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Abstract The advent of large data repositories and the necessity of distributed skillsets

have led to a need to study the scientific collaboration network emerging around cyber-

infrastructure-enabled repositories. To explore the impact of scientific collaboration and

large-scale repositories in the field of genomics, we analyze coauthorship patterns in

NCBIs big data repository GenBank using trace metadata from coauthorship of traditional

publications and coauthorship of datasets. We demonstrate that using complex network

analysis to explore both networks independently and jointly provides a much richer

description of the community, and addresses some of the methodological concerns dis-

cussed in previous literature regarding the use of coauthorship data to study scientific

collaboration.

Keywords Team science � Big data repository � Scientific collaboration � Complex

network analysis � Cyber-infrastructure enabled science

Introduction

The emergence of cyberinfrastructure (CI) enabled research are thought to affect the

structure and scale of scientific collaboration (Szalay and Blakeley 2009) by allowing

scientists to share data and computing resources between geographically disparate teams.

Scientific data repositories (SDRs) are one example of cyberinfrastructure. We argue that

the emergence of CI-enabled science, and SDRs in particular, should be of interest to any

researcher studying scientific collaboration, especially if the researcher uses network

analytic lenses to study the phenomenon for two reasons. First, from a theoretical point of

view, quantitative analyses of the impact of CI on the scale and size of scientific
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collaboration are sparse. Second, SDRs may serve as an additional source of trace data for

studying scientific collaboration, thus addressing some of the concerns expressed about

using coauthorship data to study scientific collaboration (Glänzel and Schubert 2005;

Laudel 2002). This observation leads to the general research question motivating our

paper—Can trace data from scientific data repositories supplement trace data from pub-

lications to provide additional insight into the structure and evolution of scientific col-

laboration networks?

The term scientific data repository (SDR) is used frequently, often in broader discussions

of cyberinfrastructure (CI) enabled science, but rarely explicitly defined. Having said that,

there appears to be an implicit consensus on the functions and characteristics of SDRs;

consequently, there is little controversy when exemplars are given in the literature. The

implicit consensus suggests that an SDR is a system of technologies and policies that enable,

at a minimum, the storage of data sets in a centralized location with respect to the community

the SDR serves. SDRs may also provide access to additional data services, including

importing, exporting, handling, archiving, and curating the data, as well as supporting usage

tracking and linking to publications or external sites (Marcial and Hemminger 2010).

The primary impetus for the investment in SDRs is to facilitate data sharing and reuse

(Advanced Cyberinfrastructure Division 2012; Hey et al. 2009, p. XV). Many SDRs are

designed to support entire research fields, and thus are underpinned by relatively complex

technical architectures in order to support a range of services that connect to various parts

of the community’s typical research workflow. As a result, the design and maintenance of

the system is costly, and continued funding is almost always required. Given the high cost

of most SDRs, there is a strong incentive to see them used. Consequently, there is an

increasing emphasis on the development of policies and regulations that promote the use of

SDRs, and more attention is being paid to the socio-cultural factors that influence scien-

tists’ data sharing behaviors (Faniel and Jacobsen 2010; Faniel and Zimmerman 2011).

Examples of well-established SDRs that are integrated into the communities they serve

include the LIGO data grid, which supports the Laser Interferometer Gravitational Wave

Observatory (LIGO) experiments, the Long Term Ecological Research Network (LTER),

which allows ecologists to gather and analyze data over spatial and temporal dimensions,

the Worldwide Protein Data Bank (wwPDB), and GenBank, the international nucleotide

sequencing databank. The extent to which the use of these repositories affects the work

practices and collaborative interactions of the scientists in the surrounding communities is

largely unknown. Before we attempt to answer the question of how the emergence of these

repositories impacts the structure and scale of scientists’ collaborative interactions we need

to answer the more basic question—What are the structural characteristics of the collab-

orative interactions of scientists who use these repositories?

The spatial metaphors of structure and scale refer to the presence, composition, and

interconnectedness (structure) of sub-communities within research fields and the size

(scale) of the teams and sub-communities within the larger research communities. Studying

the structure and scale of scientific collaboration is often best done through network

analytic lenses, made popular by the work of Albert, Barabási, and Newman (Barabási and

Albert 1999; Newman 2001b, 2003). Conceptualizing scientists as a set of points on a

plane (or less often, a three dimensional volume), connected by lines representing social

relationships, has proven to be a useful approach for studying the social nature of science.

The resultant network is amenable to a host of advanced statistical analyses, which provide

a much richer description of the overall organization of scientific fields (macroscopic

analysis), the prominence of groups within fields (mesoscopic analysis), as well as the role

individuals play in those fields (microscopic analysis).
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For this paper we focused on four major network measures, the clustering coefficient,

mean degree and degree distribution coefficient (or power law fit), and size of the giant

component as a percentage of all scientists active in the network.

Clustering coefficient measures the number of completed transitive triples, or the

fraction of scientists who are connected to a common neighbor and are connected them-

selves. Small networks exhibit much higher clustering coefficients than random graphs, but

will decrease over time or as the network gets larger (Barabási et al. 2002). The clustering

coefficient varies between fields, and can be attributed to the tendency of friends to become

friends, or to work in groups of 3 or more (Newman 2001a). Low values may indicate a

hierarchically organized community, with few actors having opportunities to indepen-

dently build relationships, even with colleagues of colleagues.

Mean degree provides a general sense of how many connections actors in a network

have. When the mean degree is analyzed in conjunction with the degree distribution

coefficient, the two measures can be used to discern the hierarchical nature of a commu-

nity. The mean degree in a horizontally organized community will be higher than that of a

comparable, vertically organized network. However, the degree distribution coefficient

will provide a much better indication of the extent to which connectivity is centralized in a

few prominent actors (Newman 2001a).

Giant Component is the largest component in a network in which there is at least one

path between all nodes in that component. In disconnected networks, components, better

thought of as isolated islands, are relatively small in terms of the overall number of nodes

in the network. The absence of a giant component may indicate that the network being

studied is not a true community, but instead many smaller isolated communities. The

presence of a giant component may indicates the presence of a community, with larger

giant components being indicative of a connected community.

In this paper, we use the measures listed above to provide a more accurate description of

the structural characteristics of scientific community emerging and evolving around a

scientific data repository, as well as compare the collaboration networks that can be

reconstructed using metadata from the repository. Specifically, we identify two types of

coauthorship within a scientific data repository—coauthorship of datasets and coauthorship

of publications. Each form of coauthorship can be used to construct an independent net-

work, as well as combined to construct a more comprehensive network. By comparing and

contrasting the three networks we answer our original research question—Can trace data

from scientific data repositories supplement trace data from publications to provide

additional insight into the structure and evolution of scientific collaboration networks?

By answering these questions, we can demonstrate that the large body of literature looking

at scientific collaboration could be missing a significant portion of the collaborative process,

as noted by others including (Laudel 2002). As far as we know, this is the first large scale study

of scientific collaboration that includes and integrates both publication data and dataset

generation. This paper also builds on past research by demonstrating the effect policy deci-

sions have on the structure and activity rates of scientific networks.

Materials and methods

The most common approach to studying scientific collaboration is to use metadata from

publications to extract coauthorship relationships. It is also possible to gather data using

surveys, qualitative interviews, or some mixture of the three. There are known limitations
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to each approach; of direct interest to our research are the limitations of operationalizing

collaboration as coauthorship. Both (Glänzel and Schubert 2005; Laudel 2002) go into

greater detail on these limitations, so we will only cover them briefly. Specifically, using

coauthorship as the basis for studying collaboration is known to both undercount and

overcount interactions. Undercounting comes from the fact that scientists often informally

collaborate on papers, receiving feedback from peers. Scientists have taken to using

acknowledgements to give credit for this less than coauthorship level of collaboration

(Cronin et al. 2003). Coauthorship can overstate collaboration as well, particularly when

coauthorship is given freely to colleagues or more senior scientists in recognition of their

support, or in attempts to use their name recognition to draw attention to the publication.

Understanding exactly what collaboration is, and the relationship between any two sci-

entists who coauthored a paper together, becomes even more difficult in the case of hyper-

authored papers. In general, the number of authors per paper has increased steadily over the

years, including the number of papers with over 1000 authors (King 2012).

One question that came to mind regarding capturing the full breadth of scientific col-

laboration was whether extracting metadata from a scientific repository could provide a

more detailed picture of collaboration than just using metadata from publications alone.

Additionally, results from a pilot study conducted by the authors of this paper suggested

that scientists were beginning to behave as if the datasets submitted to the GenBank

repository were intellectual contributions, (i.e., laying intellectual claim to their produc-

tion). These observations prompted us to ask whether using the metadata from a scientific

data repository would capture additional collaboration not present in a collaboration net-

work based on publications, as well as if there are differences in the structure of dataset

submission networks and publication networks. In order to answer these questions we

chose to further explore the GenBank community.

Data source

GenBank overview

GenBank is the National Institute of Health (NIH) genetic sequence database of publicly

available nucleotide sequences for almost 260,000 formally described species submitted by

researchers from around the world (Benson et al. 2013). GenBank was formed in 1982 and

is run by the National Center for Biotechnical Information. GenBank is now part of the

International Nucleotide Sequencing Consortium in which each member exchanges

information daily. Complete bimonthly releases and daily updates of the GenBank data-

base are available by FTP. NCBI makes the GenBank data available at no cost over the

Internet, through FTP and a wide range of web-based retrieval and analysis services.

From its inception, GenBank has doubled in size roughly every 18 months. In addition

to storing genetic information, GenBank provides a number of tools for discovery and

analysis. The repository has been well adopted by its respective community, which now

requires all scientists to submit genetic data to the repository prior to publication, verified

by an accession number. Additionally, genetic information associated with patents are now

stored in the repository.

As a large cyberinfrastructure (CI)-enabled repository, GenBank facilitates the man-

agement, preservation, and access to a bibliographically and biologically annotated col-

lection of DNA sequences, and connects the data with related publications (genome.gov).

The interdisciplinarity of collaboration (Qin et al. 1997; Porter and Rafols 2009) calls for

CI-enabled research to identify fruitful collaborative partners. The tool ‘‘BLAST’’ provides
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sequence similarity searches of GenBank and other sequence databases, enabling collab-

oration between scientists and building from the work of previous submissions to develop

new or combine sequencing work.

Data entry into GenBank’s database

The primary units of submission into GenBank are References and Annotations. We define

the terms and provide examples in Table 1. The sequences are obtained primarily through

submissions from individual laboratories and batch submissions from large-scale

Table 1 Key terms in GenBank

Term Definition Example

Referencea A reference is either a document
(Publication) or a dataset (Direct
Submission). These reference subdivisions
manifest differences in their respective
metadata fields. For example, a sequence
submission contains ‘‘Direct Submission’’
in the title field and a submitted status and
information about the submitting institution
in the journal field, while a publication
contains the article’s name under title and,
self-explanatorily, the publishing venue
under the journal field

Publications When a reference is a document,
it is referred to as a publication. Also
included in the reference field are informal
documents with a status of ‘‘in press’’ or
unpublished, and papers such as conference
proceedings, preprints, and whitepapers,
etc. Most documents are publications or
unpublished documents, a negligible
number (\1 %) of other types of informal
documents. A total of *56 % of references
are publications

Direct Submissions A reference also can be a
‘‘Direct Submission,’’ i.e., a nucleotide
sequence dataset. A Direct Submission is a
‘‘reference’’ insofar that it ‘refers’ to an
annotation through the database identifier
‘‘Direct Submission,’’ indicating that a
dataset has been submitted that contains one
or more annotations. Direct Submissions
constitute approximately 50.7 % of the
References in GenBank

Publication
Base Pair Specification: 1 (bases 1–3029)
Title: Cloning and expression of a

complementary DNA encoding a bovine
adrenal angiotensin II type-1 receptor

Journal: Nature 351 (6323), 230–233 (1991)
Direct Submission:
Base Pair Specification: 2 (bases 1–2088737)
Description: Submitted (31-May-2004)

Toshiaki Fukui, Kyoto University,
Department of Synthetic Chemistry and
Biological Chemistry, Graduate School of
Engineering; Katsura, Nishikyo-ku, Kyoto,
Kyoto 615-8510, Japan […]

Annotation An annotation is a subset of base pairs of
DNA that constitutes a direct submission.
An Annotation is the pairing of AT and GCs
and the accompanying metadata describing
the Direct Submission

Nucleic Acid type description: B. taurus
DNA sequence 1 from patent application
EP0238993

a In the time period (1983–2013) covered by this dataset, there were 175,889,683 DNA data annotations,
covering 814,196 organisms, deposited in GenBank. The submissions included 688,737 direct submissions
of sequence data and 330,348 unique references to journal articles. After author named entity resolution,
545,345 unique authors were identified as having contributed to the community
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sequencing projects, including whole-genome shotgun (WGS) and environmental sampling

projects. Most submissions are made using the web-based BankIt or standalone Sequin

programs. Daily data exchange with the European Nucleotide Archive (ENA) and the

DNA Data Bank of Japan (DDBJ) as partners in the International Nucleotide Sequence

Database Collaboration (INSDC) ensures that a uniform and comprehensive collection of

sequence information is available worldwide.

NCBI builds GenBank primarily from the submission of sequence data from authors

and from the bulk submission of expressed sequence tag (EST), genome survey sequence

(GSS), whole-genome shotgun (WGS) and other high-throughput data from sequencing

centers. The U.S. Patent and Trademark Office also contributes sequences from issued

patents. In a recent development, NCBI is in the process of creating a unified submission

portal that will provide a single access point for data submitters (submit.ncbi.nlm.nih.gov).

Metadata standardization continues to be a problem (Costa et al. 2014; Qin et al. 2014).

The submitting institution indicated in a record may or may not be equivalent to the

institutional affiliation of all the authors associated with the submission. For journal arti-

cles, the fields contain the expected citation information, although there is no indication

that the journal abbreviations are standardized across the database. This is due to the fact

that GenBank is not intended to be a literature repository; yet, analysis indicates that the

literature referenced in the repository leaves traces of a large, very well connected

community.

The Bermuda Principles and changes to data submission practices

There are a number of policy related decisions impacting the data sharing practices of

scientists working in the genetic sequencing community. Of particular interest to our

research are the Bermuda Principles, which were adopted in 1996. The principles altered

the way in which DNA sequence data were to be uploaded to public repositories.

Specifically, prior to the Principles, data were uploaded and made available after publi-

cation. However, the accord suggested a change in the practice, establishing that all

sequence of human genome data above 1 kb be uploaded within 24 h (Arias et al. 2015;

Collins et al. 2003; Rodriguez et al. 2009).

The Bermuda Principles were reaffirmed and extended in a 2003 meeting sponsored by

the Wellcome Trust (Rodriguez et al. 2009), extending the push to submit data from all

sequencing techniques and sources. A number of other policy changes have been affected

over the years, most notably, the 2003 Fort Lauderdale Policy made data sharing as a

prerequisite for funding. As stated in NHGRI’s 2003 ‘‘Reaffirmation and Extension of

NHGRI Rapid Data Release Policies: Large-Scale Sequencing and Other Community

Resource Projects: ‘‘users have responsibilities consistent with scientific norms’’ (Arias

et al. 2015).

These policies continue to evolve, influenced by ongoing tension between the actors in

the system, including data producers and users, and funding agencies, and social concerns

including confidentiality and data access. Members of the community recognize data

producers’ wish to maximize their opportunities to analyze the data, while data consumers

require access to the data for their own research purposes. Furthermore, the economic

impact of genomic research cannot be underestimated—our data extraction has identified

over 26 million patent entries in the database (see below). The overall trajectory of the

changing policy landscape is to make the data more freely available to the community,

which has resulted in a substantial increase in data stored in the repository.

26 Scientometrics (2016) 108:21–40

123



Data collection

GenBank provides an entire copy of its database in compressed semi-structured text format

via an ftp site. Data were downloaded from the ftp site in August 2013. A parsing script

was written to extract the metadata from records into a relational database while dropping

the genomic data. The initial parsing process extracted approximately 150 million anno-

tation records, plus an additional 26 million patents associated with publications. The

remainder of the results reported here do not include patent analysis. We further identified

599,318 authors associated with 1.35 million references. After the metadata set was parsed,

we normalized author names by stemming last names, reducing the number of unique

scientists to 531,019.

Based on our knowledge of the differences in direct submissions and publication

citations in GenBank, we can revise and elaborate on the general research questions of (1)

whether using coauthorship metadata from a data repository would capture additional

collaborative interactions not present in a standard publication network, and (2) whether

there would be differences in the structure of the collaboration networks, as operationalized

by dataset coauthorship and publication coauthorship. These two issues can be addressed

by answering the following three questions:

RQ1 What are the differences and similarities between the structural characteristics of

collaboration networks based on dataset coauthorship, publication coauthorship, and a

combination of the two forms of coauthorship? Researchers have studied the

macroscopic structure of scientific fields, using measures such as clustering coefficient,

power law coefficients of degree distribution, and degree correlation coefficient to

describe the extent to which (a) scientists in a particular network tend to collaborate with

collaborators of collaborators (clustering coefficient); (b) current status impacts future

opportunities, or cumulative advantage (power law coefficient of degree distribution);

(c) scientists of similar status choose to collaborate with other scientists of similar status

(degree correlation coefficient).

RQ2 To what extent does the dataset coauthorship network capture collaborative

interactions not present in a network assembled from traditional publication coauthor-

ship metadata and vice versa? Our initial hypothesis was that looking at the

coauthorship of datasets would provide additional insight into the collaboration patterns

of scientists. Answering these two related questions helped us determine whether using

the dataset coauthorship provided the additional information as we hypothesized, as well

whether it is beneficial to use one or both data sources. Does using the coauthorship

metadata associated with datasets provide the same information using coauthorship

metadata from publication provides, the same information plus some, or no additional

information? In other words, can we get by using one or the other sources of data, or

does the use of both result in a more detailed picture of the structure of the community?

RQ3 Are collaborations on the production of a dataset leading or lagging indicators of

collaborations on publications? A commonly held and often implicit belief is that the

generation of data is part of a research process that should culminate in a publication. If

this is true, the generation and datasets should precede a publication. However, research

into scientists’ data sharing behaviors indicate that scientists often hold off sharing their

data in the hopes of maximizing their ability to publish from the data.

The answers to our research questions will lead to a better understanding of the utility of

using trace data from scientific data repositories to study scientific collaboration, as well as

the phenomenon of scientific collaboration and how it is impacted by the adoption of
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advanced information technology. The operationalization of concepts in our research

questions, as well as the approaches to answering those questions, are outlined in the

following section.

Operationalization of concepts

Scientific collaboration can be defined as the ‘‘the system of research activities by several

actors related in a functional way and coordinated to attain a research goal corresponding

with these actors’ interests’’ (Laudel 2002). Here we operationalize collaboration as

coauthorship on either a directly submitted dataset with no associated publication (dataset

coauthorship), or coauthorship on a publication (publication coauthorship). We recognize

the limitations of using coauthorship as a source of data for studying scientific collabo-

ration articulated by Laudel (2002), but agree with Glänzel and Schubert (2005), that

coauthorship continues to be a useful approach to operationalizing the concept. Further-

more, our research asks whether using metadata from dataset publications provides

additional information to metadata extracted from formal publications only.

A scientific collaboration network is a set of nodes and edges depicting actors (nodes)

and the presence of a relationship (edge) between those actors. We constructed three

unimodal, undirected networks from the metadata extracted from GenBank—a publication

network, dataset submission network, and combined network. Networks were constructed

from records, and do not include records that have no date attached to them (except for one

explicitly stated instance, where the undated records are used to explore the potential range

of differences between networks).

The dataset submission network was constructed by identifying references in the

database whose title field was empty or the phrase ‘‘direct submission’’, or with the journal

field containing the phrase ‘‘unpublished’’. Publications were extracted by eliminating all

other possible alternatives (i.e., direct submissions, dissertations, theses). Once the datasets

and publications were identified, related authors were extracted to form edgelists, and

unique authors were then extracted from these edgelists.

With respect to the construction of the networks, graphs were simplified because of the

gross disparity in the submission rates of datasets and publications. Including edge weights

or duplicate edges for multiple submissions dramatically skewed the results, making

comparisons between the two networks impossible. For example, one scientist had over 1.2

million edges (some redundant) from 13,000 dataset submissions and 50 publications. That

same scientist had 2350 edges from the 50 publications, suggesting that there were over 45

authors per paper on average.

The time dynamics were analyzed using a series of cumulative snapshots to better

represent the growth of the network and not the immediate activity. This choice is in line

with our research question, which is more focused on determining what additional his-

torical information using trace data from dataset coauthorship can provide, and less on

mapping the current state of the field. For a review of different approaches to constructing

temporally evolving networks, see (Holme and Saramäki 2012). Structural characteristics

of the networks were calculated using functions in R’s igraph package.

In addition to comparing the macroscopic structural characteristics of the two networks,

we also focused on determining the difference between the dataset and publication net-

works with respect to scientist membership and relationship presence. This involved a

series of set operations, looking for individuals present in one, but not the other, or present

in both, as well as relationships between scientists present in one, but not the other, or

present in both.
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Our final research question focused on whether collaboration on the production of a

dataset preceded or lagged collaboration on publications. For this question, we focused on

the years 1990 through 2012, creating a logical cumulative adjacency matrix for each year,

as well as logical adjacency matrices for individual years 1991–2013 (Table 2). Next, we

create a cumulative logical adjacency matrix of scientists that have collaborated on both

publications and submissions (MB). The sum of MB gives us the total number of scientists

who have collaborated on both publications and datasets.

We can identify who collaborated on a dataset first, by year, by subtracting the logical

publication matrix for the year of interest from the cumulative logical dataset matrix up to,

but not including the year of interest, then counting all instances in the Boolean intersect of

the resulting matrix that equal one (i.e., a relationship that is present in the dataset sub-

mission network, but not the publication network) and the publication adjacency list for

that year. The same can be done in inverse for publications.1 Dividing by the sum of all

collaborative relationships that have coauthored a paper and dataset together gives us the

fraction of relationships attributable to that year for that order of precedence.

PAdp ¼
XYR¼2012

YR¼1990

ðCDYR � PYR ¼¼ 1Þ ^ PYRð Þ
.X

B ð1Þ

Equation 1: PAdp = the percentage of coauthorship relationships that have published

both publications and datasets together where publication of a dataset precedes publication

of an article

PApd ¼
XYR¼2012

YR¼1990

ðCPYR � DYR ¼¼ 1Þ ^ DYRð Þ
.X

B ð2Þ

Equation 2: PApd = the percentage of coauthorship relationships that have published

both publications and datasets together where publication of an article precedes publication

of a dataset

If CPYR�1 � CPYR ¼¼ �1 for Aij then two scientists (i, j) have first collaborated on a

publication in year YR. Similarly, if CDYR�1 � CDYR ¼¼ �1 for Aij then two scientists

(i,j) have first collaborated on a dataset in year YR. If Aij ¼ �1 in both matrices, then

1 In an undirected network, these calculations should only be done for the upper or lower triangle, not both.

Table 2 Summary of notations used

Matrix Years Notation

Logical cumulative adjacency matrix, datasets
For each YR, all datasets published up to, but not including YR

1990–2012 CDYR

Logical cumulative adjacency matrix, publications
For each YR, all publications published up to, but not including YR

1990–2012 CPYR

Logical yearly adjacency matrix, datasets
For each YR, all publications published in YR

1990–2012 DYR

Logical yearly adjacency matrix, publications
For each YR, all datasets published in YR

1990–2012 PYR

Logical cumulative adjacency matrix (all years), both 1990–2012 B
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scientists i and j have collaborated for the first time on both an article and a dataset in year

YR.

Results and discussion

Descriptive analysis

In total, the GenBank community includes 545,354 unique scientists, with the number of

scientists publishing per year rising from a total 2563 scientists in 1982, to 31,554 in 1995.

The 545,354 scientists includes 404,465 scientists in the publication network and 386,139

scientists in the dataset submission network. Up through 1995, the number of scientists

active only in the dataset submission network was relatively marginal. However, after the

Bermuda Principles were adopted, the number of scientists active in the dataset submission

network grew rapidly (Fig. 1). It wasn’t until 2007 that the number of scientists submitting

datasets surpassed the number of scientists contributing publications. However, the number

of scientists active in only one or the other network grew quickly, indicating a portion of

the population was not laying intellectual claims to both activities.

In terms of the number of scientists entering the network, scientists would first be noted

entering the network as a coauthor on a paper. However, after 1996 the pattern changed;

the number of scientists who first entered the network by submitting a dataset increase

550 % in five years, rising from 1825 in 1995 to 10,034 in 2000. To put that in perspective,

the number of scientists entering the network with a publication declined by 10 % in the

same period, from 11,566 in 1995 to 10,400 in 2000. Note that the majority of the

uncertainty with respect to how scientists first make a contribution to the network lies in

the dataset submission population, with 26,439 scientists coauthoring datasets with no date

attached and only 242 scientists coauthoring publications with no date attached. Of the

26,439 scientists entering the network without a date attached to their entry, 21,744 only

had one submission and 0 were associated with a publication (Table 3).

A lower percentage of scientists had a single dataset entry than a single publication

entry, with 47.0 % of scientists having only one publication and 31.1 % of scientists

having only one dataset submission (Fig. 2). However, comparing the productivity of

dataset submissions to publications is not trivial; scientists seem to frequently break up

dataset submissions into subsequences of base pairs, with no immediately apparent rela-

tionship between the two types of submissions. Looking at the general question of tran-

siency rates in the network, 50.4 % of scientists who submitted a publication were only

Fig. 1 Number of scientists whose first contribution was a dataset, article, and publication—by year
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active for 1 year, while 48.9 % of scientists who submitted datasets first were active for

only 1 year. Furthermore, 45.5 % of scientists who submitted both a publication and

submission in their first year were active for only 1 year. Globally, the transiency rate

(Braun et al. 2001; Price and Gürsey 2001) was 49.3 %.

The Bermuda Principles had a clear impact on the submission practices of scientists in

the GenBank community. The number and overall percentage of scientists who first

contributed to the data repository via a dataset submission were both negligible prior to the

policy shift. After 1995, the number of scientists making their first knowledge contribution

via a dataset submission increased dramatically, perhaps at the expense of getting their

Table 3 Number of unique scientists making contributions to the community

Year Publications Submissions Both Year Publications Submissions Both

1982 2563 6 2563 1998 36,580 30,782 53,390

1983 3331 9 3331 1999 41,251 35,146 60,758

1984 4697 9 4698 2000 45,541 37,092 66,251

1985 5901 12 5907 2001 44,334 37,849 66,480

1986 7451 7 7454 2002 44,243 38,527 66,947

1987 9758 52 9771 2003 43,784 41,270 69,140

1988 11,353 73 11,379 2004 48,749 44,117 74,749

1989 12,199 154 12,280 2005 50,616 46,202 78,442

1990 14,582 185 14,640 2006 50,699 49,525 80,800

1991 17,627 208 17,712 2007 52,133 52,498 84,033

1992 20,372 389 20,479 2008 52,659 55,708 86,787

1993 23,666 1159 24,285 2009 56,012 59,962 92,659

1994 25,927 654 26,138 2010 56,763 63,269 95,317

1995 28,349 6211 31,554 2011 59,821 66,324 100,692

1996 27,413 13,844 34,601 2012 59,445 55,800 91,737

1997 29,185 24,272 42,893 2013 36,337 21,642 48,850

Contributions are divided into traditional publications, data submissions, and both

Fig. 2 Cumulative distribution of dataset submissions and publications per author
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name on a publication. An alternative explanation for the observed patterns is that a greater

percentage of scientists and graduate students were able to make some contribution before

leaving the network, versus never publishing at all in the submission regime prior to the

Bermuda Principles.

Not only did a greater percentage of scientists begin to enter the network submitting

datasets after the adoption of the Bermuda Principles, but the number of dataset submis-

sions grew rapidly as well. Publication submission rates increased approximately linearly

from 1996 to 2012, while dataset submissions increased steeply linearly upward (Fig. 3).

Productivity disparities in terms of datasets to publications continues to affect analysis.

The actual number of submissions to publications should not be taken at face value, but

instead the growth curves should be compared. Similarly, when looking at the number of

authors per dataset submission versus authors per publication submission, the large number

of submissions skews the results. In the years where the mean number of authors per

submission increased from approximately 5 to almost 13, there were over 5000 dataset

submissions with more than 100 authors. A better indicator of general authors per paper

continues be the number of authors per publication, where no group of scientists com-

pletely skew the results (Fig. 4).

Structural changes

Another way to look at the evolution of this community is to analyze the structural changes

of the collaboration network over time. Looking at, the number of relationships between

members of the network increased dramatically between the 1990–1993 and 1994–1997

time slices. Although the number of edges nearly doubled, there was still significant

overlap between the edges present in the dataset submission and publication networks, as

Fig. 3 Records added to GenBank, by year
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evidenced by the marginal increase the dataset network contributed to the combined

network (Table 4).

More interestingly, the giant component of both networks exceeds 90 % by the second

time window, remains above 95 % for the combine network, and above 90 % for the

dataset submission network only for the last 3 time windows. Although the submission

network grew more rapidly over the past 20 years, the publication network still remains

larger and better connected.

Scientists in the publication network are also, on average, slightly more connected than

the scientists in the dataset submission network. The mean degree (unique edges, not

weighted edges or counts of repeat relationships) is 62 % higher in the publication net-

work. The overall centralization of the network decreased over time as well, with the alpha

coefficient on the power law fit of the degree distribution decreasing near monotonically

over time (except for the final time window) as the network grew (see Table 5). There was

some instability in the alpha values for the power law fits for the initial time windows,

which was not significant for any of the networks until the 1990–1993 time window, and

not significant for the dataset network until the 1998–2001. This was due to the fact that the

networks had not reached a critical mass in the early years, particularly for the submission

network. One other point to note is that the power law fits have relatively high minimum

thresholds which is due to the fact that most scientists will start off with many connections

because there are many authors on papers and datasets. This reveals the bipartite nature of

the network. Overall, once the distribution takes on a power law form, the numbers

indicate a slightly hierarchical organizational structure, although increasingly less so.

The clustering coefficient values further support the arguments that the growth in the

network has made it more diffuse. Instead of the clustering coefficient increasing over time

as active members consolidate their relationships and take advantage of weak ties, the

growth in the network drives separation, reducing the clustering coefficient over time. The

high clustering coefficient in the early years of the dataset network suggest that there was a

relatively small group of well-connected individuals submitting datasets prior to 1996.

Fig. 4 Authors per submission, by year
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However, after the Bermuda Principles, many scientists began submitting datasets, rapidly

decreasing the density of the network, which decreased from 5.1 9 10-4 in 1982–1985 to

4.23 9 10-5 in 2010–2013.

The combination of the lower mean degree, lower clustering coefficient, and higher

power law coefficient in the dataset network suggests that it is more hierarchically orga-

nized, with a few more prominent scientists coordinating the sequencing of genomic data

of disparate teams comprised of members who remain relatively ultra-peripheral, having

fewer opportunities to collaborate outside of their core group of collaborators. This could

mean that more students are getting credit for work, or it could mean that the general social

structure is changing. The data on the cumulative and publication only networks seems to

suggest that the network is not getting more centrally organized, but local variations within

the entire network may be different.

Added insight of the submission data

Although the dataset submission network appears at first glance to add only marginal value

to our understanding of the collaboration network, delving deeper into the data suggest

otherwise. Specifically, out of the cumulative network, 28.1 % of scientists contributed to

the publication network but not the data submission network, 24.75 % of scientists who

have contributed datasets but not publications, and 46.05 % that are in both. This indicates

that large portions of the community do not overlap with both submission and publication

networks. Looking at the relationships between the scientists, there are 4,393,748 unique

edges in the publication network and 2,842,271 edges in the submission network. 55.6 %

of the edges present in the submission network are not present in the publication network,

71.2 % are present in the publication network that are not present in the submission

network, and 28.75 % edges are present in both.2

We suggested that the ability to submit datasets only allows lesser experienced

researchers to get some credit for a knowledge contribution. This suggestion was based on

the number of scientists entering the network via a dataset submission, and the relatively

hierarchical structure of the dataset submission network. Furthermore, the disparity in

dataset submissions to publications further supports the argument that a dataset submission

is ‘‘less than’’ a publication in terms of productivity. This leads to the general question of

whether collaboration on a dataset submission precedes collaboration on a publication, or

vice versa.

Analysis of the temporal sequencing of submissions supports the idea that sequencing

and submission of genomic datasets precedes the submission of a publication. There are

two numbers provided in an upper and lower bound on our estimates of precedence in

Table 6. The lower bound was calculated by eliminating all dataset submissions that did

not have a date associated with them, the upper bound included all submissions, regardless

of whether or not there was a date associated with the dataset. The latter choice was done

under the assumption that the lack of metadata is homogenously distributed over the years

analyzed.

Results in Table 6 seem to suggest that submission collaboration proceeded to publi-

cation coauthorship more frequently than the opposite, approximately one-third of the

collaborations occurred concurrently, with a fraction of collaborations that published paper

before submitting data sets. This prompted us to speculate that the ability of an author to

2 These totals differ slightly from 5 because datasets and publications with no dates are included in the
figures.
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garner a large number of submission nodes as the support, or ‘‘collaboration capacity’’, is

vital for him/her to rise to the rank in the network and maintain the status. In other words,

we may assume submission nodes that cluster around a node or a hub are an indication of

the collaboration capacity of that node or hub. A closer examination of the annotations and

name tracking revealed that concurrent submission-publication collaborations involved a

certain level of intellectual maturity, which is necessary for translating into higher level of

collaboration (concurrent collaboration) in which the primary author is also deeply

involved in laboratory work (direct submission). It is likely this happened to most postdoc

researchers. Dataset-first collaboration reflects a hierarchy of division of labor in laboratory

work, with junior researchers (graduate students) performing the lab work and carrying out

to its end (submission) and principal investigators (as represented by publication author

nodes primarily) steering the research and less involved in lab work. It is possible for a

junior node at the beginning of time to be primarily in submission network and later

disappear from the submission network to either evolve into a publication-network-only

node or never show up again in the whole network. How long it took a dataset-first node to

become a concurrent node (or disappear altogether) and eventually in a publication-only

network will be another issue worth exploring.

Conclusions and future work

The growth in cyberinfrastructure enabled science is affecting the scale and structure of

scientific collaboration. The extent to which this is true is not fully known, yet early

research is demonstrating clear increases in large scale projects and associated publica-

tions, as well as growth in use of cyberinfrastructure to support multinational collabora-

tions. In this paper we argued that it was not possible to understand the effect CI has on the

scale and structure of scientific collaboration until we understand the general structural

characteristics of communities that have emerged around large sale CI investments.

We chose to study one example of CI supported scientific community, the Genomics

community. The community uses GenBank, a large nucleotide sequence repository inte-

grated into an international consortium of repositories, to archive and make available DNA

sequence data to the international research community. Because GenBank allows scientists

to upload and share datasets, we hypothesized that using trace metadata from the datasets

would provide additional information regarding the collaborative behaviors of scientists

than if we were to just use metadata from formal publications. A number of factors specific

to the genomics community contributed to our belief this was possible. First, the scientific

community voluntarily accepted a standard where all data needed to be submitted to the

database prior to the related article being published. Therefore, scientists have a strong

incentive to share their data. Furthermore, repository has developed tools to support batch

uploading, batch record importing from the patent office, and bulk downloading of data.

Table 6 Estimated percentage of times scientists collaborate on a dataset prior to collaborating on a
publication, publication prior to dataset, and submit a dataset and publication concurrently

Lower estimate Upper estimate

Dataset first 0.472 0.498

Publication first 0.111 0.123

Concurrent submission 0.339 0.343
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An important point to consider is that the results from the research in this paper may not

generalize directly to other communities that use repositories. The overview of GenBank

provided in the Data Source section suggests that the repository is fully integrated into the

practice and culture of its community. Accepted modes of practice ensure that the database

gets used; this level of integration is not something that should be assumed to be present in

other fields.

Within the context of this community, analysis shows that constructing collaboration

networks using coauthorship of datasets and publications provides much more information

regarding the collaborative behaviors of scientists than using traditional publication data

alone. Viewing the two networks independently, we see structural differences, with the

submission network being slightly more hierarchical; scientists within the dataset network

have lower clustering coefficients, suggesting they are not as likely to work with collab-

orators of collaborators, they have fewer formal connections than scientists in the publi-

cation network, and exhibiting lower tendencies for triadic closure. Our analysis suggests

that less experienced researchers are more likely to work on and publish a dataset than a

formal publication, thus providing a better indication of the true transiency rate of the

community.

Furthermore, scientists were much more likely to collaborate on a dataset prior to

collaborating on a formal publication, or nearly as likely to submit both data and publi-

cations simultaneously, than collaborate on a publication first. There are several potential

reasons for this observation. First, researchers are more likely to use graduate students to

sequence the data, which would precede or at least be concurrent with, a publication. This

supports our intuition that generating data is still only part of the process of research, with

publication being the end goal (according to the norms of science). Also, because such a

large portion of researchers collaborate on a dataset submission and not a publication, we

can argue that the ability to submit datasets unattached to formal publications allows

researchers to rapidly contribute datasets without having to wait for formal publications.

Our observations are limited by the fact that metadata standards for the community are

relatively low, with many dataset submission records missing important information. We

are also unable to determine the differences in metadata entry practices for the various

researchers and institutions that contribute data, and have not included collaborations on

patents, which may constitute an increasingly important component of this field given the

economic value of genomics research.

At this point, we have assumed that all scientists place equal emphasis on claiming

intellectual ownership of data submitted to the repository, yet this may not be true. Nev-

ertheless, our research provides evidence to support the argument that trace data from a

scientific data repository can be used to construct a more accurate representation of sci-

entific collaboration than using publication data alone. Some of the methodological con-

cerns raised by Laudel (2002), and Glänzel and Schubert (2005) are being addressed by

advances in computational science, which are facilitating the extraction of unstructured

data from multiple sources to provide a more detailed picture of scientific interactions than

publication data alone.

There are also several policy related implications for our research as well. First, social

mechanisms play a clear role in facilitating the integration of cyberinfrastructure into the

research practice of the community. The genomics community functionally mandates use

of the repository, thus providing significant incentive for practitioners to contribute.

Several community driven policy decisions have also impacted submission behaviors.

Specifically, the Bermuda Accords set the stage for scientists to being directly submitting
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data without that data being attached to a formal publication. The result of the Accords,

and subsequent agreements, was the rapid expansion of contributions to the repository.

Our next project will focus on individual scientists within the network and their col-

laboration patterns, exploring in greater detail the networks of scientists across both dataset

and publication submission networks. This includes looking at the role scientists play in

those networks, whether common measures of status (i.e., centrality) are stable across

networks, and with whom they collaborate in the different networks. Further in the future,

our work will focus on integrating patent metadata into the analysis, as well as reconciling

the differences in scale between publications and datasets in order to better estimate

strengths of relationships between scientists in the community. Once the patent metadata is

integrated, we can begin to explore the rate of international collaboration and the differ-

ences in collaborative behaviors by country of affiliation. Exploring the international

aspect of collaboration will facilitate the exploration of the relationships between funding

practices and collaborative behaviors, and thus give a better insight into the results of

countries’ investments in the building of scientific capacity in this research field.
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