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Abstract In this study, we combine the specialization scores for publications and patents

(the latter is a new indicator of cross-disciplinary engagement) to achieve more compre-

hensive navigation of the innovation trajectory of a technology. The patent specialization

score draws upon counterpart research publication indicator concepts to measure patent

diversity. Two nano-based technologies—Nano-enabled drug delivery (NEDD) and Gra-

phene—provide contrasting explorations of the behavior of this indicator, alongside

research publication indicators. Results show distinctive patterns of the two technologies

and for the respective publication and patent indicators. NEDD research, as evidenced by

publication and citation patterns, engages highly diverse research fields. In contrast, NEDD

development, as reflected in patent International Patent Classifications (IPCs), concentrates

on relatively closely associated fields. Graphene presents the opposite picture, with closely

linked disciplines contributing to research, but much more diverse fields of application for

its patents. We suggest that analyzing the field diversity of research publications and

patents together, employing both specialization scores, can offer fruitful insights into

innovation trajectories. Such information can contribute to technology and innovation

management and policy for such emerging technologies.
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Introduction

Emerging technologies have the potential to reconfigure the industrial and the techno-

logical landscape in various application fields (Danneels 2007; Galunic and Rodan 1998;

Gruber et al. 2008). Many of these technologies represent combinations of different

research fields and patented technologies. Thus, it is important to examine the extent of

diversity of the underlying research fields and patented technologies in order to understand

the inherent composition of these fields. One aspect of interest is technological diversity in

patenting and its counterpart, interdisciplinary research (IDR). The significance of a

patent’s technological diversity and/or the underlying IDR in fostering innovation is

(Stirling 2006) indicated by the number of studies that have, with extensive effort,

quantitatively measured the ‘‘diversity’’ and ‘‘interdisciplinarity of’’ or ‘‘distance’’ among

scientific disciplines or technology fields engaging a topical domain.

Much research has been involved in analyzing various diversity measures representing

published journal articles or patents. Using bibliographic information from published

articles, some studies have analyzed the citation or category information in a set of pub-

lications to identify the relevant fields of study and examine how diverse fields are asso-

ciated (Glänzel et al. 1999; Morillo et al. 2003). Other works have employed metrics to

measure the diversity of research fields where the underlying disciplines in a set of pub-

lished journal articles are related. They estimate the diversity with a single measurement

(Carley and Porter 2012; Porter and Rafols 2009; Porter et al. 2008; Rao 1982), multiple

metrics (Chavarro et al. 2014; Stirling 2006, 2007), and/or an analysis of other dimensional

metrics such as coherency or intermediation (Rafols 2014; Rafols et al. 2012).

Measuring the interdisciplinarity of research fields within journal articles provides a

perspective into how different bodies of scientific knowledge are interrelated. It also

provides way to look at the potential impact of a particular field of study across several

different fields. For example, Porter et al. (2008) have examined two core indicators of

interdisciplinarity. One indicator, the integration score (comparable to the Rao-Stirling’s

diversity index (Rao 1982; Stirling 2007), employs subject categories (SCs), which are

assigned by the Web of Science (WoS), to calculate the diversity of sources referenced in a

given paper (or set of papers). The other indicator, the specialization score, evaluates the

diversity of SCs assigned to the journal in which the publication (or set of publications) is

printed. SCs that are highly concentrated in a few fields will produce a higher score, with 1

being the maximum value. A comparison of scores across different fields of research

reveals how SCs have varying levels of diverse knowledge integration and specialization.

Carley and Porter (2012) developed another measurement called the diffusion score (a

forward diversity index). This measurement employs the analogous form of the integration

score to calculate the forward diversity of a paper or set of papers, but it uses the SCs of

journals that contain articles citing the paper or papers in question. First, they retrieve the

SCs of the papers that cite the focal article(s). Then, the forward diversity index calculates

a diversity index that is analogous to the integration score. Therefore, the indicator mea-

sures how many other fields of study are being affected by the body of knowledge in a

given paper. The forward diversity index evaluates, from a disciplinary perspective, the

level of knowledge diffusion for scientific papers published in 1995 in biotechnology,

electrical engineering, mathematics, and medical fields to name a few tested by the authors.

Visualization, has been another approach for understanding the overall landscape of

relatedness between scientific disciplines and examining their interdisciplinarity. This

1058 Scientometrics (2016) 106:1057–1071

123



method typically uses cross-citation patterns among journals or categories of journals

(Moya-Anegón et al. 2004, 2007; Leydesdorff and Rafols 2009; Rafols et al. 2010).

In a similar vein, other scholars use patent information, particularly patent classes, to

measure firm-level or individual patent-level technological diversity and distance. Jaffe

(1986, 1989) maps firm-level technological similarity by measuring to what extent the

patent classification distribution of a firm’s patent portfolio overlaps with other firms’

portfolios. Almeida and Kogut (1997) count firms’ patents in particular patent classes in

order to quantify the diversity of technological fields shared by the firms. Similarly,

Breschi et al. (2003) estimate firms’ technology diversity by counting technological fields

that are represented by particular sets of IPC categories in patent applications. Hinze et al.

(1997) estimate the technological distance between technology fields by examining the co-

assignment of IPC categories. The more that IPC categories are assigned together, the

shorter the technological distance is between their representative technologies. Techno-

logical distance, as estimated by IPC co-occurrence patterns, is also employed by the

following studies to reveal the innovation dynamics of emerging technology fields. Ley-

desdorff et al. (2015) utilize IPC categories to calculate the Rao-Stirling diversity index.

They also measure IPC category assignments for a set of patents in order to trace the

technological change of photovoltaic cells. Kay et al. (2014) employ a transformed IPC (T-

IPC), which addresses the unbalanced IPC population problem, in which more patents are

assigned to bioscience IPCs than to other, particularly non-high-tech IPCs, and present a

visualization of the technological distance between the T-IPCs using cited-citing patterns

between T-IPCs in the EPO patents.

Using bibliographic information analysis to represent diversity, interdisciplinarity, and

technological distance leads to effective examinations of innovation pathways, innovation

trajectories, and technology trends. However, the insights gained from journal article

analysis are inherently different from those derived from patent information. Journal

articles provide valuable information about behavior, characteristics of scientific knowl-

edge, or relationships between associated research fields. In this sense, interdisciplinarity

analysis of academic publications provides insight into how diverse research fields or fields

of study advance an underlying scientific discipline. On the other hand, patent analysis

provides insight into diverse fields of patenting (in grants or applications). This approach

sheds light on the behavior or potential impact of patented technology across various

application fields rather than showing the interdisciplinarity of the underlying fields. Thus,

analyzing only academic articles or patents produces a partial view of the innovation

trajectory: it reveals aspects only of the behavior of scientific knowledge in a research field

or of patented technology in an application field. Furthermore, examining the overall

innovation trajectory of a technology calls for a combined analysis of scientific knowledge

as well as the commercialized technology.

This paper confirms that interdisciplinarity research analysis on journal articles pro-

duces different insights than patent diversity analysis when examining the innovation

trajectory of a technology. We employ the specialization score (Porter, Roessner, and

Heberger 2008). We analyze the specialization scores of two emerging nano-based tech-

nologies–NEDD and Graphene–to show how scientific knowledge and the commercialized

technology behave differently in terms of interdisciplinarity and diversity. NEDD tech-

nology is based on chemistry, biology, and other fields relevant to biotechnology. In

contrast, Graphene stems from a single material. For this reason, NEDD research fields,

and the related disciplines, are more diversified than those associated with Graphene. On

the other hand, NEDDs are limited to biology-relevant applications, such as pharmaceu-

tical or medical uses, while, in contrast, the patented applications of Graphene are
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relatively broad. We expect the specialization scores for NEDD patents to be higher than

the scores for Graphene patents. This paper also combines the insights from the respective

specialization score analysis on journal articles with the analysis of patent information. In

our comparative studies of these two domains, we construct a conceptual model based on

specialization score analysis, which explains the innovation trajectories of NEDD and

Graphene technology, from their research to their patented application.

The paper is structured as follows: In ‘‘Data and Methods’’ section, we illustrate the data

acquisition process for publication and patent records as well as the analysis method. In ‘‘Re-

sults’’ section, we show the specialization score analysis. In ‘‘Discussion’’ section, we discuss the

results and our related insights, and in ‘‘Conclusion’’ section, we draw our conclusions.

Data and methods

Data

We collected NEDD and Graphene patents from the Derwent Innovation Index (DII, http://

apps.webofknowledge.com), using as our search term strategy a combination of keywords

defining Graphene (Shapira, Youtie, and Arora 2012; Kay et al. 2015) and NEDD tech-

nology (Zhou et al. 2014). To collect the Graphene patents, we searched for patents that

have ‘‘Graphene’’ in their title or abstract. The dataset was collected at the end of March,

2014. For the NEDD patents, we use those patents that were collected by Zhou et al. (2014)

through the end of 2012. Likewise, we use the same search methods to gather publication

records related to NEDD and Graphene from the Thomson Reuters’ Web of Science, which

was collected in January, 2015. We import all the publication and patent records into

Vantage Point, a commercialized text mining software package.

Methods

Publications analysis

We used the assigned Subject Categories from Web of Science (WoS SCs) to represent

research disciplines. For instance, if an article is published in a peer-reviewed journal

dealing mainly with Organic Chemistry, the WoS SC for Organic Chemistry is assigned to

that paper. Most articles have only one WoS SC, so the majority of the publications would

have a specialization score of 1, which does not produce meaningful information (Porter

et al. 2008). Therefore, we calculated an aggregated level specialization score based on

WoS SC and publication year. Suppose that two journal articles that are published in the

same year are associated with WSC1 and WSC2 respectively. For an aggregated level

specialization score, we pool the WSC1 and WSC2 together, and compute a specialization

score with the pooled WoS lists.

The WoS SCs are not always independent of one another. Some WoS SCs are more

strongly correlated with other SCs; others are not. For example, WoS may assign both

‘‘Transplantation’’ and ‘‘Surgery’’ to a journal, but these categories rarely appear in

combination with ‘‘Telecommunication’’ so the SC combinations should not necessarily be

viewed as equivalent. We take the distance between SCs into account by employing the

cosine similarity measure between WoS SCs (Leydesdorff and Rafols 2009). Although the

cosine similarity between WoS SCs might not perfectly represent the distance between

1060 Scientometrics (2016) 106:1057–1071

123

http://apps.webofknowledge.com
http://apps.webofknowledge.com


SCs, Carley and Porter (2012) explain that the preferred SC is usually very close to the

WoS SC and it is quite robust when analyzed across a large number of articles. We apply

the specialization score to large number of journal articles (more than 100), which enables

us to use the cosine similarity measure as a proxy for the distance between SCs. The cosine

similarity between WoS SCs is obtained from the cross-citation pattern among WoS SCs

for the year 2010 articles (Leydesdorff et al. 2013). The pairwise cosine similarity between

WoS SC i and WoS SC j is calculated by the following formula.

cos i; jð Þ ¼ CITEi
���! � CITEj

���!

CITEi
���! �j jCITEj

���!�

�

�

�

�

�

i, j are indexes for category, CITEi
���!

: that normalize the citing pattern of the category ‘i’ to

other categories.

The index is 1 if the citing pattern of category ‘i’ and category ‘j’ perfectly overlap. If

the two categories do not share any citing to other WoS SCs, the result is 0. The cosine

similarity between WoS SCs quantifies how the two WoS SCs are similarly associated with

other WoS SCs. It represents how close or distant two different WoS SCs are ranges from 0

to 1.

The specialization score measures how much a developed research outcome is related to a

particular field of research. It employs WoS SCs assigned to a set of journals. As a publi-

cation set contains more diverse WoS SCs, the specialization score of the publication records

takes a lower value. The specialization score is calculated with the following formula:

Sk ¼
P

ðfi � fj � cos i; jð ÞÞ
P

ðfi � fjÞ

fi is the frequency of category ‘i’ among all the assigned categories to the publication or

patent ‘k.’ The cos i; jð Þ represents the technological (disciplinary) cosine similarity

between categories ‘i’ and ‘j’.

Suppose that a set of graphene publications in one publication year has 6 SC1’s and 2

SC2’s. The cosine similarity between SC1 and SC2 is given as 0.2. The frequency of SC1

and SC2 in the pooled WoS SCs are 6/8 and 2/8 respectively. The self-cosine similarity

(i.e., cos(SC1,SC1) and cos(SC2,SC2)) is set to 1. According to the formula, the aggre-

gated specialization score of the set of papers is computed as (3/4)2 ? 0.2 9 (3/4) 9 (1/

4) ? 0.2 9 (3/4) 9 (1/4) ? (1/4)2 = 0.7.

Based on the formula, we compare the aggregated level specialization score for NEDD

and Graphene publications for each publication year.

Patent analysis

The specialization score analysis for the patent dataset requires steps similar to those in the

journal article analysis. However, in patent analysis, simply using the IPC category causes

two problems. First, the analysis is biased by the ‘‘IPC population problem’’. Some IPC

categories (such as in bioscience areas) have a large number of patents, but others have

very few. If we do not balance the IPC population, the metric calculated with the IPC

categories will be biased in favor of the large IPC categories. Thus, a more appropriate

grouping of IPC categories is needed to evenly represent the number of patents across the

patent system (Kay et al. 2014). To address the IPC population problem, we use the IPC

category folding algorithm that was suggested by Kay et al. (2014). This algorithm folds
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the small IPC categories into a general group, subclass, or class until the folded IPC’s

population reaches a given cutoff. The folded IPC categories (hereafter ‘‘transformed

IPC’’, or ‘‘T-IPC’’) are created from the IPC categories within the sampled EPO patents.

The IPC categories that are not part of the sampled EPO patents could not be transformed

into the T-IPC. Also, if a T-IPC cannot reach the given population, even after being

transformed to its highest level, this IPC is dropped from the T-IPC group. In our research,

we take the following steps: (a) collect all IPC categories that appear in the Graphene and

NEDD patents, (b) check whether the collected IPCs can be transformed into the existing

T-IPCs, (c) investigate if there are missing IPC categories that cannot not be matched into

the T-IPCs and, subsequently, (d) fold them into the existing T-IPCs.

The second problem with using just the IPCs is that separate IPC categories do not always

point to different technology fields. IPC categories are often assigned together in a patent

because technological fields are often close to each other (short technology distance). For

example, A61K 39/395, the IPC code for ‘‘antibiotics’’, is likely to be assigned to patents that

also have the C12N 15/xx designation for ‘‘genetic engineering’’. To quantify this techno-

logical distance, we employ cosine similarity between two T-IPCs categories, which is based

on the citing-to-cited pattern in the base set of EPO patents (Kay et al. 2014). This approach

profiles the distribution of cited T-IPCs in a set of patents that have a particular T-IPC. In this

way, each T-IPC has a vector that presents the frequency of cited T-IPCs. The citing-cited

patterns of T-IPCs are employed to compute the cosine similarity between T-IPCs. The

cosine similarity is computed by the formula given in the previous section.

The patent specialization score measures how much a developing technology is related

to a particular technological application. As patents have more diverse T-IPC categories,

the patent’s specialization score takes a lower value. Calculating the patent specialization

score employs a similar formula to that of the publication specialization score. As with the

publication records analysis, we conduct the patent analysis at the aggregated level of

specialization scores for NEDD and Graphene. Table 1 summarizes our method to analyze

the specialization score of patents and publications.

Results

Descriptive statistics

We collected 61,451 NEDD publications from WoS. The publication years for NEDD

journal articles range from 2000 to 2012. Data cleaning, including identifying those with

Table 1 Publication and patent specialization score analysis

Specialization score for research publications Specialization score for patents

WoS SCs in a set of publication records T-IPCs (Transformed IPCs) in a set of patents

Distance between WoS SCs based on 2010 WoS
articles’ cross citation pattern

Cosine similarity between T-IPCs estimated by the
citing-cited T-IPCs pattern in a given set of EPO
patents.

Aggregated level specialization score analysis
by publication year

Aggregated-level specialization score analysis by
patent publication year

Interdisciplinarity between Scientific Research
fields (Scientific knowledge)

Diversity of technology fields related to the patents
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valid bibliographic information, yielded a dataset comprised of 59,798 publication records,

or 97.3 % of the collected NEDD articles. The total number of assigned WoS SCs in the

NEDD articles is 110,433, which is equivalent to 1.85 SCs per individual article. We

obtained 24,389 Graphene publications and found that 24,381 of these publications or

99.9 % had valid bibliographic information. The publication years for the Graphene arti-

cles ranged from 2004 to 2012. The total number of WoS SCs assigned to the Graphene

articles is 48,634. On average, each Graphene publication has about 1.99 WoS SCs.

We initially obtained 7905 and 6459 patents for NEDD and Graphene, respectively. We

dropped patent records that lacked publication years. For family patents, the patent that

was first published was selected and we dropped the other patents in the family.1 In order to

synchronize the time window with the publication records, we only used the patents that

were published between 2000 and 2012 for NEDD and between 2004 and 2012 for Gra-

phene. The result is 7814 NEDD and 4383 Graphene patents. Among these patents, 7796

NEDD patents and 4340 Graphene patents have valid T-IPC information, covering 99.8 %

of the given NEDD and 99.7 % of the Graphene patents. The total number of T-IPCs

assigned to the NEDD patents is 56,642. On average, one NEDD patent has 7.27 T-IPCs.

The Graphene patents have 11,909 T-IPCs. On average, one Graphene patent has 2.74

T-IPCs. Table 2 summarizes the descriptive statistics of the datasets.

Annual trends of the specialization scores

Publication analysis

We began by collecting the WoS SCs for each record and counting them by publication

year. We represented these data through a vector denoting the number of WoS SCs that are

assigned to Graphene and NEDD journal articles, respectively, per year. Using this vector,

we calculated a specialization score. This approach is consistent with the method used by

Porter and his colleagues (2008) in that we grouped the articles and calculated a spe-

cialization score for the set of papers across years and technology domains rather than for

individual publications. Table 3 summarizes annual trends in the specialization scores for

NEDD and Graphene publications.

Table 2 Descriptive Statistics

Technology NEDD Graphene

Statistics \ type of records Publication Patents Publication Patents

Number of records 59,798 7796 24,381 4340

Aggregated specialization score 0.12 0.51 0.30 0.15

Max (specialization score) 1 1 1 1

Min (specialization score) 0.21 0.15 0.27 0.15

Number of SCs (TIPCs)/record 1.85 7.27 1.99 2.74

Publication year 2000–2012 2000–2012 2004–2012 2004–2012

Analysis coveragea 97.3 % 99.8 % 99.9 % 99.7 %

a No. of records that have valid T-IPC or WoS SCs/(total population of publication or patents)

1 This study analyzes the publication records by the ‘‘publication year’’ rather than ‘‘submitted year’’. To
align the time with the publications, we use the publication year of patents rather than the application year.
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We derived the following two observations from Table 3: First, the aggregated spe-

cialization score of Graphene articles is larger than the aggregated specialization score of

NEDD publications across the given time horizon (beginning in 2004). Second, the

aggregated specialization scores of NEDD and Graphene articles are stabilized over the

course of a year. This pattern shows that the research fields associated with the journals

publishing Graphene and NEDD articles have not changed much over time. The difference

between the aggregated specialization scores for NEDD and Graphene is likely to be due to

a fundamental difference between the two research fields rather than stemming from time

trends per se.

Patent analysis

Table 4 summarizes the patent analyses. The number of Graphene patent applications has

grown over the years. In contrast, the number of NEDD patent applications has been

relatively stagnant. Considering that the number of nanotechnology patent applications has

a similar pattern with the NEDD during the comparable period across the jurisdictions

(Organization for Economic Cooperation and Development 2015) and emerging technol-

ogy is featured by fast growth (Rotolo et al. 2015), Graphene presents characteristics of an

emerging technology that has spun-off from nanotechnology, while NEDD seems more of

a focused technological area.

The patent specialization score pattern shows several things. First, the annual special-

ization scores of NEDD patents and Graphene patents are stable (Table 4, last two columns).

Second, the overall specialization scores of Graphene patents are lower than the scores

for NEDD. The yearly comparison indicates that NEDD patents have a higher special-

ization score than Graphene patents across the given period. This difference is confirmed

by comparing specialization scores across the four major destinations of patent filing

(WIPO, US, Japan, and EPO) in Fig. 1.

Table 3 Publication specialization score annual trend and number of WoS SCs per article

Publication
year

No. of records No. of WoS
SCs/article

Aggregated specialization
score

NEDD Graphene NEDD Graphene NEDD Graphene

2000 1419 – 1.77 – 0.18 –

2001 1552 – 1.69 – 0.17 –

2002 1812 – 1.73 – 0.16 –

2003 2124 – 1.74 – 0.16 –

2004 2793 161 1.7 1.81 0.15 0.33

2005 3449 205 1.69 1.77 0.15 0.26

2006 4122 355 1.79 1.66 0.13 0.3

2007 4943 809 1.81 1.75 0.12 0.32

2008 6112 1454 1.78 1.76 0.12 0.33

2009 6528 2334 1.9 1.85 0.13 0.32

2010 7828 3807 1.92 2.01 0.13 0.32

2011 9261 6092 1.96 2.08 0.14 0.3

2012 7855 9164 1.92 2.05 0.14 0.29

Overall 59,798 24,381 1.85 1.99 0.12 0.3
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Another finding is that the number of T-IPCs assigned to an NEDD patent is greater

than those assigned to a Graphene patent across the time window (Table 4). According to

the specialization score formula, the specialization score decreases as more T-IPCs are

assigned, all else held constant. The specialization score for the Graphene patents is

significantly lower than that of NEDD, although the average number of T-IPCs assigned to

a Graphene patent is much smaller than those assigned to an NEDD patent. This obser-

vation indicates that the T-IPCs assigned to a Graphene patent are more technologically

distant from one another than is the case with the NEDD patents.

As a complementary analysis, we examined how many backward citations were made

by and how many subsequent patents were citing the Graphene and NEDD patents

Table 4 Patent Specialization Score Analyses

Patent publication
year

No. of patent
applications

No. of T-IPCs/patent Aggregated level
specialization score

NEDD Graphene NEDD Graphene NEDD Graphene

2000 381 – 8.76 – 0.58 –

2001 686 – 9.57 – 0.59 –

2002 649 – 9.13 – 0.57 –

2003 422 – 7.88 – 0.53 –

2004 438 30 7.72 3.57 0.50 0.23

2005 544 21 7.78 4.43 0.51 0.18

2006 662 23 8.15 3.13 0.52 0.15

2007 642 43 7.58 3.70 0.47 0.15

2008 673 80 7.29 3.59 0.49 0.14

2009 656 204 6.57 3.58 0.50 0.14

2010 742 472 6.77 3.28 0.49 0.15

2011 808 1144 4.37 2.87 0.46 0.16

2012 493 2323 3.79 2.45 0.45 0.16

Overall 7796 4340 7.27 2.74 0.51 0.15
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Fig. 1 Patent specialization score comparison by country
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respectively (forward citation). Such patent citation information provides a sense of the

industrial impact, economic value, and novelty of the patented invention (Albert et al.

1991; Trajtenberg 1990; Dahlin and Behrens 2005; Hall et al. 2005), and it sheds light on

knowledge flows regarding technology development (Jaffe et al. 1993). Table 5 presents

the forward and backward citations for Graphene and NEDD patents by year. Across our

time window, Graphene patents received more citations from subsequent patent applica-

tions than did NEDD patents. However, the number of backward citations are not sig-

nificantly different. The ratio of forward citations to backward citation indicates the degree

of contribution to developing new technology with the given knowledge input from prior

art. This ratio is significantly higher for Graphene than for NEDD patents across all years.

Discussion

Our analysis is notable in that it reveals opposing patterns in the comparison of special-

ization scores for NEDD and Graphene in publications versus patents. The aggregated

specialization score for NEDD publications is significantly lower than the score for Gra-

phene articles. The difference appears to stem from the closer relatedness among Graphene

WoS SCs and their representative research fields. Assuming that the WoS SCs were

assigned based on the research fields most closely related to the journal wherein the article

is published, we have to conclude that scientific knowledge about NEDD is born from

more diversified disciplines than is scientific knowledge about Graphene. Indeed, the most

relevant research fields for the journals publishing Graphene articles relate to (applied)

material science. However, the body of knowledge for NEDD comprises not only material

science but also chemistry and biology.

Table 5 Forward and backward citation trends

Patent publication
year

Ratio of mean (forward) and mean
(backward)

Forward citation Backward citation

NEDD Graphene NEDD Graphene NEDD Graphene

2000 0.73 – 8.02 – 10.97 –

2001 0.69 – 5.48 – 7.99 –

2002 0.52 – 4.89 – 9.41 –

2003 0.54 – 5.48 – 10.20 –

2004 0.54 0.90 5.19 4.80 9.67 5.33

2005 0.38 0.45 4.30 5.62 11.30 12.38

2006 0.35 1.58 3.63 8.22 10.44 5.22

2007 0.38 0.55 2.72 7.09 7.13 12.98

2008 0.31 0.81 2.50 5.68 8.20 7.00

2009 0.29 0.72 1.66 5.73 5.70 8.00

2010 0.27 0.68 1.26 3.00 4.71 4.40

2011 0.27 0.37 0.75 1.27 2.77 3.43

2012 0.09 0.22 0.35 0.33 4.01 1.51

Time average 0.41 0.70 3.56 4.64 7.88 6.69
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Interestingly, the patent specialization score analysis produces the opposite result.

NEDD patents have significantly higher specialization scores than Graphene patents. This

pattern indicates that NEDD technology is more likely to specialize in a particular tech-

nological application field than Graphene technology, as combinations of the IPC category

represent the potential technological application fields or industrial fields where the

patented invention or its function can be used (Hinze, Reiss, and Schmoch 1997;

Schankerman 1998; Schmoch et al. 2003).2 Indeed, the primary purpose of NEDD tech-

nology is to enhance the effectiveness of drug delivery to better cure diseases by (a) en-

abling targeted delivery to organs and tissues, individual cells and organelles and

(b) releasing the drug at a controlled rate (Zhou et al. 2014). On the other hand, the lower

specialization score associated with the Graphene patents, in comparison to NEDD, implies

that Graphene is targeting a broader range of applications. Graphene patents have rela-

tively diverse T-IPC categories that are not so closely related to each other. Indeed,

Graphene can be used for multiple purposes, including enhancing the performance of

photon sensors, solar cells, display screens, composites, building materials, and water-

purification (Segal 2009; Shapira et al. 2012).

Fewer T-IPCs in Graphene patents, and less obvious relatedness among the T-IPCs,

implies that Graphene is very new to the world in terms of its application. The IPC

categorization system might not have proper IPC categories that match with the Graphene

technology because it is an emerging invention with an application lexicon that may not be

fully captured yet in IPC classes. On the other hand, NEDD patents cover technological

applications (e.g., medications and pharmaceutical industry applications) that are assigned

to extant IPC categories. Therefore, NEDD technology can be mapped more easily than

Graphene to IPCs. Graphene’s newness can be also observed via measurement of ‘‘tech-

nological radicalness’’ by time-lag bias controlled forward citation (Nagaoka et al. 2010).

The result shows that, in general, Graphene patents receive more forward citations than do

NEDD patents. The higher rate of forward citation for Graphene, in comparison to NEDD,

reconfirms our hypothesis, assuming forward citation as a proxy of the technological

importance of the technology for subsequent development as well as for innovation rad-

icalness (Albert et al. 1991; Trajtenberg 1990; Dahlin and Behrens 2005; Hall et al. 2005).

Combining the patents and publication specialization scores provides grounds for

looking at the innovation trajectories of the two technologies, ranging from the degree of

specialization of their scientific origination to their application. Figure 2 visualizes the

innovation trajectory of the Graphene and NEDD based on our analysis.

In the NEDD model, the number of assigned WoS SCs gradually increases (SC1 to SC1

and SC2), but the scientific distance between SC1 and SC2 is long (dashed line). The

created scientific knowledge goes through the commercialization process, which results in

NEDD patented technologies (NP1 for t = T0, NP2 for t = T0 ? d). The number of

assigned T-IPCs for NEDD patents (TIPC1–TIPC5) and the specialization scores are

stabilized across each year because the number of T-IPCs and the interrelationships among

the T-IPCs do not change much over time. The technological distance among the T-IPCs in

NEDD patents is shorter (blue solid lines) than it is for Graphene, which indicates that

commercialized NEDD technology covers more closely related application fields.

2 Our research uses T-IPCs rather than original IPCs in order to address the IPC population problem without
manipulating the actual meaning of the categories. Thus, we can consider the T-IPCs as the aggregated level
IPCs that still contain information about the technology field or application area where the patent invention
can be used.
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In the Graphene model, the number of WoS SCs gradually increases (SC3 to SC3 and

SC4), but their discipline interrelatedness is closer than that for NEDD (blue solid line

between SC3 and SC4). The interrelatedness among assigned T-IPCs in a Graphene patent

is smaller and they are less closely correlated than those in NEDD patents (connected with

dashed black lines). Even though the interrelatedness among the T-IPCs slightly changes

over time (TIPC6, TIPC7, TIPC8 to TIPC6, TIPC7, TIPC9), the diversity of the techno-

logical application fields, as represented by the T-IPCs, is still greater than with the

diversity for NEDD.

Fig. 2 Model of innovation trajectory of NEDD (Top) and Graphene (Bottom). Blue Solid (black dashed):
Short (long) Technological (Disciplinary) distance
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Conclusions

This paper shows how to employ specialization scores in navigating the innovation tra-

jectory of a technology, from identifying its origins in research papers to determining the

broadness of its fields of application in patents. Our analyses lead to the following

conclusions.

First, we show that the specialization score, which is an advanced diversity measure-

ment analysis of journal articles and patent data, yields different implications when

interpreting the interdisciplinarity (or diversity) of a given body of knowledge. Analysis of

journal articles provides information about the research fields of the article’s body of

knowledge. Patent analysis, however, provides implications for the technological fields

where the patented invention can be used. Our case study on Graphene and NEDD rein-

forces this insight. Those who examine diversity/interdisciplinarity indices such as spe-

cialization scores should be aware of this difference.

Second, we combine insights gained from the specialization score analysis for NEDD

and Graphene with their publication records and patents. This gives a more comprehensive

perspective on the innovation trajectories of the two technologies. Such a comprehensive

view would not have been possible if only the publication or patent specialization scores

had been employed.

We believe that policymakers or firm managers who are interested in evaluating

innovation pathways of an emerging technology could benefit from this IDR/diversity

analysis with publications and patents. For example, policymakers who decide on national

R&D investment can be better informed of the range of impact and origin of a targeted

technology by employing dual analyses. When a government tries to encourage interdis-

ciplinary research to help generate technology that can be used broadly, it might analyze

the specialization scores of a set of journal articles and patents that are related to the

technology in unison. By jointly analyzing the two indicators, the government can assess

the technology in a more systematic manner. Firms also can utilize the combinatorial

analyses for their technology investment decisions. If a target technology draws on con-

tributions of various research fields, the firms might need to invest in those relevant

research areas. If the targeted technology has broad application fields, the firms should find

a coherent business strategy that targets those broad application fields.

Our research has several limitations. First, we compared only two technologies for our

case study. Future work would apply our approach to more technological innovations to

verify robustness. Second, we only analyze the ‘‘level of specialization’’ in order to

determine the innovation trajectory of a technology. However, a full technological inno-

vation trajectory cannot be illustrated with just specialization scores. Analysis of multiple

metrics would add more insight in establishing the innovation trajectory of a technology,

much like Chavarro et al. (2014) Rafols et al. (2012) and Stirling (2006, 2007) attempted to

do in their research. Third, the relatedness between WoS SCs and T-IPCs changes over

time. We applied a relatedness measure (cosine similarity between the categories) over a

single period, 2010. We believe that we would be able to obtain a more dynamic view

regarding the innovation trajectory of technology if we captured the changing techno-

logical relatedness over time.
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& Munoz-Fernández, F. (2004). A new technique for building maps of large scientific domains based
on the cocitation of classes and categories. Scientometrics, 61(1), 129–145.

1070 Scientometrics (2016) 106:1057–1071

123



Nagaoka, S., Motohashi, K., & Goto, A. (2010). Patent statistics as an innovation indicator. In B. H. Hall &
N. Rosenberg (Eds.), Handbook of the Economics of Innovation (pp. 1083–1127). Oxford, UK:
Elsevier.

Organization for Economic Cooperation and Development. (2015). OECD Library. Retrieved May 13 from
OECD.Stat: https://stats.oecd.org/Index.aspx?DataSetCode=PATS_IPC.

Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six
research fields over time. Scientometrics, 81(3), 719–745.

Porter, A. L., Roessner, D. J., & Heberger, A. (2008). How interdisciplinary is a given body of research?
Research Evaluation, 17(4), 273–282.

Rafols, I. (2014). Knowledge integration and diffusion: Measures and mapping of diversity and coherence.
In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly Impact: Methods and Practice
(1st ed., pp. 169–190). Switzerland: Springer International Publishing.

Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P., & Stirling, A. (2012). How journal rankings can
suppress interdisciplinary research: A comparison between Innovation Studies and Business and
Management. Research Policy, 41(7), 1262–1282.

Rafols, I., Porter, A. L., & Leydesdorf, L. (2010). Science overlay maps: A new tool for research policy and
library management. Journal of the American Society for Information Science and Technology, 61(9),
1871–1887.

Rao, R. (1982). Diversity: Its measurement, decomposition, apportionment and analysis. The Indian Journal
of Statistics, 44(1), 1–22.

Rotolo, D., Hicks, D., & Martin, B. (2015). What Is an Emerging Technology? SPRU Working Paper Series.
Schankerman, M. (1998). How valuable is patent protection? Estimates by technology field. The Rand

Journal of Economics, 29(1), 77–107.
Schmoch, U., Laville, F., Patel, P., & Frietsch, R. (2003). Linking Technology Areas to Industrial Sectors—

Final Report to the European Commission. DG Research1. DG Research.
Segal, M. (2009). Selling graphene by the ton. Nature Nanotechnology, 4, 612–614.
Shapira, P., Youtie, J., & Arora, S. (2012). Early patterns of commercial activity in graphene. Journal of

Nanoparticle Research, 14(4), 1–15.
Stirling, A. (2006). On the Economics and Analysis of Diversity. SPRU Electronic Working Papers Series

No.28.
Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal

Of The Royal Society, 4(15), 707–719.
Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. The Rand

Journal of Economics, 21(1), 172–187.
Zhou, X., Porter, A. L., Robinson, D. K., Shim, M. S., & Guo, Y. (2014). Nano-enabled drug delivery: A

research profile. Nanomedicine, 10(5), 889–896.

Scientometrics (2016) 106:1057–1071 1071

123

https://stats.oecd.org/Index.aspx%3fDataSetCode%3dPATS_IPC

	Navigating the innovation trajectories of technology by combining specialization score analyses for publications and patents: graphene and nano-enabled drug delivery
	Abstract
	Introduction
	Data and methods
	Data
	Methods
	Publications analysis
	Patent analysis


	Results
	Descriptive statistics
	Annual trends of the specialization scores
	Publication analysis
	Patent analysis


	Discussion
	Conclusions
	Acknowledgments
	References




