A very high correlation

between two indicators suggests that they are essentially equivalent whereas a low cor-

relation suggests that the new indicator predominantly reflects something other than

scholarly quality but there are no guidelines about how to interpret specific values.

In contrast to the lack of empirically-grounded guidelines for interpreting correlation

coefficients in informetrics, specific values have been suggested in the behavioural sci-

ences. The most widely used guidelines are probably the minimum values of 0.1 for

‘‘small’’, 0.3 for ‘‘medium’’ and 0.5 for ‘‘large’’ (Cohen 1988, 1992). These terms are

recommended only when more rigorous alternatives are not available (Cohen 1988). A

preferable approach in the behavioural sciences is to compare any new correlation coef-

ficient with other correlation coefficients obtained in similar contexts to see how large it is

relative to them (Lipsey et al. 2012). Assuming that these correlation coefficients would all

be affected to a similar extent by spurious factors, such as random noise and measurement

error, this comparison would hint at the likely underlying strength of association. In

psychology, this recommendation is sometimes put into practice in systematic review

articles in the form of a table of the range of correlation coefficient values reported in the

bottom, middle and upper thirds of (published and unpublished) studies about an issue

(Hemphill 2003). From this table, new investigations can explicitly position their corre-

lation coefficients within the range of those found in previous studies. Alternatively, the

practical significance of correlation coefficients can sometimes be interpreted in real world

contexts, such as to predict the number of lives that would be improved by a medical

treatment (Ellis 2010).

At the most basic level, the magnitude of a correlation coefficient should be interpreted

relative to the maximum possible value that it would be reasonable to expect from a perfect

underlying relationship between the variables being correlated. This intuition underlies the

widely used Cronbach’s alpha coefficient of reliability (Cronbach 1951). The maximum

theoretical size depends upon the natural variability within the data gathered and the

presence of unavoidable spurious factors. If the measurements used are highly precise and

the natural variation in the phenomenon being measured is small compared to the range of

values of the data then a correlation close to 1 would be theoretically possible (e.g., 0.99 in

physics: Ettori 2015; Liu et al. 2012). If the measurements are not precise or the natural

variation in the phenomenon being measured (i.e., spurious factors that are impossible to

control for) is large compared to the range of values of the data then small correlations are

the biggest that could be hoped for. This probably applies to all experiments involving

subjective assessments by human subjects, for example, because it would be impossible to

control for the influence of the different life experiences of the individuals on their

judgments.

Correlations between citation counts and alternative indicators are complicated by both

being indirect indicators of the phenomenon of interest, which is research quality or

impact. Because of this, a perfect correlation is not theoretically possible, unless both have

the same biases. Mixing disciplines within a data set can also artificially reduce correlation

strengths (Thelwall and Fairclough 2015). In addition, document properties that affect

citation counts but not necessarily the quality of research can also weaken the relationship
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between citation counts and research quality. These may include author nationality, col-

laboration type, number of co-authors, paper length, number of references, the pure/applied

nature of the research, and abstract readability (Didegah and Thelwall 2013; Hartley and

Sydes 1997; Kostoff 2007; Larivière and Gingras 2010; Onodera and Yoshikane 2015;

Persson et al. 2004). It is not clear whether some of these factors, such as collaboration,

tend to produce better research or whether they tend to produce research that is more highly

cited for other reasons. A case in point is that multiple authors may generate additional

publicity or self-citations for their articles (van Raan 1998). It therefore seems impossible

to be sure about all of the factors that can weaken the relationship between research quality

and citation counts. This problem is exacerbated by substantial disciplinary differences in

citation practices (Hyland 1999). It is also exacerbated by the scarcity of evidence about

the underlying quality or impact of academic articles. Although large scale peer review

evaluations of the quality of academic articles is collected by some national research

exercises, such as that of the UK and Italy, and these have been used for statistical analyses

(e.g., HEFCE 2015; Franceschet and Costantini 2011), the data sets are not freely available

and have not been used to conclusively identify the factors that influence the relationship

between quality or impact and citation counts.

In the absence of comprehensive knowledge about the number and strength of factors

that influence the relationship between citation counts and research quality it is impossible

to give a convincing interpretation of the strength of a correlation between citation counts

and any new indicator. Although it is logical to follow advice from behavioural sciences

and compare such correlations with each other to determine whether a coefficient is large

relative to other coefficients (Hemphill 2003) there may be too few scientometric studies

with correlations and too few genuinely new indicators to make this approach robust for

three reasons. First, there are substantial disciplinary differences in citation cultures, the

variability of citation counts and the extent to which citation counts reflect scholarly

quality or are influenced by spurious factors, as discussed above. Hence, similar correla-

tions for different fields may have substantially different meanings. Second, properties of

the data set examined may affect the magnitude of the correlation coefficient. It would be

reasonable to expect lower correlation coefficients for uniform data sets (e.g., highly cited

articles or articles from a single journal) than from non-uniform data sets (e.g., sets

containing interdisciplinary research or all articles from a field of study). Third, the average

number of citations may affect the size of a correlation coefficient because citation data is

discrete and therefore unable to reveal small differences in impact at the individual article

level. Because of these factors, a ‘‘one size fits all’’ approach to interpreting scientometric

correlation coefficients is inappropriate and a more fine-grained strategy is needed that is

sensitive to both the field of study and the properties of the data set analysed.

To reduce the level of uncertainty when interpreting correlation coefficients in scien-

tometric studies, the current article assesses the influence of three factors on the strength of

correlation between citation counts and alternative research quality indicators: The average

number of citations per paper for the data set investigated; the variability in the distribution

of citation counts in the data set investigated; and the strength of the relationship between

research quality and indicator values. Although this is not an exhaustive list of relevant

factors, it includes the main factors that can be experimentally controlled.

• RQ1: Does the average number of citations per paper in a data set affect the likely

strength of a Spearman correlation with an alternative indicator?

• RQ2: Does the variability of the number of citations per paper in a data set affect the

likely strength of a Spearman correlation with an alternative indicator?
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• RQ3: Does the magnitude of the connection between research quality and expected

citation counts in a data set affect the likely strength of a Spearman correlation with an

alternative indicator?

Methods

This article uses an experimental simulation modelling approach to assess the influence of

average citation counts, variability and research quality relationship strength on correla-

tions between citation counts and alternative indicators. These three factors are investi-

gated by generating simulated citation count and alternative indicator data sets and then

calculating the correlation between them for different parameter values.

In order to simulate a set of citation counts, their statistical distribution needs to be

known. Early research suggested that citation counts follow a power law (Clauset et al.

2009; Garanina and Romanovsky 2015; Redner 1998) but, with the possible exception of

physics, this distribution only fits reasonably well if low-cited articles are removed. This is

also true for a discrete version of the power law, the Yule-Simon distribution (Brzezinski

2015). Two better fitting distributions are the shifted or hooked power law (Thelwall and

Wilson 2014; Thelwall 2016; see also: Pennock et al. 2002) and the discretised lognormal

(Eom and Fortunato 2011; Radicchi et al. 2008; Thelwall and Wilson 2014; Thelwall

2016). Stopped sum distributions may fit citation data even better for some subjects, but

have substantial parameter estimation problems (Low et al. 2015). Negative binomial

distributions probably do not fit as well overall (Ajiferuke and Famoye 2015; Low et al.

2015) due to problems with predicting very high values.

Although there are few studies of the distributions of alternative indicators, one has

shown that Mendeley readership counts for medical fields follow both the hooked/shifted

power law and the discretised lognormal reasonably well (Thelwall and Wilson in press).

The discretised lognormal distribution was chosen here for the simulations because its

parameters can be manipulated to set the mean and variance relatively independently of

each other and this is necessary to address two of the issues investigated. The probability

density function of the (continuous) lognormal distribution is f ðxÞ ¼ 1

xr
ffiffiffiffi

2p
p e�

ln xð Þ�lð Þ2

2r2 . Its

scale parameter r and location parameter l are the mean and standard deviations of the

natural log of the data (Limpert et al. 2001). The mean of the untransformed distribution is

also related the standard deviation, with formula elþr2=2. The variance of the distribution is

er
2 � 1

� �

e2lþr2

. The (continuous) lognormal distribution be discretised to generate the

discretised lognormal distribution lnN
...

l; r2ð Þ with probability mass function

f ðnÞ ¼ 1
R1

0:5
f ðxÞdx

r
nþ0:5

n�0:5

f ðxÞdx, for n = 1, 2, …. Although this excludes zeros, it is standard to

add 1 to citation counts before modelling, so that uncited articles are not excluded. The

formulae for the mean and standard deviation for the continuous lognormal distribution are

presumably reasonable approximations, but not exact, for the discretised version. The

discretised lognormal distribution in the powerRlaw R package (Gillespie 2015) was used

here.

The simulation modelling controlled three parameters: the location, scale and connec-

tion with research quality. Location parameters were varied between 0.1 and 4 in steps of

0.1 to ensure that the distribution means included the full range of average citation counts
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normally found in scientometric studies (up to elþr2=2 ¼ 70:1 for a location of 4 and scale

parameter 0.5—see below). Scale parameters for discretised lognormal distributions fitted

to data from individual fields and years have varied from 0.67 to 1.53 (Thelwall and

Wilson 2014) and so three values were chosen to encapsulate this range: 0.5, 1 and 2.

The relationship between the underlying research quality of a publication and its cita-

tion count or alternative indicator value was modelled by allowing the location parameter

to vary with the quality value. Each data set was split into articles at four quality levels,

with the location parameter of each determined by its quality level using a quality mul-

tiplier q. Thus if the base location parameter was l then the location parameters of the four

sets would be l, lq, lq2, lq3 so that each level had its location parameter increased

proportionately to the one before. The quality multiplier was allowed to vary between 1 (no

effect) and 2 in steps of 0.1. This choice is relatively arbitrary since quality is not a

numerical concept and therefore has no natural scale. It is broadly based upon the UK

context, which suggests an exponential relationship between ratings and research quality.

This is evident from the funding formula used in which a rating of 4 out of 4 is worth four

times as much funding as a rating of 3 out of 4 (Else 2015; see also: Wilsdon et al. 2015).

Since q [ {1, 1.1, …2}, l [ {0.1, …4}, and r [ {0.5, 1, 2} were varied independently,

there were 11 9 40 9 3 = 1320 different parameter sets altogether. Each of the 1320

parameter sets was used to generate 1000 simulations of two datasets of size 400 each, as

described above. Spearman correlations were then calculated for the datasets and the mean

correlation was recorded out of the 1000 simulations as well as 95 % confidence intervals

from the data (i.e., the 50th largest and 50th smallest correlations out of the 1000 calculated

for each parameter set). For simplicity of reporting, results are presented only for cases

where the two simulated distributions have identical parameters but results are available

online (the file location is in the conclusions) for which they have different parameters.

Fig. 1 Spearman correlations between two simulated discretised lognormal distributions with 100 data
points at each of four quality levels, with a separate line for each quality differential q between these levels.
All distributions have a scale parameter of 0.5. Error bars on one of the lines show 95 % confidence
intervals
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Results

(RQ1) If the base location parameter is small (i.e., the average number of citations per

paper for the data set is low) then, irrespective of the other parameters, the Spearman

correlation between the two data sets has a low maximum (points near the left axis in

Figs. 1, 2, 3). For example, for parameter set q = 2, l = 0.1, and r = 0.5, the expected

mean is approximately elþr2=2 ¼ 1:3 and the average correlation is 0.2 (Fig. 1), despite the

strong underlying relationship between quality and indicator values. Conversely, if the base

location parameter is large so that the average number of citations per paper for the data set

is high, then the average correlation is 0.9 or higher (points near the right of Figs. 1, 2 and

3), unless the quality relationship is quite small. Thus the average citation count has a

substantial effect on the size of a correlation that could be expected.

(RQ2) If the scale parameter is small (Fig. 1), then the Spearman correlation between

the two data sets tends to be higher than if the scale parameter is large (Fig. 3), although

the difference is most evident with small or moderate location parameters.

(RQ3) If the relationship between quality and citation counts is small (the 1.1 line in

each of Figs. 1, 2 and 3) then, irrespective of the other parameters, the Spearman corre-

lation between the two data sets has a low maximum. The maximum can be increased by

decreasing the scale parameter or increasing the location parameter.

Discussion and limitations

The main limitation in this study is that the connection between research quality and

citation impact is unknown and has been modelled in a simple way with a single parameter

q. There is no evidence about how research quality scores for sets of research articles are

typically distributed, with the exception of self-selected article sets for the UK and Italy

(HEFCE 2015; Franceschet and Costantini 2011). Without this information, the magnitude

Fig. 2 This is the same as Fig. 1 except that all distributions have a scale parameter of 1
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of the correlations can only be approximations, although the overall graph shapes are still

useful to point to underlying trends.

A second major problem is that the method assumes that the two indicators correlated

are independent of each other and this is rarely likely to be true. In an extreme case, an

unknown fraction of Mendeley readerships for articles are recorded by people that use

Mendeley as a device to manage references for their future journal articles and this is a

source of partial dependence between citation counts and Mendeley readership counts.

More generally, most indicators reflect some type of citation, in the most abstract sense,

and this introduces a degree of dependence since the citation counts and indicator value

will both be affected by citation-specific influences that are independent of quality, such as

article type and subfield membership. This issue could be circumvented by replacing

‘‘quality’’ in the above discussion and methods by a term such as ‘‘citability’’. This would

give more credible results at the expense of moving further away from the information that

evaluators would like to know. This approach could also be used in more theoretical

studies of observable properties of academic publications (e.g., Bosquet and Combes

2013).

Another limitation is that only the discretised lognormal distribution has been used for

the simulation modelling, although the shifted power law fits some sets of citation counts

better. Since the two distributions have reasonably similar overall shapes and the Spearman

correlation is not a parametric test, this seems unlikely to affect the conclusions.

Although the answers to the second and third research questions are expected, the cause

of the solution to the first research question is less transparent. For the continuous log-

normal distributions, the location parameter would presumably effect the correlations

exclusively by varying the standard deviation of the simulated data, since it would not

affect the mean. With the use of discretisation, reducing the location parameter tends to

increase the number of tied ranks in the data set because the ties tend to occur for lower

citation counts. In particular, reducing the mean parameter increases the number of zeros.

The ties in the data thus tend to reduce the Spearman correlation by making the data sets

less different.

Fig. 3 This is the same as Fig. 1 except that all distributions have a scale parameter of 2
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The results also support the argument made in the introduction that it is not reasonable

to specify specific correlation coefficient ranges as being universally small, medium or

large. Thus there can be no scientometric equivalent of the Cohen (1988) table of rec-

ommendations for interpreting behavioural sciences correlation coefficients. Moreover,

extreme caution must be used when comparing correlations between different studies in the

literature. Even if the studies cover publications from the same field, the above results

show that the citation window can affect the correlation coefficients.

In theory, the simulation results could be used to generate a corrected correlation

coefficient by dividing the correlation for the real data by the simulated correlation

coefficient. This is a standard technique in psychology to deal with measurement error in

instruments using Cronbach’s alpha (Cronbach 1951; Ellis 2010). The corrected correla-

tion coefficient would then report the correlation as a proportion of the maximum possible

value. This corrected figure would be credible if there was good evidence about the key

parameters for the simulation, such as the quality distribution and the connection between

quality and indicator values, but this seems unlikely to happen often in practice. Without

this credibility, a set of corrected values should be calculated based upon a range of

reasonable assumptions and then this range of corrected values should be reported. See the

conclusions for the location of software to run simulations and an extended table of results

that can be used for standard benchmark comparisons.

Conclusions

The simulation modelling results show that the location and scale parameters influence the

strength of correlation to be expected between citation count data and alternative indica-

tors, assuming that both are connected to underlying research quality. The results also

confirm that stronger connections to research lead to higher correlations, other factors

being equal. The main implication for interpreting correlation coefficients is that their

magnitude is not a simple reflection of the underlying relationship with research quality but

is also related to the average citation counts and the variability of the data. For example, if

the same correlation test is carried out separately for each of a number of disciplines (e.g.,

as in Mohammadi and Thelwall 2014) then higher correlations should be expected for

disciplines that attract more citations, irrespective of the underlying connection between

quality and research. Thus, in this context, a higher correlation does not necessarily imply a

stronger connection between the indicators and research quality, unless the variability and

means of the data sets are similar. Thus, in future when reporting correlation coefficients,

average numbers of citations and variance should also be reported and disciplines should

only be compared if they have similar values on these two parameters.

In theory, it would be possible to assess the strength of a correlation by comparing it to

the correlation expected if a perfect relationship was present between quality and citation

counts, and assuming that citation counts and the other indicator were independent of each

other. This could be achieved by fitting a discretised lognormal distribution to the citation

count data and the alternative indicator and then using the two fitted location and scale

parameters to generate two simulated data sets, from which a Spearman correlation could

be calculated. This would be possible if the exact relationship between research quality and

citation counts was to be known (e.g., the value of q in the simulations above). Since the

relationship between research quality and citation counts is unknown then an alternative

strategy is to conduct multiple simulations with apparently reasonable parameters and then
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interpret the real value in the context of this range of values. If the two data sets analysed

have similar properties then the theoretical maximum correlation may be read from Figs. 1,

2 and 3. If they have the same scale parameter but a different location parameter then the

maximum expected value may be read from the online data associated with the current

paper (doi:10.6084/m9.figshare.3184687.v1). If the scale parameters are also different, or

if more precise values are needed then new simulation models can be run using R code

placed online to help future studies (doi:10.6084/m9.figshare.3184687.v1). This informa-

tion can also be used to calculate a range of corrected values, as described at the end of the

Discussion section, if coefficients need to be compared between different data sets.

These conclusions apply only to the case of correlating raw citation counts and raw

scores from another integer metric. The method above would need to be substantially

adapted for correlations involving indicators derived from such data (e.g., Chakraborty

et al. 2015; Finardi 2013) as well as for direct correlations between indicators or citation

data and human quality ratings (Ahlgren and Waltman 2014; Wainer and Vieira 2013). In

practice, however, the exact distribution of quality scores is rarely likely to be known, even

if the concept of quality is operationalised in a useful way, such as through a numerical

score on a scale rating given by expert judges. Moreover, two indicators are rarely likely to

be fully independent and in many cases may be highly dependent. Hence, it seems

impractical to expect to be able to gain a realistic impression of the underlying strength of a

correlation (but see the discussion above for a ‘‘citability’’ alternative). Nevertheless, it

may help to use the methods here to get very approximate guidelines as long as they are

reported alongside a statement of limitations.
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