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Abstract In this work we address the challenge of how to identify those documents from

a given set of texts that are most likely to have substantial impact in the future. To this end

we develop a purely content-based methodology in order to rank a given set of documents,

for example abstracts of scientific publications, according to their potential to generate

impact as measured by the numbers of citations that the articles will receive in the future.

We construct a bipartite network consisting of documents that are linked to keywords and

terms that they contain. We study recursive centrality measures for such networks that

quantify how many different terms a document contains and how these terms are related to

each other. From this we derive a novel indicator—document centrality—that is shown to

be highly predictive of citation impact in six different case studies. We compare these

results to findings from a multivariable regression model and from conventional network-

based centrality measures to show that document centrality indeed offers a comparably

high performance in identifying those articles that contain a large number of high-impact

keywords. Our findings suggest that articles which conform to the mainstream within a

given research field tend to receive higher numbers of citations than highly original and

innovative articles.
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Introduction

It was estimated that as of 2012 there are 571 new websites created every minute of the day,

175 million tweets written each day, and 100 terabytes of data uploaded daily to Facebook.1

The doubling time of scientific publications is estimated to be in the range of 10–15 years

(Larsen and von Ins 2010). This rapid growth poses not only a technological challenge, but it

brings about the problem of data relevance. In this ever-growing volume of novel scientific

findings, how can we identify those that are likely to have the greatest impact in the future?

What is really worth our attention? To face the challenges that this new ‘‘big-data-age’’

brings about we are therefore in dire need of novel methods to retrieve those documents and

texts that might be of the greatest relevance for a given problem at hand.

In this work we address the question of how to identify those texts from a set of documents

that are most likely to have the biggest impact in the future. We frame this problem in the

context of scientific publications, where a commonly accepted method for measuring the

impact of an article is its number of citations (MacRoberts and MacRoberts 1996). In par-

ticular, we develop a purely content-based methodology in order to rank a given set of

documents (abstracts of scientific publications) according to their potential to generate impact

as measured by the future numbers of citations of the articles. Our aim is to develop a simple

and model-free indicator for citation impact prediction that captures not only how many and

which terms a document is described by, but also how these terms are related to each other. To

this end we consider the abstracts of all publications within a given year for a given topic and

construct the term–document matrix for this collection of documents. This term–document

matrix can be represented as a bipartite network with two sets of nodes, one set corresponding

to documents (abstracts) and the other set of nodes representing terms. A term and a document

are connected by a link if the document contains the given term. We propose a recursively

defined centrality measure for such bipartite networks that has already been shown to be

predictive for economic growth of a country based on its basket of exported products (Hidalgo

and Hausmann 2009), as well as for the average number of sales for albums in a given music

genre based on their typical instrumentation (Percino et al. 2014). The idea is to recursively

define the ‘‘centrality’’ or ‘‘importance’’ of a term by assuming that a term is central in a

network sense if it occurs in a large number of documents that contain a large number of other

central terms. We confirm with high statistical significance in six independent case studies

that a document, compared to other, similar documents published within the same year, is

more likely to receive a high number of citations, if its abstract contains a large number of

terms characterized by a high centrality in the bipartite term–document network. This is

captured by a novel indicator that is derived from these bipartite centrality measures, the

document centrality, C. We compare these results to findings obtained from traditional

centrality measures and a regression model where we fit the citations received by a publi-

cation using the presence or absence of a specific term as variables in a regression. Document

centrality is highly correlated with results obtained a posteriori from the regressions, which

corroborates that the bipartite network structure of the term–document matrix is indeed

predictive of the future impact of the documents as measured in the number of citations.

Since it is well known that citation counts vary across different scientific fields

(Radicchi and Castellano 2012), we focus on six different case studies to validate the

predictive value of document centrality. We use different topics from the field of ‘‘Material

Science’’ which can be easily identified by a simple search query. These six topics were

1 http://wikibon.org/blog/big-data-statistics/, retrieved 07/29/2015.
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selected through a stakeholder process during the EU FP7 project iNTegRisk that identified

subjects in Material Science that are, both, currently active areas of research and that have

the potential to generate new findings with significant economic, societal and environ-

mental repercussions (Jovanovic and Renn 2013). These case studies include topics which

showed hugely varying differences in their increase of the number of published articles

over time, as well as in their overall numbers of publications. This shows that the proposed

indicator, document centrality, works in both cases, namely in the identification of

potential high-impact works about novel, emerging topics (e.g. nanotechnology or brain–

computer interfaces) or about established topics where there already exists a solidified

body of knowledge (e.g. aging of materials).

Related work

Several approaches have been proposed to understand and, if possible, predict the citation

impact of scientific publications. There are two types of features that are typically used to

predict citation impact, namely content-based and bibliometric or extrinsic features (Fu

and Aliferis 2010). Bibliometric features include, for instance, the reputation effect (Ste-

wart 1983; Danell 2011), i.e. that the rate at which authors attract citations increases with

the number of citations an author already has. It has also been shown that papers published

in journals with high reputations tend to receive more citations than second-tier journals

(Van Dalen and Henkens 2001; Callaham et al. 2002; Didegah and Thelwall 2013) and that

articles that cite highly-cited or a large number of other works will be more often cited

themselves (Bornmann et al. 2012; Vieira and Gomes 2010). Another extrinsic feature is

the domain of the published paper, since citation counts vary between different research

fields (Radicchi and Castellano 2012). This finding triggered interest in the question of how

to normalize citation counts across different disciplines (Garfield 1979; Leydesdorff and

Bornmann 2011). It has also been shown that social media activity within the first 3 days of

article publication allows to predict citations (Eysenbach 2011). Content-based features

that are known to be related to the received citations include the terms that occur in the

title, abstract, or keywords of the article (Fu and Aliferis 2010; Yu et al. 2012).

The use of content-based features, e.g. the occurrences of specific terms, to predict

citation counts in the scientific literature is a paradigmatic application of several machine

learning approaches. These approaches include Naı̈ve Bayesian models where the mem-

bership of a document to a specific class is inferred from the frequencies of specific terms

within these classes (Gelman et al. 2004; Feng et al. 2011). Another popular approach

utilizes support vector machines or networks (Cortes and Vapnik 1995) that map docu-

ments into a high-dimensional feature space where a decision surface is constructed that

distinguishes different classes of documents (Fu and Aliferis 2010; Kwok 1998; Meyer

et al. 2003). The k-nearest neighbor approach achieves a similar task of assigning mem-

bership to classes in a non-parametric manner based on the membership of its k nearest

neighbors in an abstract feature space (Altman 1992; Jian et al. 2014). In the so-called

relational topic model documents are modeled as collections of words and their co-oc-

currences, which allows to predict the citations of a given paper by examining which other

papers share similar topics with the considered publication (Chang and Blei 2009). A

similar approach is based on joint latent space models for topics in the texts on one and

citations on the other side (Nallapati et al. 2008). For instance, in Latent Dirichlet Allo-

cation models each term or token in a document is associated with a latent variable that is

in turn related to one of the underlying topics (Hofmann 2001; Blei et al. 2003; Dietz et al.
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2007). In such topic models it is also possible to represent the influence of the communities

of co-authors of the authors of a given paper (Liu et al. 2009). Other approaches to

construct models for citation impact prediction (using, both, extrinsic and content-based

features) include regression (Yu et al. 2014) and mechanistic models (Wang et al. 2013).

The usefulness of network-based measures to quantify the impact of scientific work or

of authors has been demonstrated repeatedly using, for instance, coauthorship networks

(Newman 2004), article citation networks (Chen et al. 2007), author citation networks

(Radicchi et al. 2009), journal citation networks (Bollen et al. 2006), or author cocitation

networks (Leydesdorff 2007). Many of these works relied on conventional centrality

measures, such as Google’s PageRank (Chen et al. 2007) or the betweenness centrality

(Leydesdorff 2007). It was soon realized that adaptations of these network measures can

lead to better performance in ranking scientific works and productivity. These adaptations

that often employ modified weighting schemes for citations, authors, and/or articles

include AuthorRank (Liu et al. 2007), Y-Factor (Bollen et al. 2006), CiteRank (Walker

et al. 2007), FutureRank (Sayyadi and Getoor 2009), or P-Rank (Yan et al. 2011). Sys-

tematic comparisons of traditional bibliometric with network-based indicators suggest that

these measures can be classified into two classes that roughly translate into ‘‘impact’’ and

‘‘popularity’’ of the articles (Leydesdorff 2009; Bollen et al. 2009). Note that in this work

we do not address coauthorship or related networks, but focus on the structure of the

bipartite network that underlies the term–document matrix.

Data and methods

Abstracts

We focus on six different aspects and examples of emerging technologies. For each of

these topics we handcrafted a query that was used to extract relevant scientific literature

from Web Of Knowledge.2 For each of the topics we only retrieved articles classified as

‘‘Science and Technology’’ and ‘‘Material Science’’. The ‘‘Topic’’ search function of Web

Of Knowledge returns all indexed published articles where the search query or its word

stem (lemmatization to identify e.g. plurals or different verb tenses) occurs in the title,

abstract, or the author keywords. The six case studies are the following.

• Aging of materials, search query ‘‘aging’’ (which also returns results for ‘‘ageing’’).

• Brain–computer interfaces, search query ‘‘brain AND computer AND interface’’.

• Hydraulic fracturing, search query ‘‘fracking’’.

• Graphene, search query ‘‘graphene’’.

• Liquid natural gas, search query ‘‘liquid AND natural AND gas’’.

• Nanotechnology, search query ‘‘nanotech*’’.

We constructed a corpus of documents by extracting each entry from the Web Of

Knowledge scientific literature database that is related to one of these six topics, starting

from year 1990. These datasets contain the abstract i, its year of publication ti, and the

number of times the article was cited in the Web Of Knowledge database, tci. In the

following we will refer to the abstracts as documents dðiÞ, where i labels all abstracts

published at time t. We excluded publications from 2010 and later to allow an observation

window of at least five years for the publications to gather citations. The analysis is carried

2 http://apps.webofknowledge.com/.
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out separately for each of the six topics. The search retrieved 27,459 results for aging of

materials, 2527 for brain–computer interfaces, 2901 for fracking, 3655 for graphene, 3510

for liquid natural gas, and 24,020 for nanotechnology.

Term–document matrix

After removing punctuation, each document is split into individual words and the Porter

stemming algorithm is applied to the lower case of each word (Porter 1980). We then apply

two filters to identify words that characterize the topics of the abstract. First, each word that

is ranked as one of the 5000 most frequent words in the corpus of all New York Times

issues (Dodds et al. 2011) is removed. In a second step we remove all words that appear

only once in the entire corpus. The first step filters out high frequency words that are not

specific for scientific publications, the second step gets rid of highly specialized terms that

are not relevant for the vast majority of documents. With the remaining words we construct

for each year t the term–document matrix MðtÞ as

Mwi tð Þ ¼
1 if word w appears in document dðiÞ in year t;
0 otherwise:

�
ð1Þ

The term–document matrix MðtÞ corresponds to a bipartite network, which is a network

with two types of nodes where links always connect nodes of different type. One type

corresponds to documents, the other type is given by words that are contained in the given

documents. A visualization of such a bipartite network is shown in Fig. 1. In Fig. 1

documents are shown as large, blue nodes whereas words correspond to grey nodes.

Recursive bipartite centrality measures

We will now define recursive centrality measures that capture how central or how

peripheral the documents are positioned in the bipartite term–document network. Such

measures for bipartite networks have been successfully used to show how the export basket

of a country is related to its economic growth (Hidalgo and Hausmann 2009), or how

instrumentations of a music style are related to its numbers of album sales (Percino et al.

2014). We start by considering each word that is contained in a given document, consider

for example the first document dð1Þ in Fig. 2. From each of the words linked to dð1Þ we

can reach all documents that contain a word that is also contained in dð1Þ by following its

links. If we iterate this procedure two times we reach all the documents that contain a word

that is also contained in a document that shares some words with dð1Þ, see the iterative

scheme in Fig. 2. The idea is to measure for each document how many paths there are to

reach each other document. The higher this number, the more central and ubiquitous are

the topics described by the document. If this number is smaller, however, this means that

the document contains very specialized terms that are only relevant for a comparably small

number of other documents, that is, the document has a high degree of specificity. More

formally we recursively define two vectors k and l as

ki n; tð Þ ¼ 1

ki 0; tð Þ
X
w

Mwi tð Þlw n� 1; tð Þ;

lw n; tð Þ ¼ 1

lw 0; tð Þ
X
i

Mwi tð Þki n� 1; tð Þ;
ð2Þ
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with n counting the number of iterations as described in Fig. 2 and the initial conditions

kið0; tÞ ¼
P

w MwiðtÞ and lw 0; tð Þ ¼
P

i MwiðtÞ. High values of kiðn; tÞ indicate high cen-

trality of the given documents. If the documents are ranked according to their kiðn; tÞ
values, this ranking typically does not depend on n if n is chosen high enough, see (Hidalgo

and Hausmann 2009) for a discussion of convergence properties of the measures in Eq. (2).

Fig. 1 Visualization of a generic term–document matrix as a bipartite network. One type of nodes
corresponds to the documents (blue nodes), the other type to words (grey nodes). A link indicates that a word
is contained within the given documents. (Color figure online)

Fig. 2 Recursive method to compute centrality measures on bipartite networks. Starting at a given
document, d(1), the first iteration counts the number of documents that contain a term that is also contained
in d(1). This procedure is then iterated
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In the following we choose to work with n ¼ 20 for which we have numerically confirmed

that the iteration in Eq. (2) approaches a stationary regime. The values of kiðn; tÞ for even

and odd values of n lend themselves to different interpretations. kið0; tÞ is a degree cen-

trality that measures the number of out-going links for each document for a given year.

High values of kið1; tÞ correspond to documents that contain a large number of keywords

that appear in a high number of other documents. Low values of ki 1; tð Þ indicate that the

document contains highly specific terms that are used in few other documents. Values of

ki n; tð Þ for n = 2, 4, 6, … assign weights to individual keywords based on the number of

documents in which the given keyword occurs. The same observations hold for lwðn; tÞ
with reversed roles for terms and documents.

Defining document centrality

We consider the Z-transforms of the logarithmic recursive bipartite centrality measures,

zi n; tð Þ ¼ log ki n; tð Þð Þ � l log ki n; tð Þð Þ½ �
r log ki n; tð Þð Þ½ � ; ð3Þ

where l½�� and r½�� denote mean and standard deviation, respectively. We define the

document centrality, CiðtÞ, through a linear combination of zið0; tÞ and zið20; tÞ,

Ci tð Þ ¼ zi n ¼ 0; tð Þ þ zi n ¼ 20; tð Þ: ð4Þ

A MatLab implementation of an algorithm that computes CiðtÞ from a term–document

matrix is accompanying this article as electronic supplementary material.

Relation to other centrality measures

We compare the performance of the centrality measures in Eq. (2) to findings from well-

known centrality measures, such as eigenvector centrality, Katz prestige, or PageRank. The

main rational underlying these measures, which we also adopt for the bipartite recursive

centrality measures, is that a node in a network is central if it is connected to nodes that are

also central. We consider two different types of unipartite networks that can be derived

from the term–document matrix MðtÞ. First, the document–document network AðtÞ can be

obtained as AðtÞ ¼
P

w MðtÞTMðtÞ. The entries Aij tð Þ are the number of terms that co-occur

in documents dðiÞ and dðjÞ. Note that the bipartite centrality measures for documents in

Eq. (2) are also related to the numbers of co-occurring terms between two documents.

However, in Eq. (2) these co-occurrences are weighted by the recursively defined cen-

tralities of the terms themselves. In brief, unipartite centrality measures for AðtÞ depend on

the raw numbers of co-occurrences of terms, whereas kiðn; tÞ is also sensitive to how

central the co-occuring terms are. A second unipartite network can be obtained from MðtÞ
by disregarding its bipartite structure. If MðtÞ contains DðtÞ different documents and W(t)

different terms, the resulting network has DðtÞ þWðtÞ nodes. This leads to a network given

by the adjacency matrix BðtÞ as

BðtÞ ¼
0WðtÞ�WðtÞ MðtÞ
MðtÞT 0DðtÞ�DðtÞ

� �
; ð5Þ

where 0N�N denotes an N-by-N matrix with all entries being zero and the resulting BðtÞ
being of dimensions ðDðtÞ þWðtÞ � DðtÞ þWðtÞÞ.
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Scientific impact

We measure the citation impact, xiðtÞ, of an abstract published in year t as its logarithmic

number of citations, re-scaled to lie in the range [0, 1]. This re-scaling is done in each year

separately in order to account for the different time spans that the publications have had to

gather citations and to eliminate potential age effects or the so-called first-mover advan-

tage, i.e. the effect that the first publications in a field receive a disproportionate amount of

citations (Newman 2009). Let tci be the raw number of citations of document i, and

tcmaxðtÞ the highest number of citations for a document published in year t. The citation

impact, xiðtÞ, is then given by

xiðtÞ ¼
log tci þ 1ð Þ

log tcmaxðtÞ þ 1ð Þ ; ð6Þ

where we have added one to the number of citations in order to ensure that xiðtÞ is also

defined for tci ¼ 0.

Regression model

A linear regression model is built where the citation impact xiðtÞ is fitted for each document

using the presence or absence of each of the keywords as variables. In order to restrict the

number of variables we only include those terms that appear in a sufficient number of

documents. That is, we compute the frequency of each term (over all years t) and only use

the term as a predictor variable if its frequency scores above the 90th percentile of all

frequencies (though we have confirmed that our findings do not depend on the concrete

choice of this percentile). As response variable in the regression we use the citation impact,

xiðtÞ, which is then fitted using a linear regression model. The regression model gives the

fitted citation impact, ~xiðtÞ, which is obtained from a linear model of the type

~xiðtÞ ¼
P

w awiMwiðtÞ, with coefficients awi that are different from zero whenever the null

hypothesis that the true coefficient value is zero can be rejected with a p value of p\ 0.1.

While the generalized diversity measures kiðn; tÞ and lwðn; tÞ are computed without any

information from years after t, the regression model explicitly uses the citation impact and

therefore a posteriori knowledge.

Results and discussion

In Fig. 3a we show the number of documents DðtÞ that has been retrieved for each of the six

topics for each year. Each of the topics has an increasing trend in the number of publications

by year. For nanotechnology and graphene we find a substantially faster increase in numbers

of publications over time when compared to the other topics. We also note that nanotech and

aging have in total a much higher number of publications than the remaining topics.

Figure 3b shows results for the averaged keyword diversity kiðn ¼ 0; tÞi, where the

average is taken over all documents i published in year t. Figure 3c shows results for the

average centrality kiðn ¼ 20; tÞi. The dots in Fig. 3b, c show the median value of the

measures and the error bars show the first and third quartile. It is interesting to see that the

results for the bipartite centrality measures are to a large extend independent of the year,

although the numbers of publications show large changes over the observed time. This

shows that the bipartite centrality measures do not depend on the size of the term–
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document matrix. Some of the different topics, however, show different levels of the

centrality measures, compare for instance the results for ‘‘fracking’’ with those for ‘‘ag-

ing’’. These differences might suggest that some of the topics typically exhibit a larger or

more specialized vocabulary (in the sense of a smaller number of high-frequency key-

words) in their publications, which in turn could be related to different degrees of spe-

cialization within the different topics.

We form a predictor by taking all documents with values of zðn; tÞ that fall in a specific

range (using forty equidistant bins over the range [-3.5, 3.5]), and compare this number to

the citation impact xiðtÞ within the given set of articles. In the following we refer to these

binned entities by dropping the time dependence of the corresponding variables. Note that

the term–document matrix M, and therefore the bipartite centrality measures, are computed

by using only information from the articles’ years of publication. We included a year in

this analysis only if we can compute the generalized diversities for at least 200 publications

for a given topic and exclude binned data points that correspond to less than three docu-

ments to suppress noise in the binning procedure. The values of 200 publications and forty

bins have been chosen to minimize noise in the results, however, we confirmed the results

do not change qualitatively for a wide range of different choices.

In Table 1 we show the Pearson correlation coefficient between citation impact and the

variables ziðn ¼ 0Þ and ziðn ¼ 20Þ. We see that for most of the topics we find a correlation

that is significantly greater than zero, with some exceptions however. The prediction for

graphene using ziðn ¼ 0Þ does only give results of low significance, similarly the predic-

tion for brain–computer-interfaces using ziðn ¼ 20Þ does not produce significant correla-

tions. We therefore employ a combination of these two variables, document centrality Ci.

We find significant correlations between citation impact and document centrality for each

of the topics, see Table 1. The results are compared to alternative definitions of document

centrality where we replace ziðn ¼ 20Þ in Eq. (4) by traditional (unipartite) centrality

measures, see (Newman 2010). We show results where ziðn ¼ 20Þ is replaced by the

Z-transforms of the logarithms of the eigenvector centrality, CEC
i , Katz prestige, CKatz

i , or

PageRank, CPR
i , of the document–document networks AðtÞ. Similarly, results for the uni-

partite network BðtÞ are obtained by computing the centrality measures for the full network

and then considering only nodes that correspond to documents. This gives the eigenvector

Fig. 3 a The number of documents D(t) shows different trends over time for the six topics. There was only
little interest in ‘nanotech’ (black) before 2000, but the number of publications quickly ramped up
afterwards to almost 5000 publications per year. ‘fracking’ (green) and ‘aging’ (blue) show a steady increase
in number of documents over time, with substantially more results for ‘aging’ than for ‘fracking’. b The
median, shown with first and third quartiles, of the unscaled values for ki (n = 0, t) for each year and topic
fluctuates around a value of three. c There is a decreasing trend in the median values of the unscaled ki
(n = 20, t) values, that is proportional to the increase in number of documents for each topic as shown in
a. (Color figure online)
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centrality, DEC
i , Katz prestige, DKatz

i , and PageRank, DPR
i , for documents in the networks

BðtÞ. Indeed, the document centrality measure, Ci, shows the best overall performance as

measured by the Pearson correlation coefficient with citation impact, averaged over all

case studies, see the last row in Table 1. The better performance of document centrality

when compared to centralities obtained from the document–document networks AðtÞ shows

that there is indeed some crucial information lost by projecting the term–document matrix

onto such a unipartite network, as the entries in AðtÞ only depend on the raw number of

term co-occurrences between two documents. The same cannot be said for the networks

BðtÞ. Observe that there is a structural similarity between the computation of the recursive

bipartite centrality measures in Eq. (2) and the definition of PageRank for BðtÞ (assuming

that a damping factor of zero is used for the PageRank, see 48), with the main difference

being how the contributions of individual nodes are normalized by their degree. In brief,

the contributions of a given term to the PageRank of a document are normalized by the

term’s degree, whereas in Eq. (2) they are normalized by the degree of the document itself.

The results are visualized in Fig. 4. For each topic we show the binned document

centrality and the corresponding average citation impact. Error bars denote the standard

error over all data points within the bin. Note that Fig. 4 shows that the correlation between

document centrality and citation impact extends over the entire range of centrality values

(i.e. x-axis) in five out of six case studies. Only in the ‘‘brain–computer interface’’ case

study we see that the relation is mostly driven by noise for Ci [ 0. In all other cases we see

that the positive correlation between document centrality and citation impact extends to the

top-ranked documents and is therefore not driven by potential spurious correlations

between low-ranked documents and small degree.

The five publications with the highest values of document centrality, Ci, are shown in

Table 2. Note that the distributions of citation impact in the case studies are skewed

Fig. 4 The abstracts of publications on a aging, b brain–computer interfaces, c fracking, d graphene,
e liquid natural gas, and f nanotechnology are grouped according to their document centrality for each year.
For each group we compute the average scientific impact as the re-scaled average number of citations. There
is a clear trend that higher scientific impact as measured by the number of citations is positively correlated
with high generalized keyword diversities, in each of the six independent corpora. The error bars show the
standard error of the mean in each group
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towards smaller values, with medians ranging from 0.37 to 0.46, 75th quantiles ranging

from 0.50 to 0.59, and 95th quantiles range from 0.68 to 0.80. This means that many of the

top ranked documents in Table 2 have indeed also highly ranked citation impacts. How-

ever, the statistical nature of the relation between citation impact and document centrality

is illustrated by some documents with very low citation impact that also occur in these lists.

It is further instructive to compare results of the document centrality with the fitted

citation impact, ~xiðtÞ. A direct comparison of their average values, together with the

standard error of the fitted citation impact for a given value of document centrality, is given

in Fig. 5. While still significant, we find substantially lower correlations for the ‘‘brain–

computer-interface’’ case study than for the remaining case studies. The second lowest

correlation is found for ‘‘fracking’’. It is intriguing to see that these are also the two case

studies where the bipartite centrality measures, ziðn ¼ 20Þ, lead to considerably poorer

results as compared to the results, ziðn ¼ 0Þ, compare Table 1. Note that ziðn ¼ 0Þ only

measures the number of keywords without containing any information on the centrality of

those keywords. From this one might conclude that in these cases the mere appearance of

certain concepts, topics, or keywords is of greater importance than with which terms they

appear together with. Nevertheless, there is a high statistical significance of the correlation

between document centrality and fitted citation impact in each of the case studies. This

finding further corroborates that the measure of document centrality helps to identify those

articles that contain a large number of keywords that lead to a comparably larger citation

impact.

What are the words that publications with a high number of citations typically contain?

To study this question one can exploit the symmetry between terms and documents in the

bipartite centrality measures of Eq. (2). This allows us to define the term centrality, C0
w,

Fig. 5 Comparison of results for document centrality, Ci, and the fitted citation impact for the six case
studies, a aging, b brain–computer interfaces, c fracking, d graphene, e liquid natural gas, and
f nanotechnology. We also show results for the Pearson correlation coefficient and the p value to reject the
null hypothesis that the true coefficient value is zero. There is a highly significant correlation between results
of the regression model and document centrality in each of the case studies, which shows that the network
based method identifies those articles that contain keywords that in turn correlate with a high citation impact
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that can be obtained analogously to the document centrality, Ci, by exchanging the roles of

terms and documents in Eqs. (2–4). Results for C0
w for the top 5 terms in the six different

case studies are given in Table 3. Terms that are closely related to the topic itself feature

prominently in these lists, e.g. nanotechnology and nanoparticles for ‘‘nanotech*’’. The

other terms hint at several related issues that lie at the core of the particular topics, such as

the controversy surrounding the permeability of rock with respect to fluids used in

hydraulic fracturing. The results also contain more specific terms, such as the name of

author Michael N. Helmus who wrote a series of thesis articles for Nature Nanotechnology

on the commercialization of nanotechnology, with his name appearing in the abstract in

each case.

Conclusions

To summarize, in this work we have introduced a novel and exclusively content-based

method for ranking documents according to estimates of their potential impact. The

method is based on a bipartite network representation of the term–document matrix for a

given corpus of documents. We compute bipartite centrality measures that adapt the

conventional recursive centrality measures on networks (such as Katz prestige, eigenvector

centrality, or Google’s PageRank) to the bipartite situation. That is, a document is regarded

as ‘‘central’’ if it contains a large number of terms that commonly appear together with

other terms, which in turn appear in a large number of other documents. The recursive

nature of this measure can be expressed as the fact that a document is ‘‘central’’ if it is

linked by central terms to other documents that are also regarded as central. This is a

crucial difference to conventional centrality measures that typically do not depend on

which kind of terms overlap between two documents. We constructed a measure, docu-

ment centrality, which combined two indicators: The first indicator measures the number of

different terms in a given document, i.e. it can be interpreted as the degree (number of

links) of a document in the bipartite network of the term–document matrix. While this

indicator is in a sense ‘‘blind’’ to which terms co-appear in the document, this is not true for

the second indicator that can be interpreted as a recursive centrality measure for bipartite

networks. We demonstrated the ability of document centrality to predict the citation impact

of scientific publications in six case studies from the field of material science. These case

studies covered, both, fields that show rapidly increasing attention and interest (e.g.

‘‘graphene’’ or ‘‘fracking’’) and also field that show a substantially slower growth in the

number of publications (e.g. aging). In each of these case studies the values of document

centrality showed a strongly significant correlation with the citation impact of the publi-

cations. Note that the term–document matrices, and thereby the document centralities,

were computed using only knowledge from the year of publication. That is, we can exclude

the possibility that there is any cross-talk between the computation of the indicators and the

citation impact that we want to predict using them. We found that while both indicators,

ziðn ¼ 0Þ and ziðn ¼ 20Þ, are often significant predictive indicators for citation impact

themselves, the best performance is found for a combination of them. These findings were

further substantiated by a comparison of the values for document centrality with results

from traditional, unipartite centrality measures and from a linear regression model where

we explicitly fit citation impact of documents using the presence or absence of terms as

variables (hence the regression model has no predictive value whatsoever and is prone to

overfitting the data). However, we find a strongly significant correlation between results of
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this regression model and document centrality, which shows that the network-based

indicators correctly identify those articles that tend to contain terms associated with large

citation impact.

Limitations of our current approach include that it is based on a bag-of-word repre-

sentation of text and does not take phrases, lemmatization, or n-grams of words into

account. It will be interesting to explore to which extend the performance of the document

centrality measure can be further improved by using such more refined text representations.

In the current work we have only used the terms that appear in the abstract of a publication,

but not the full text of the article. While the abstract is certainly an extremely relevant

description of the full text of the article, it remains to be seen to which extend our findings

would apply to the full articles. Another interesting extension of our work could lie in an

ontological annotation of the terms or phrases to study potential differences due to

semantic or syntactic information (consider, for example, the extremely high term cen-

trality found for a person in the nanotechnology case study). This also includes potential

differences due to works that do not adhere to standards of the particular field, as it has

recently been shown that the style of writing impacts the success of published articles too

(Moohebat et al. 2015).

It is worth stressing that the methodology of this work can be applied to a wide range of

text corpora, not necessarily scientific publications. One of the main motivations of this

work is indeed the often encountered problem of identifying the most relevant item from a

large set of unstructured documents. The case studies using scientific publications therefore

have the appeal of giving a (more or less) objective way to measure impact of documents,

namely in terms of received citations. The document centrality measure might therefore

have applications as a quantitative tool to aid the steering of research funding and to

qualify the potential of research proposals by, e.g., funding agencies or the host institu-

tions. Alternatively one might recognize that low values of the bipartite centrality measures

can be interpreted as indicators for high originality of a work (that is, articles with low

values exhibit substantial deviations in their usage of terms from the mainstream repre-

sented by the other, published research papers in this field). In this sense papers are highly

original if they offer a different perspective or novel context to an already established

topic. Our findings that ziðn ¼ 20Þ has a positive correlation with citation impact has then a

clear interpretation: Highly original research papers tend to be punished in terms of their

received numbers of citations.
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