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Abstract Scientific peer-review and publication systems incur a huge burden in terms of

costs and time. Innovative alternatives have been proposed to improve the systems, but

assessing their impact in experimental studies is not feasible at a systemic level. We

developed an agent-based model by adopting a unified view of peer review and publication

systems and calibrating it with empirical journal data in the biomedical and life sciences.

We modeled researchers, research manuscripts and scientific journals as agents.

Researchers were characterized by their scientific level and resources, manuscripts by their

scientific value, and journals by their reputation and acceptance or rejection thresholds.

These state variables were used in submodels for various processes such as production of

articles, submissions to target journals, in-house and external peer review, and resubmis-

sions. We collected data for a sample of biomedical and life sciences journals regarding

acceptance rates, resubmission patterns and total number of published articles. We adjusted

submodel parameters so that the agent-based model outputs fit these empirical data. We

simulated 105 journals, 25,000 researchers and 410,000 manuscripts over 10 years. A

mean of 33,600 articles were published per year; 19 % of submitted manuscripts remained

unpublished. The mean acceptance rate was 21 % after external peer review and rejection

rate 32 % after in-house review; 15 % publications resulted from the first submission,

47 % the second submission and 20 % the third submission. All decisions in the model

were mainly driven by the scientific value, whereas journal targeting and persistence in

resubmission defined whether a manuscript would be published or abandoned after one or
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many rejections. This agent-based model may help in better understanding the determi-

nants of the scientific publication and peer-review systems. It may also help in assessing

and identifying the most promising alternative systems of peer review.

Keywords Peer review � Publishing � Computer simulation � Complex systems � Agent-
based model

Background and significance

The burden associated with the worldwide scientific production has recently generated

much debate and criticism about the sustainability of the established system of scientific

publication. The exponential increase in number of manuscripts submitted for publication

is much higher than the increase in number of researchers and overburdens the ability of

available qualified referees (Ware and Mabe 2015; Gannon 2001; Laakso et al. 2011;

Bohannon 2014; Arns 2014; Alberts et al. 2008). Peer-review resources are so scarce that

recently the Nature Publishing Group experimented with outsourcing fast-tracked, paid

peer review. Moreover, the associated costs are daunting. For example, for the UK higher

education institutions alone, peer review would cost more than £110 million annually

(Look and Sparks 2010). At the same time, a concern is that the peer-review system may be

inefficient at detecting errors and even fraud (Hopewell et al. 2014; Bohannon 2013;

Schroter et al. 2008; Stahel and Moore 2014). Most researchers believe that peer review is

vital to scientific publication, but it needs to be improved to address all the challenges that

arise (Mulligan et al. 2013; Nicholas et al. 2015).

Interventions to improve the system could be targeted to reviewers or the system itself.

At the individual level, reviewers could receive special training or authors could be made

aware of their identities. Rewarding peer reviewers could provide scientists with incentives

to be more involved in peer review activities (Review rewards 2014). Interventions such as

cascade peer review (passing reviews of rejected manuscripts to the next editor) or ‘‘crowd

sourcing’’ of online reviews (the editor consults online comments along with the reviewers’

evaluations) could be implemented at the systemic level (Houry et al. 2012; van Rooyen

et al. 1999; Patel 2014; M Ware 2013; Gura 2002; Stahel and Moore 2014; Cals et al.

2013). Assessing the impact of interventions to improve the system would require large-

scale experiments, which are complex, costly and sometimes even impossible to perform.

In fact, the available randomized controlled trials in the field are few (Rennie and Flanagin

2014).

Scientific publication and peer review need to be studied as a unified system, specifi-

cally as a complex system. Computer simulations can reproduce the complete behavior or

even uncover data about some elements that are very difficult or impossible to be studied in

real life. Agent-based models (ABMs) may be especially useful in this regard.

An ABM aims to simulate and reproduce the behavior and interactions of autonomous

real-life agents. The agents interact with each other and their environment, for a complex

behavior in the system that differs from the sum of the individual agent behaviors. The

characteristics that drive agents’ behavior are stored in internal variables and are updated

each time some specific conditions are fulfilled or at each time step (Auchincloss and Diez

Roux 2008; Galea et al. 2010; Bonabeau 2002; Maglio and Mabry 2011; Epstein 2006).

Agent-based modeling is an efficient way to study complex systems (Chhatwal and He
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2015; Vespignani 2012; Farmer and Foley 2009; Marshall and Galea 2015; Alberts et al.

2008). It has been successfully used to reproduce and deal with real life problems, espe-

cially in public health (Rigotti and Wallace 2015). Previous pioneering studies have used

ABM to simulate the peer-review system (F Squazzoni and Gandelli 2013; Paolucci and

Grimaldo 2014; Nandi et al. 2013; Lee et al. 2010; Herron 2012; Allesina 2012; Day 2015;

Park et al. 2014; Thurner and Hanel 2011).

We aimed to develop an ABM, by adopting a unified view of peer review and publi-

cation systems. We attempted to embrace the full complexity of the scientific publication

system and use empirical data for calibration. We simulated all the interactions between

authors, reviewers and editors and took into account the complete path of scientific

manuscripts from submission to the final decision, including resubmissions, rejections after

in-house review (without external peer review) and multiple rounds of peer review. We

implemented the model in the biomedical and life sciences domain and used empirical data

from medical journals for calibration. Our results closely match the real life situation.

Section ‘‘Collection of empirical data’’ of this article describes the sources for our data

and section ‘‘Modeling the scientific publication and peer-review system’’, how scientific

publication works in real life and the development of our ABM. Section ‘‘Calibration

procedures and main outputs of the model implementation’’ describes how we parame-

terized submodels so that the ABM outputs reproduced the real-life data, and section

‘‘Sensitivity analyses’’ provides the results of our model and sensitivity analyses.

Collection of empirical data

To guide the development and parameterization of the ABM and to perform calibration

procedures, we collected empirical data pertaining to the medical domain. We contacted a

sample of medical journals to obtain their acceptance rates, with a 40 % positive response

rate. We consulted journal websites to obtain the remaining acceptance rates (when

available). Finally, we collected the journal impact factors from Journal Citation Reports

2013 and the remaining data from a previously published international survey (Mulligan

et al. 2013).

Characterization of journals: survey of editors

Among 119 journals indexed in the MEDLINE Core Clinical Journals subset, we surveyed

105. We excluded journals that invited only submissions (n = 11) and those no longer

active (n = 2); a journal’s special edition was considered among the regular issues.

We searched the website for each journal for the contact details of the editor-in-chief or

editorial office. On December 5, 2014 we sent an email asking for the number of manu-

scripts submitted to the journal in 2013, number of manuscripts rejected after in-house

review (without external peer review) and number of articles published in 2014. We sent 2

reminders on December 12 and January 22, 2015 and closed our survey on February 1,

2015. We masked the data so that journals could not be matched to their acceptance rates.

We had a response rate of 68 and 40 % for the 105 journals finally provided us with

data. For journals that did not provide data, we searched their websites for reported

acceptance rates and estimated the number of published articles for 2014 from the Journal

Citation Reports 2013. Finally, we collected the acceptance rates for 62 journals and

rejection rates after in-house review of 45 journals. We obtained the impact factors for
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each journal from the Journal Citation Reports 2013 and rescaled them for standardization

(Table 1).

Characterization of system processes

We used data from the international survey conducted by Mulligan et al. (2013). The

authors contacted 40,000 researchers and obtained 4037 responses. We obtained data for

the ‘‘medicine and allied health and nursing’’ domain (565 researchers) for time to final

decision for a manuscript (Table 2B) and number of articles that researchers had published

(Table 2C). Finally, by directly contacting authors we obtained also the data for the

number of submissions up to publication (Table 2A).

Modeling the scientific publication and peer-review system

Description of the system

Scientific publication in its most typical form can be described as a complex system in

which researchers interact with each other taking the roles of authors, journal editors and

reviewers (Fig. 1) (Brown 2004). Researchers conduct research by using many resources

(e.g., grants, research facilities or collaborations). They promote their findings and make

them available to the scientific community by reporting them in scholarly manuscripts,

which they submit to scientific journals for publication. Decisions on publication are based

on multiple factors including the paper’s quality, novelty, importance or controversy.

Journals first perform an in-house review to determine whether they will reject a

manuscript immediately (e.g., irrelevant to a journal’s scope or below quality standards) or

send the manuscript for external peer review. In-house review commonly involves the

editor-in-chief and members of the editorial board. For the external peer review, the editor

solicits external researchers to review articles. On the basis of the editor’s and external

peer-reviewers’ assessments, the editor decides to accept the paper, ask for revision (ac-

ceptance is not guaranteed) or reject the manuscript. Revisions require a second or further

round of peer review (Wilson 2012). Rejected manuscripts may be resubmitted to other

journals or ultimately be abandoned and remain unpublished. Published articles, depending

on their impact on the scientific community, help researchers obtain additional resources.

Table 1 Data from MEDLINE Core Clinical Journals

Data for 2013

Rescaled impact factor(n = 105) 0.11 ± 0.14 [0.0–1.0]

Acceptance rate (n = 62) 0.22 ± 0.11 [0.43–0.59]

Rejection rate after in-house review (n = 45) 0.37 ± 0.22 [0.00–0.81]

No. of submissions (n = 105) 173,436

No. of rejections after in-house review (n = 105) 52,373

No. of published papers (n = 105) 32,729

Data are mean ± SD [min–max] from a survey of journal websites and the Journal Citation Reports 2013
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Moreover, researchers benefit from reviewing scientific manuscripts in terms of

knowledge.

Agent-based model

We modeled researchers, manuscripts and journals as agents of the scientific publication

system from the interactions of their respective state variables (Fig. 1). The researchers

could be both authors and reviewers, but editors and journals were modeled as the same

agent. The ABM is organized in submodels. The ABM is organized in submodels. Each of

the submodels can be parameterized independently. Some submodels pertain to the sub-

mission process, including the creation of manuscripts and the targeting of journals for the

first submission. Others pertain to the peer review process, including peer review rounds

and resubmissions.

Researchers

We characterized N researchers by two state variables: resources R(t) and scientific level

S(t) (Squazzoni and Gandelli 2013). The scientific level was defined as S(t) = R(t) ? Sb(t),

where t the time step and Sb(t) the sum of all the rewards that a researcher can receive to

Table 2 Empirical data characterizing the system processes

Process

A. No. of submissions until publication No. of articles (n = 565) (%)

1 15

2 47

3 23

4 12

More than 5 4

B. Time to final decision No. of articles (n = 504) (%)

B1 week 1

2–3 weeks 5

1–2 months 19

3–6 months 49

[6 months 25

C. Articles Researchers (n = 4037) (%)

1–5 14

6–10 13

11–20 18

21–50 26

51–100 18

[100 11

Data from Mulligan et al. (2013) international survey and from personal contact with authors
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determine scientific level, as explained at the end of this section. The resources represent

all the means that researchers have at their disposal for conducting research. The scientific

level expresses a researcher’s experience and capacity to conduct better research. In our

model, scientific knowledge evolves by a researcher’s own research (published articles),

the evolution of resources, and from reading and reviewing other manuscripts.

For t = 0 we set Sb(0) = Sp(t), where Sp(t) is the cumulative amount of publications per

researcher at time t. We initialized Sp(0) (Fig. 2a) using the empirical distribution in

Table 2C and set R(0) = cSp(0) (Fig. 2b) where c was uniformly distributed over 0.1 and

3. The initial distribution of S(0) can be seen in Fig. 2c.

Manuscripts

Manuscripts were characterized by the state variable Q, which serves as a proxy for their

intrinsic scientific value but also their disruptive, innovative, or controversial nature as well

as quality of reporting. At each time step, Ns randomly selected researchers submitted their

paper (as detailed in the Calibration section). At the time of submission ts of their paper,

authors would lose an amount of resources Rinv associated with the conduct of the research

reported in that paper—0:2RðtsÞ�Rinv � 0:7RðtsÞ. However, for researchers with resour-

ces, we set R(ts)\Rmin = 1 so that they could not submit any work for publication and

had to wait until they obtained more resources.

Each paper had an initial expected quality EQ defined by both the amount of resources

the author invested and the author’s scientific level at ts (F Squazzoni and Gandelli 2013)

Update

Total invested resources
Publication reward (0-50%)
Weekly update
Resources Scientific level

Publication reward 
Reading reward
Weekly update
Reviewing reward

Abandoned
paper

Resubmitted paper
Rejected paperRe-submissions

SCIENTISTS
Authors

PAPERS
New submissions

JOURNALS

Scientific publication system

Submission process

TARGETING
RANGE (LOW)

Q~N(EQ,0.1EQ)
EQ=f(Rinv,S(tS))

EXTERNAL
PEER-REVIEW

Qr

TARGETING
RANGE (HIGH)

invest
resources Rinv

Time: t=tS

IN-HOUSE
REVIEW

randomly selected

Q~N(EQ,0.1EQ)

REVISED
PAPER

RESUBMITTED
PAPER

REJECTED
PAPER

REJECTED
PAPER

Tmin≤Qr≤Tmax

without
peer-review

Invest
extra resources
(increase EQ)

1st round:Qr<Tmin2nd round:Qr<Tmax

Q~N(EQ,0.1EQ)

Invest extra resources
(increase EQ)

Journals
(n=105)

ACCEPTED PAPER

Peer-review & resubmission process

R(t) : Ressources
S(t) : Scientific level

IF : Reputation
Tmin : Rejection threshold
Tmax : Acceptance threshold

Q : Scientific value

Published paper

Scientific level
Journal’s  reputation

Manuscript’s scientific value

LowerBest

...

State variables

State variables

State variables

Papers (n=410 000)

...

Submissions (n=1 200 000)

Scientists
(n=25,000)

...

Fig. 1 Description of the agent-based model. The agents and the processes by which our agent-based model
operates. Key features are the submodels of the submission and the peer-review process
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EQ ¼ 0:8
0:1Rinv

0:1Rinv þ 1
þ 0:2

0:01S tsð Þ
0:01S tsð Þ þ 1

The Q score was drawn from a normal distribution Q� N EQ; 0:1EQð Þ. This score deter-

mines how a researcher chooses a target journal and drives in-house and external peer-

review assessments. If all researchers invested half of their initial resources at ts = 0 to

create manuscripts, then the distribution of Q scores would be as seen in Fig. 2d.

Journals

We characterized J journals by three state variables: a reputation value [we used rescaled

impact factors (Fig. 3a)] and by related rejection or acceptance thresholds, T
j
min\T j

max; j ¼
1; . . .; J (Fig. 3b). The reputation and thresholds were used to define how a researcher

chose a target journal and if a manuscript was rejected or accepted after in-house or

external peer review.

The rejection or acceptance thresholds reflected the ranking of journals by their repu-

tation and were defined by the expected scores of submissions journals receive. For each

year, we drew N score values for a fictitious sample of upcoming submissions; we esti-

mated the J-quantiles qj of this distribution, including the minimum value, and defined

T
j
min ¼ dminq

j þ n j and T j
max ¼ dmaxT

j
min þ n j � C, where dmin; dmax, and C were constants
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Fig. 2 Distribution of the initial state variables of researchers and articles. Distribution of a initial number
of published articles per researcher Sp(t = 0), b initial amount of resources per researcher R(t = 0), c initial
scientific level per researcher S(t = 0), and d manuscript scientific values (Q scores) when all researchers
(N) hypothetically invest half of their available resources at time t = 0
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and nj was random (as detailed in the Calibration section). This definition kept the dis-

tribution of acceptance rates insensitive to changes in the distribution of resources.

Journal targeting process

To define how a researcher chose a target journal, we assumed that authors had a general

knowledge of journal standards and, given the score, would try to obtain the most

recognition from their work. Hence, the journal for the first submission was chosen at

random among those with T
j
min within the asymmetrical range Q� 0:45e�T

j
min �

Qþ 0:55e, where e� 2� N Q
5
; Q
20

� �
. This process resulted in a slight trend of high targeting

in every first submission.

In-house and external peer-review process

We drew the editor’s assessment of the manuscript Qe from a uniform distribution over

0:9Q; 1:1Q½ �. If Qe\T
j
min, the manuscript could be rejected without external peer review,

depending on the journal’s reputation; the likelihood of editorial rejection was larger for

journals with larger reputation (as detailed in the Calibration section). If Qe �T
j
min, the

manuscript was sent for external peer review; two or three reviewers (with 20 %
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Fig. 3 Distribution of the final state variables of researchers, journals, and manuscripts. Distribution of the
a journal reputation derived from the rescaled impact factors for 2013, b journal rejection and acceptance

thresholds T
j
min;T

j
max; j ¼ 1; . . .; J

� �
, c resources per researcher at the end of the simulations [R(t = 520)],

and d manuscript final scientific values (Q scores)at the end of simulations

702 Scientometrics (2016) 106:695–715

123



probability) were randomly selected to their scientific level and the journal’s reputation;

the top 10 % journals randomly select reviewers among the top 10 % researchers and so

on. The reviewers’ assessments were defined as Qr � N Q� c; r � Qð Þ, where r was a

random error and c measured the competitiveness of the reviewer.

The error factor r represents the reliability of the reviewer’s assessment. It depended on

the amount of time the reviewer spent evaluating the manuscript, the reputation of the

journal and the score of the manuscript itself. We assumed that the more time spent on the

assessment, the greater the reputation of the journal, and the greater the score, the greater

the chance of an accurate assessment. Formally, we defined r = rr ? rj - rQ, where rr is

the reviewing error, rj the journal error and rQ the score error. With 65 % probability, we

set rt = 0.1; with 12 %, rt = 0.05; and with 13 %, rt = 0.01 We drew rj randomly from a

uniform distribution over [0; 0.15], where rj = 0 corresponded to the highest reputation

journal and rj = 0.15 to the lowest. Finally, rQ = 0.05 9 Q.

The competitiveness factor c depended solely on the reputation of the journal and

represents potential reviewer conflict of interest affecting the assessment of the manuscript.

We assumed that a competitive behavior would occur more often for journals with higher

reputation. The probability of appearance ranged uniformly from 10 to 66 %, where c was

drawn randomly from a uniform distribution over [0.01; 0.05].

We randomly selected one of the reviewers’ evaluations as a proxy of the editor’s

opinion. We simulated more than one reviewer to be able to update their scientific levels

appropriately. If Qr C Tmax, the manuscript was accepted and if Qr B Tmin, it was rejected.

When Tmin B Qr\Tmax, the author was asked to revise the manuscript before a second

round of peer review.

In the later case, the author invested an extra amount of resources

Rimp � N 8
60
; 1
60

� �
� R� Rinvð Þ. The cumulative amount of invested resources was used to

derive a new Q score as before. The manuscript was re-evaluated by two or three

reviewers, randomly selected again, and accepted only if Qr C Tmax. The Qr from the

second round of peer review was calculated only from the randomly chosen evaluation

from the two or three new reviewers.

Following a rejection after in-house review or external peer review, an author could

resubmit the manuscript.

Resubmission process

The probability of resubmission Pres after a rejection decreased with increasing number of

resubmissions r increases, Pres ¼ Pr�1
0 . The P0 value was defined with the calibration

procedure.

If a manuscript was rejected after external peer review, we assumed that the authors

could substantially revise it by investing extra resources Rimp � N 20
60
; 2
60

� �
� R tsð Þ�ð

Rinv þ
P

i R
i
imp

� �
Þ, where R(ts) are the resources before at the time of submission and i the

times the author invested extra resources to improve it. If a manuscript was rejected after

in-house review, we assumed that authors invested a smaller amount of extra resources

Rimp � N 1
60
; 0:1
60

� �
� RðtsÞ � Rinv þ

P
i R

i
imp

� �� �
:

We assumed that after a first rejection, the authors would target journals of lower

reputation than for the first submission. Thus, they randomly selected journals in the

(symmetrical this time) range pQ� 0:5e� T
j
min � pQþ 0:5e, where Q is the initial score of

the manuscript and 0\ p\ 1 the targeting of lower reputation journals. This rule allowed
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for easier acceptance after the second submission, because the score of the manuscript was

[pQ after resubmission.

Duration of the peer-review process

For estimating the duration of the peer-review process from submission to final decision,

we used the distribution from Table 2B. We assumed that rejection after in-house review

occurred within 3 weeks, whereas decisions after one or more rounds of external peer

review occurred after C1 month. When a manuscript is accepted, it takes an extra

1–2 months for publication. Resubmissions occur instantly as the final decision is

announced.

Updating of variables

Resources and scientific level were updated at each time step. Resources invested for

conducting and reporting research Rinv were subtracted at the time of initial submission,

whereas the extra resources Rimp were subtracted uniformly until the time of a journal’s

final decision. Thus, a researcher allocated resources to both new research manuscripts and

already (re)submitted manuscripts. If the article is published, the author received a reward

between 0 and 50 % of the total amount of invested resources, p� RinvþðP
i R

i
impÞ; 0� p� 0:5. If a manuscript remained unpublished, the author would perma-

nently lose all the resources invested.

The scientific level S(t) = R(t) ? Sb(t) evolved according to resources and number of

published or reviewed manuscripts. In case of publication, the author received a reward for

resources in scientific level together with an increase in the number of publications SP(t).

The extra resources invested for revisions were subtracted uniformly from the scientific

level until the time of the final decision. The scientific level of a reviewer was credited with

a random reward between 0 and 0.001 every time the reviewer completed a review because

of knowledge acquired from the paper. Moreover, the scientific level of all researchers was

credited with a reward at each time step to reflect the impact of newly published articles,

drawn from a normal distribution N(I, 0.1I), where I is the average across all articles

published the previous week of 0:1Qfinal � IF
j
final (i.e., the quality score of a published

article 9 the impact factor of the journal that published it). The greater the article quality

score and journal impact factor, the higher the chance a researcher would read the article

and gain knowledge from it and the larger the reward. Finally, at the end of each week, the

researchers received an update to their resources and scientific levels randomly drawn

between 0.1 and 1, which reflected an increase of the means to conduct research with time.

Calibration procedures and main outputs of the model implementation

We programmed the model using MATLAB (MATLAB and Statistics Toolbox Release

2014b, The MathWorks, Inc., Natick, Massachusetts, United States). The code is available

at http://www.clinicalepidemio.fr/peerreview_abm/. We programmed the model with a

total population of researchers N = 25,000 and total population of journals J = 105. We

ran the simulations for 10 years, with a burn-in period of 1 year for the initialization of the

model. Results were averaged over 20 simulations. The main outputs measured were total

number of publications per year, proportion of successfully published articles compared to
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all submissions, proportion of manuscripts revised before being published and proportion

of manuscripts for which the peer review process improved their Q score after revision.

We developed our ABM so that its mechanisms resembled those operating in the real-

life scientific publication system. We parameterized the model by calibration procedures so

that it fit empirically observed data. We considered that this assumption was verified if the

model achieved good fit for the distribution of acceptance rates, rejection rates after in-

house review, number of submissions until publication, and yearly number of published

articles. Goodness-of-fit was assessed by the Anderson–Darling test p values across all

runs; we report the minimum and maximum p values.

Distribution of acceptance rates after external peer review

We sorted journals in ascending order by reputation. We generated nðjÞ ¼ u j�
z
ðjÞ
1 þ F � z

ðjÞ
2 , with u j � U 0:01; 0:20ð Þ, z j1 � N 0; 0:45ð Þ and z

j
2 � N 0; 0:015ð Þ and nðjÞ; z

ðjÞ
1

and z
ðjÞ
2 order statistics; F = 1 for the 20 % highest reputed journals and F = 0 for the

others. We set T
j
min ¼ 0:9q j þ n j and T j

max ¼ 1:2T j
min þ n j � 0:095ð Þ. We obtained an

acceptance rate of 0.21 ± 0.09, which is almost identical to the one obtained from the

survey. Figure 4a shows that the model output fits the empirical distribution of acceptance

rates (Anderson–Darling p values [0.63–0.73]).

Acceptance rates after external peer review
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Distribution of rejection rates after in-house review

The empirical distribution of rejection rates after in-house review was uniformly spread

across impact factors, except for a peak at zero, corresponding to journals that send all

submissions for external peer review. To calibrate the distribution, we defined the strict-

ness of the journals as a probability, a linear function of their reputation Pr je ¼
j

105
. We also

assumed that 20 % of the highest ranked journals would be strict with their editorial

policies and would reject everything\T
j
min, whereas five of them—excluding the 10 %

with the highest reputation—would send everything for external peer review (according to

survey data).

Therefore, rejections after in-house review would occur only if Qe\T
j
min and Pr\Pr je,

where 0 B Pr B 0.8 is a random number drawn from a uniform probability distribution.

We randomly selected five journals that sent everything for peer review (excluding the top

10 % journals with the highest reputation). This process resulted in uniformly distributed

rejection rates after in-house review that match the empirical data as seen in Fig. 4b (mean

value [0.32 ± 0.25] and Anderson–Darling p values [0.068, 0.152]).

Number of submissions until publication

To calibrate the distribution of submissions until publication, we set p = 0.68, so that

authors target journals in the range 0:68Q� 0:5e�T
j
min � 0:68Qþ 0:5e when resubmitting

and P0 = 0.88. The results in Table 3 show that the ABM outputs fit the empirical data

well.

Total publications per year

For each week, we randomly selected Ns � N 800; 80ð Þ authors to invest resources and

create manuscripts. The authors produced 33,598 ± 203 manuscripts per year as compared

with the 32,729 manuscripts estimated from the empirical data for 2013. From these, 87 %

were revised before publication and for 75 % of these, the quality was improved as

compared with the empirical values of 92 and 88 %, respectively (Mulligan et al. 2013).

Overall, 81 % of the total submissions were finally published, with their mean Q score

0.89 ± 0.13, whereas those unpublished had a mean Q score 0.69 ± 0.20; a relative

difference of 29 % (Fig. 5).

Table 3 Comparison of distri-
bution of resubmissions (survey
vs agent-base model)

Data from Mulligan et al. (2013)
international survey and from
personal contact with authors

Resubmissions International survey (%) Agent-based model (%)

0 14.6 14.89 ± 0.09

1 46.9 47.21 ± 0.22

2 22.6 20.35 ± 0.11

3 11.7 9.41 ± 0.09

4 2.4 4.46 ± 0.05

5 0.5 2.095 ± 0.022

6 0.6 0.94 ± 0.04
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Main outputs

Our model fulfills stationarity and ergodicity, and thus, results from a single run do not

differ significantly from the average for several runs. We present the results for the main

outputs of the model across 20 simulation runs in Table 4.

Sensitivity analyses

We performed two types of sensitivity analyses. First, we selected four variables central to

the structure of the model parameters and explored a broad range of values for each so that

we could evaluate how they affect the outputs of the ABM. We then performed an extra

simulation whereby we evaluated the synergy of the parameter values that maximized

difference in the average scores of the published and unpublished manuscripts. Second, we

explored various scenarios that incorporate changes in the initial targeting strategy of the

authors and in the reviewing behavior of the referees. We compared the results with the

standard case for each, to better understand how initial targeting and reviewing strategies

can affect the model outputs.

Parameter variation

We performed a sensitivity analysis of the four variables central and varied the targeting

when resubmitting (p), the volume of weekly submissions (Ns), the probability of

Fig. 5 Distribution of scientific values (Q scores) of published and unpublished articles. 81 % of the total
submissions were finally published, with their average Q score 29 % higher from the average Q score for
unpublished manuscripts
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resubmission (P0), and the strictness of the in-house reviewing policy (Prmax). We mea-

sured the impact of the variables on the yearly amount of publications, the proportion of

published articles and the difference in the mean scores of published and unpublished

manuscripts. For simplicity, we refer to this difference as ‘‘score gap’’.

The scaling of Ns linearly increased the value of all the three measured outputs.

However, variations in the value of Prmax did not have any notable impact on the outputs.

The variation of p produced the highest difference in the score gap; 40 % relative increase

compared to the correct calibration. No parameter variation decreased the difference

\10 %. High values of p and low values of P0 decreased the amount of yearly publications

and the percentage of published manuscripts, and vice versa. All results are shown in

Table 5.

We performed an extra simulation round for evaluating the extreme scenario, whereby

we parameterized the ABM with the values of p and P0 that produced the maximum score

gap. We did not re-parameterize Prmax, because variations of its value did not substantially

affect the outputs, and Ns, because performing simulations for the same amount of sci-

entists submitting per week more than 150 % manuscripts than in the calibrated case would

be unrealistic.

The values that affected the score gap the most were p = 0.5 and P0 = 0.95 (?40 and

?15 % compared to the correct calibration, respectively) and inputted in the model for

performing the extra simulation run. The new, more persistent but less ambitious, behavior

of the authors when resubmitting resulted in a 55 % increase in the score gap. This increase

was produced mainly from the decrease in mean score of the unpublished manuscripts, so

with this re-parameterization, the ABM was more capable of low Q score at the screening

of papers.

Simulation scenarios

We considered the standard and two additional targeting strategies. In the first strategy,

scientists initially submit to journals of lower rejection threshold than they do in the

Table 5 Sensitivity analyses defined by varying four parameters central to structure of the model

Parameter
descriptions

Parameter
names

Range of
variation

Step of
variation

Yearly
publications

Published
manuscripts
(%)

Score gap

Targeting when
resubmitting

p [0.9–0.1] -0.1 [25,911–36,057] [62–86] [0.19–0.28]

Volume of weekly
submissions

Ns [400–2000] 200 [16,086–86,131] [78–83] [0.18–0.27]

Probability of
resubmission

P0 [0.55–0.95] 0.05 [27,459–35,926] [66–87] [0.19–0.23]

Strictness of the
in-house
reviewing policy

Prmax [0.1–0.9] 0.1 [33,170–33,770] [80–81] [0.20–0.21]

Range of desired outputs [min–max] from sensitivity analysis. The variation of p is presented as a max to
min value, because the highest value of p corresponds to the lowest output results and vice versa. Prmax did
not substantially affect the outputs, whereas Ns affected them linearly. The variation in p produced the
highest score gap (?40 % compared to the correct calibration)
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standard case (Q� 0:65e�T
j
min �Qþ 0:35e). In the second strategy, they target journals

of higher rejection threshold (Q� 0:35e�T
j
min �Qþ 0:65e). For each of the three

strategies, we also considered two additional reviewing scenarios and the standard

reviewing scenario. The first scenario assumed that the reviewers would be competitive

only if the manuscript they currently review has the same or up to 5 % score as their last

published paper. Then they would randomly evaluate its average score as being 5–10 %

lower, with all other reviewing errors remaining the same. The second scenario assumed

that all evaluations, both of reviewers and editors, are accurate, with no errors.

We compared eight scenarios with the standard model to evaluate how targeting and

reviewing affects the system in terms of average number of resubmissions before publi-

cation, improvement in papers’ scores and increase in the gap in the average scores

between published and unpublished papers. No scenario raised the percentage of improved

papers after peer review more than 3 %. The fair reviewing strategy increased the score

gap the most in all cases (15–16 %), and the rest produced changes varying from -1 to

2 %. Considering the amount of average resubmissions, the competitive case resulted in a

decrease ranging from 8 to 15 %, whereas changes from the fair case were insignificant

(\5 %). Results in Table 6.

Discussion

Our ABM mimics the properties and functions and addresses different scenarios of

behavior and interactions in the scientific publication system. The main strengths of our

model are the use of empirical data, which allowed us to produce realistic outputs, and the

unified view of evaluation and publishing systems. The main difficulty in the calibration

was that we had to reproduce the whole journey of a manuscript from its submission to

publication or until the authors give up on submitting it. From empirical data from the

biomedical and life sciences domain, we calibrated the model so that the journals do not

accept or reject too many manuscripts and so that the manuscripts are not resubmitted more

than is required, before being published.

Table 6 Sensitivity analyses defined by the simulation of certain additional scenarios

Initial
targeting

Reviewing
strategy

Average
resubmissions

Improvement after peer
review (%)

Average score
gap

Relative score
gap (%)

Low Competitive 1.41 74 0.21 [0.69, 0.90] 2

Low Fair 1.51 78 0.24 [0.67, 0.91] 16

Low Standard 1.50 75 0.21 [0.69, 0.89] 0

Standard Competitive 1.46 74 0.21 [0.69, 0.90] 21

Standard Fair 1.53 78 0.24 [0.67, 0.91] 15

Standard Standard 1.56 75 0.21 [0.69, 0.89] N/A

High Competitive 1.48 74 0.20 [0.69, 0.90] 21

High Fair 1.57 74 0.24 [0.67, 0.91] 16

High Standard 1.56 75 0.20 [0.69, 0.89] 21

In this table we see the outputs of the eight scenarios and the relative score gap as compared to the calibrated
model [standard–standard]
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We obtained an amount of publications very close to that estimated from our survey.

This situation allowed us to examine characteristics of manuscripts that remained

unpublished and were handled inside the ABM with realistic rules and calibration. In all,

19 % of submissions that received a final decision were never published, and their mean

Q score significantly differed from that for published articles. A moderate proportion of

unpublished manuscripts had Q scores close to the high scores of the published articles.

This issue is a problem of the scientific publication system, in which editors may some-

times make questionable gatekeeping decisions (Siler et al. 2015). The reasons why an

unpublished manuscript considered worthy of publication was not published include poor

targeting, mistakes in the in-house or external peer review and lack of persistence in

resubmitting the manuscript.

From our sensitivity analyses, variations in the strictness of journals’ editorial policies

were not able to significantly affect the system. Changes in the amount of weekly sub-

missions linearly affected the model outputs. Behavioral changes in the resubmission

strategies of the authors could significantly affect the distribution of Q scores of the

unpublished manuscripts. The synergetic effect of lower targeted and more persistent

resubmissions increased the difference in average scores of published and unpublished

papers by 55 %. This finding suggests that the system can publish more papers of higher

Q score by changes in the resubmission attitudes of authors. However, for producing

significant changes in other parts of the system, one needs to consider alternative inter-

ventions that will come from structural changes in how the journals and the whole system

functions.

From the eight different scenarios, we found that the alternative competitive behavior

we introduced reduced the average resubmissions until publication by 8–15 %, without

affecting the amount of published articles. The fair scenario produced the highest relative

difference in the score gap (15–16 %), which was independent of the initial targeting

strategy. However, this difference is still lower than the score gap produced by modifying

only the authors’ resubmitting behavior. Also, in all cases, the score gap increased or

decreased because of the average Q score of the unpublished distribution. Finally, the

percentage of papers that benefited from peer review did not deviate more than 3 %

compared to the standard case for any of these scenarios.

Specific aspects of the peer-review system have previously been studied by pioneering

works using ABM approaches (Squazzoni and Gandelli 2013; Park et al. 2014; Allesina

2012; Day 2015; Herron 2012; Paolucci and Grimaldo 2014; Thurner and Hanel 2011).

Squazzoni and Gandelli (2013) modeled a system whereby authors and reviewers interact

in the environment of a single journal. They simulated three different scenarios; in the first

scenario, the reviewers reciprocated the behavior of previous reviewers towards them; in

the second scenario, the reviewers’ behavior was not affected by past actions and in the

final scenario, the reviewers were reciprocating fair evaluations of their papers. The

authors’ results suggest that reciprocity can benefit peer review only when inspired by

disinterested standards of fairness (Squazzoni and Gandelli 2013). Paolucci and Grimaldo

(2014) replicated the results of Thurner and Hanel (2011) by using a ‘‘redesign’’ approach.

In their approach Scientists, Conferences and Papers interact, whereas reviewers can fol-

low different types of reviewing strategy (Correct or Rational Cheating). The authors show

that the obtained results are fragile to small mechanism variations and suggest that

exploration at the level of mechanisms is necessary for supporting theoretical statements

with simulations (Paolucci and Grimaldo 2014). Allesina (2012) modeled a ‘‘classical’’

setting of the scientific publication system—using 50 journals and 500 researchers—and

compared it in terms of efficiency to two alternative settings of the system: ‘‘editorial
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rejection’’, in which editors could reject manuscripts after in-house review and ‘‘bidding’’,

in which authors submit their paper to a pool of manuscripts and journals bid for them. The

‘‘editorial rejection’’ setting raised the publication speed, decreased the burden to the

reviewers and provided better control for quality but raised the rejection rates and the

probability of Type I errors. The ‘‘bidding’’ setting provided faster publication, better

distribution of peer review effort and more publications for authors in better journals

although with higher probability of Type II errors and more burden to the editors (Allesina

2012).

However, a holistic approach to evaluate the entire scientific publication system, using

empirical data, had not been attempted. Previous studies focused solely on peer review,

only a part of our model, or they did not address the full complexity of the system (e.g.,

large scale of the system, multiple rounds of peer review or revisions of manuscripts after

peer review). Despite the continual ‘‘risk of brutal oversimplification’’, we attempted to

address the full complexity of the system on a large scale and incorporate empirical data to

calibrate its processes (Squazzoni 2010). A reliable base model that better characterizes the

standard system must be built and then alternatives to this standard system constructed by

comparison because the robustness of inference about the comparison will be influenced by

how the standard system is adequately captured by the base model.

The calibration alone was complex, but it was important for describing accurately the

base system. We achieved the calibration by ‘‘fine-tuning’’ some microscopic variables to

fit empirical data for a limited number of strategically chosen parameters. Alternative

systems can be incorporated in the model by making structural changes to some of its

submodels. This inclusion will consequently affect the macroscopic outputs. An alternative

system would be to crowdsource online reviews and use it along the standard peer review.

For implementing this, we need to make additions and modifications to the structure of the

submodels of the peer-review process, keeping every other relation and value the same. A

structural change could be to allow randomly selected scientists to provide evaluations for

a paper, as a form of crowdsourcing of reviews, then the editor to obtain Qr as the average

value of both the regular and the online reviewers comments. However, changes will not be

made in the selected values of variables and parameters, only in the relations between

them. Since the submodels can be parameterized independently, modifications into any of

them do not affect the function of the other. The model will then be able to produce

estimates for outputs of systems that have never been implemented in real life. One

scenario is how many articles could be published and how fast by an alternative system

under the same conditions as the conventional system.

A limitation of our simulations is the use of one-dimensional Q scores. A multidi-

mensional version would treat separately factors such as importance, novelty and con-

troversy arising from the manuscript. For this first exploration, a one-dimensional Q score

variable was considered as a satisfactory proxy of all the quality dimensions that a

manuscript incorporates. Another limitation is that the peer-review process did not capture

the full complexity of interactions as occurs in real life. In next versions of the model, we

could increase the complexity of the peer-review process and compare the impact that

cooperation and competition between authors, reviewers and editors might have on the

system. For example, we could examine in more detail scenarios of conflict of interest and

competition for priority between authors and reviewers. We could also make authors spend

more resources in the revisions of the paper if the evaluation from the reviewers is closer to

the rejection than the acceptance threshold. Furthermore, since reviewers benefit in terms

of knowledge from reviewing papers, their rewards could be connected to the Q score of

the respective paper. An additional limitation is that our model represents a simplified
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abstraction of the reality. Arbitrary choices are at some point necessary in order to model

real life systems, especially when empirical data are absent. However, to address this

limitation, we performed extensive sensitivity analyses, whereby we explored the behavior

of the model under several scenarios. A final limitation is that our calibration does not

include open-access journals, which can have very different characteristics from traditional

style journals. Adding more data, from open-access journals, will increase the accuracy of

our calibration measures for scientific publication.

Conclusion

We have developed an ABM that simulates the complexity of scientific publication and

peer review and parameterized to fit to certain empirical data coming the biomedical

literature. This model produced outputs for both published and unpublished articles. After

structural changes to its submodels, we could simulate alternative peer-review systems.

The alternative systems that will be produced, depending on the structural changes

implemented, will not necessarily be calibrated to the data we used to calibrate the base

model. This situation will produce deviations to the measured outputs that will allow us to

compare the alternatives to the base system. These comparisons could help highlighting the

most promising interventions that may to improve the system and place them under real-

life examination.
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