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Abstract The present study examines that a research and development (R&D) perfor-

mance creation process conforms to the stepwise chain structure of a typical R&D logic

model regarding a national technology innovation R&D program. Based on a series of

successive binary logistic regression models newly proposed in the present study, a sample

of n = 929 completed government-sponsored R&D projects was analyzed empirically.

Sensitivity analyses are summarized where the performance creation success probability is

predicted for some key R&D performance factors.
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Introduction

Researchers have emphasized a systematic data investigation, analysis, and evaluation

framework related to national research and development (R&D) programs. In addition to

the quantitative efficiency perspective, the qualitative effectiveness viewpoint is under-

scored in the field of R&D performance evaluation. Proponents for this view suggest that it

is implemented by identifying a clear relationship between R&D inputs and crucial per-

formance created by government-sponsored R&D projects (i.e., GSPs) (McLaughlin and

Jordan 1999; Ruegg and Feller 2003; WKKF 2004; Ruegg 2006; KISTEP 2011; MKE

KIAT 2012; STAR METRICS 2014).
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Generally, public sector R&D performance is evaluated based on a typical R&D logic

model, and the performance efficiency, effectiveness, and relevance of GSPs is analyzed

quantitatively using various methods (Wholey 1983; Bickman 1987; Wholey 1987;

McLaughlin and Jordan 1999; Ruegg and Feller 2003; WKKF 2004). Ruegg and Feller

(2003) and WKKF (2004) classified the following performance factors according to three

different time periods (1) short-term, technical (1–3 years) outputs; (2) mid-term, eco-

nomic (4–6 years) outcomes; and (3) long-term, socioeconomic (7–10 years) impacts,

most of which occur after a project is completed.

Typical flow-chart type R&D logic models in the literature include the Advanced

Technology Program (ATP) of U.S. Department of Commerce (DOC) (Ruegg and Feller

2003), the Research and Technology Development and Deployment Program (RTDDP) of

U.S. Department of Energy (DOE) (McLaughlin and Jordan 1999), and so forth. Repre-

sentative national technology innovation R&D programs can be found, such as the ATP

under the DOC, the Industrial Technology Development Program (ITDP) administered by

the Ministry of Economic Affairs (MEA) with the Taiwanese government and the

Knowledge Economy Technology Innovation Program (KETIP) conducted by the Ministry

of Knowledge Economy (MKE) with the Korean government (Ruegg and Feller 2003;

Shipp et al. 2005; Ruegg 2006; Hsu and Hsueh 2009; KEIT 2010, 2011, 2013). As

discussed in detail in Sect. 2, in the national R&D program planning and deployment stage,

effective government subsidy allocations are required with the consideration of perfor-

mance differences between institution types and between R&D collaboration types (KEIT

2010, 2011, 2013; OMB OSTP 2012; OSTP 2012). For example, among the initial ATP’s

50 completed GSPs, 42 GSPs (84 %) were conducted through R&D collaboration.

As for the national technology innovation R&D programs mentioned above, previous

studies are very limited regarding whether statistically significant differences exist in R&D

performance between institution types and between R&D collaboration types. In particular,

it is not easy to find empirical cases using a large dataset. In the empirical analyses of

related studies, a common research limitation is the incomplete panel samples that do not

fully consider the time lag between R&D inputs and performance (Wu et al. 2006; Guan

and Chen 2010; Chen et al. 2011). The inherent scarcity of GSPs achieving R&D per-

formance may be another reason why researchers have not collected a proper datasets. A

research need has been raised regarding the extent to which R&D inputs exert substantial

influence to achieve R&D performance (Shipp et al. 2005; Ruegg 2006; KEIT 2013). In

terms of methodology, various nonparametric statistical models have been used in the

literature and have primarily discussed ways to enhance technology innovation produc-

tivity (Fritsch and Lukas 2001; Belderbos et al. 2004; Laursen and Salter 2006; Berchicci

2013; Robin and Schubert 2013).

As we can see, most of aforementioned studies and related literature reviewed in Sect. 2

showed various R&D performance analyses based on typical R&D logic models. Still, only

a limited number of studies have been conducted relating to verifying the applicability of

typical R&D logic models for technology innovation R&D performance evaluation.

Therefore, the present study is motivated to fill this gap, which aims to investigate whether

the fundamental framework of typical R&D logic models can be applied to a national

technology innovation R&D program’s performance especially. From the ex-post evalu-

ation perspective, various types of R&D performance factors can be evaluated more

systematically within technology innovation R&D programs based on typical R&D logic

models. On the other hand, some useful policy implications can be derived for restruc-

turing subsequent R&D programs as well as R&D budget allocations more effectively from

the ex-ante evaluation point of view.
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The present study conducted an empirical analysis to verify whether a national tech-

nology innovation R&D program’s performance was created in accordance with the

stepwise chain structure of typical R&D logic models, which is taken for granted in public

sector R&D performance evaluations. Specifically, the present study aimed to answer the

following three major questions. First, to what extent do R&D inputs exert their influence

on R&D performance? Second, is there an apparent chain relationship between previous

and subsequent performance factors? Third, do significant differences exist in R&D per-

formance between institution types and between R&D collaboration types?

A sample of n = 929 completed GSPs during the last five performance follow-up

survey years (2009–2013) was analyzed. Data were collected from representative national

technology innovation R&D programs administered by the Ministry of Science, ICT and

Future Planning (MSIP) with the Korean government. The present study proposes a new

analysis framework, successive binary logistic regression models, in which the inherent

characteristics of observations (i.e., completed GSPs) can be reflected appropriately. In

particular, this new methodology shows how to deal with the R&D performance creation

success-failure binary characteristic. The present study is organized as follows. Section 2

states the background and literature review of the present study, Sect. 3 explains the

research model and hypotheses, Sect. 4 presents the empirical analysis associated with the

design of the successive binary logistic regression models, and Sect. 5 explains the sen-

sitivity analyses that display the predicted probability of R&D performance creation

success. Finally, conclusions are summarized in Sect. 6.

Background and literature review

Berchicci (2013) analyzed a survey sample of 2537 Italian firms for the 13 years from

1992 to 2004 using a Tobit regression model. He argued that an inverted U-shape rela-

tionship existed between the share of external R&D activities and the firm’s innovative

performance (i.e., the share of turnover from new or significantly improved products). He

concluded that firms with low R&D capacity could enhance their innovative performance

by increasing external R&D activity share compared to those firms with high R&D

capacity. Esteve-Pérez and Rodrı́guez (2013) analyzed a sample of small and medium-

sized enterprises (SMEs) in Spanish manufacturing industry drawn from a Business

Strategy Survey from 1990 to 2006. They argued that some types of R&D collaboration

with suppliers, clients, universities and technological centers could be more relevant for

SMEs to improve sales and technology innovation activities. Robin and Schubert (2013)

carried out a survey associated with French and German companies between 2004 and

2008. They analyzed the sample using a Tobit regression model and found that R&D

collaboration with public sector institutions increased only product innovation (i.e., the

percentage of total sales of new products). Based on 1435 SMEs in Australia from 2004 to

2007, Gronum et al. (2012) examined the role of networks in SMEs and showed that strong

and heterogeneous ties engaged with different actors improved innovation and long-term

performance in SMEs. Chen et al. (2011) compared the productivity change of 73 infor-

mation technology companies in China using a data envelopment analysis-based Malm-

quist index model. They argued that R&D collaboration was necessary between large

companies and SMEs. Ortega-Argilés et al. (2009) mentioned that innovative SMEs tend to

rely heavily on external knowledge, which is a crucial complement to in-house R&D and

innovation management practices. Laursen and Salter (2006) investigated a survey sample
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of 2707 UK firms in 2001 using a Tobit regression model. They identified that a dependent

variable for innovative performance (i.e., the fraction of the firm’s turnover relating to

products new to the world market) was curvilinearly related to the breadth and depth of an

external knowledge and it took an inverted U-shape. Belderbos et al. (2004) analyzed the

influence of R&D collaboration on labor productivity and technology innovation pro-

ductivity of 2056 companies in the Netherlands for the 3 years (1996–1998) based on a

regression model. The analysis revealed that productivity pursued by each R&D collab-

oration type was different from one another. Fritsch and Lukas (2001) examined a survey

sample of 1800 German companies based on a two-stage decision-making model (i.e., 1st

stage: a Logit model, 2nd stage: a Poisson regression model). They verified a statistically

significant positive (?) correlation between the R&D collaboration frequency and firm size

(i.e., the number of employees) as well as the R&D intensity (i.e., the percentage of R&D

employees).

Most of the literature has used nonparametric statistical models. Because of the inherent

scarcity of GSPs achieving R&D performance and the extremely skewed to the right

distribution, the literature seems to adopt nonparametric techniques, such as Tobit

regression models, to cope with censored characteristics, logistic regression models dealing

with R&D performance creation of success-failure binary characteristic, and so on.

Meanwhile, related to measuring efficiency and productivity change in R&D programs,

some prior literature has provided excellent classification on R&D inputs and performance

factors to be considered in R&D performance evaluation (Meng et al. 2006; Wu et al.

2006; Sharma and Thomas 2008; Hsu and Hsueh 2009; Guan and Chen 2010; Chen et al.

2011; Park 2014).

Recently, the U.S. government emphasized the need for R&D collaboration associated

with its R&D budget compilation and execution. The Office of Management and Budget

(OMB) and the Office of Science and Technology Policy (OSTP) discussed the 2014

federal R&D budget priorities, and announced the top nine science and technology areas

needing R&D collaboration as including information technology, nanotechnology and

biological innovation, etc. (OMB OSTP 2012). The ATP accepted applications from single

companies and joint ventures. For-profit companies could apply as single applicants to

receive an award up to $2 million USD over 3 years to cover project costs (Ruegg and

Feller 2003). The Korean government established a database management system (DBMS)

called the National Science and Technology Information Service (NTIS) in which GSP

R&D inputs and performance information is updated yearly and data are opened to the

public. In particular, six key performance factors of the NTIS are as follows: (1) research

article publications, (2) patent applications and registrations, (3) technology transfer, (4)

commercialization sales, (5) technology manpower cultivation and (6) academic-technol-

ogy training (KISTI 2008; MKE 2009; MST OSTI 2008). Practitioners in charge of R&D

performance evaluation pay attention to specific topics, including identifying the rela-

tionship between R&D inputs and performance factors, verifying performance differences

among institutions and R&D collaboration types, and so on (Åström et al. 2010; KEIT

2010, 2011, 2013; Elg and Håkansson 2012).

In particular, regarding project-level’s R&D performance evaluation, Linton et al.

(2002) reported a Data Envelopment Analysis (DEA)-based methodological framework for

the analysis, ranking and selection of R&D projects in a portfolio. Farris et al. (2006)

presented a case study of how DEA was applied to compare engineering design projects of

the Belgian Armed Forces, and they explained a variable-reduction process where the

initial 23 input–output variables were reduced to the final five input–output variables. Hsu

and Hsueh (2009) evaluated DEA efficiency of 110 GSPs; consequently, they emphasized
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the need for an appropriate upper limit on the ratio of the amount of government support in

the R&D budget. In addition, Lee et al. (2009) evaluated the efficiency of multiple R&D

programs supported by the Korean government. They utilized a DEA/AR (Assurance

Region) model in order to consider the importance of input–output variables associated

with six heterogeneous R&D programs. At the firm-level’s R&D performance evaluation,

for pharmaceutical and semiconductor companies, Kim et al. (2009) argued that the

number of patents per R&D expenditure declined with the firm size (i.e., the firm sales) for

both industries based on regression analyses. Chen et al. (2004) assessed the R&D effi-

ciency of 31 computer-related companies in Taiwan based on DEA. They examined the

total efficiency, technical efficiency and scale efficiency respectively, and revealed the

correlations between inputs and outputs.

Meanwhile, the fundamental concept of the research model explained in Sect. 3 accords

with the basic mechanism of network DEA models. Färe and Grosskopf (2000) proposed

the framework of a network DEA. This DEA modeling approach was designed to measure

and improve disaggregated process performance within the network structure. In the

fundamental concept behind this approach, intermediate outputs of one stage may be used

as inputs in another stage. Löthgren and Tambour (1999) conducted a multi-stage per-

formance evaluation. They point out that the analyst can evaluate the performance of a

customer node that is interrelated with a production node. Similarly, Cooper et al. (2004)

discussed various network DEA models. They argue that a DEA research should focus

more on performance management decision-making that coordinates activities among

different levels in a system concerned. Recently, Liang et al. (2011) developed an

advanced form of network DEA model for examining performance in the feedback setting,

and they illustrated an application involving the measurement of performance of a set of

Chinese universities. Chen and Guan (2012) applied a relational network DEA to the

systematic evaluation of the innovation efficiency of regional innovation systems by

decomposing the innovation process into the two connecting sub-processes, technological

development and subsequent technological commercialization. Guan and Chen (2012)

proposed a relational network DEA model for measuring the innovation efficiency of the

national innovation systems by decomposing the innovation process into a network with a

two-stage innovation production framework, an upstream knowledge production process

and a downstream knowledge commercialization process respectively.

For technology innovation, technology management and R&D management, some

research papers were reported using citation analyses (Narin and Noma 1985; Albert et al.

1991; Jaffe and Trajtenberg 2002; Hu and Jaffe 2003; Branstetter and Ogura 2005; Bac-

chiocchi and Montobbio 2009; Hu 2009; Lee 2015; Tan et al. 2015).

Lee (2015) investigated the multidisciplinary characteristics of technology management

through a journal citation network analysis. He showed that technology management had a

high degree of interaction with the six disciplines of science and technology: business and

management, marketing, economics, planning and development, information science, and

industrial engineering and operations research. Tan et al. (2015) presented a comparative

impact analysis on collaborative research in Malaysia using journal articles published in

the 10-year period spanning, the years 2000–2009. Bacchiocchi and Montobbio (2009)

estimated the process of diffusion and decay of knowledge from university, public labo-

ratories and corporate patents in six countries, and tested the differences across countries

and across technological fields using data from the European Patent Office. The distri-

bution of the citation lags showed that knowledge embedded in university and public

research patents tended to diffuse more rapidly relative to corporate ones in particular in

the U.S., Germany, France and Japan. Hu (2009) investigated the extent to which East Asia
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had become a source of international knowledge diffusion and whether such diffusion was

localized to the region. Branstetter and Ogura (2005) supported the notion that the nature

of the U.S. inventive activity had changed with an increased emphasis on the use of the

knowledge generated by university-based scientists. Hu and Jaffe (2003) examined patterns

of knowledge diffusion from the U.S. and Japan to Korea and Taiwan using patent citations

as an indicator of knowledge flow. They found that Korean patents cited Japanese patents

than the U.S. patents, whereas Taiwanese inventors tended to learn evenly from both the

U.S. and Japanese inventors. Jaffe and Trajtenberg (2002) reported that patents registered

by universities were comparable to patents of companies in terms of the patent citations in

the U.S. Albert et al. (1991) presented a new and direct validation study of the use of patent

citation analysis, in which a strong association was found between citation counts for

highly cited the U.S. patents and knowledgeable peer opinion as to the technical impor-

tance of the patents. Narin and Noma (1985) showed that there was a substantial amount of

citation from biotechnology patents to the modern bioscience literature.

Regarding the performance evaluation perspectives, Roper et al. (2004) discussed the

ex-ante and ex-post R&D performance evaluation framework that comprised two main

elements: (1) an inventory of the global private and social benefits which might be resulted

from any R&D projects and (2) an assessment of the share of these global benefits which

might accrue to a host region. Lenihan (2011) demonstrated that traditional enterprise

evaluation metrics focused almost exclusively on private firm impacts rather than broader

societal impacts caused by the pervasive nature of new enterprise policies and illustrated

how R&D logic models could be expanded to account for these broader impacts.

Research model and hypotheses

Figure 1 shows the research model of the present study in which important measures of

R&D inputs and performance are organized based on typical R&D logic models in the

literature (McLaughlin and Jordan 1999; Ruegg and Feller 2003; WKKF 2004; Meng et al.

2006; Wu et al. 2006; Bitman and Sharif 2008; Sharma and Thomas 2008; Hsu and Hsueh

2009; Guan and Chen 2010; Chen et al. 2011; Park 2014). In Fig. 1, drawn with squares,

multiple R&D inputs and performance factors comprises the stepwise chain structure of the

research model. Ruegg and Feller (2003) and Hsu and Hsueh (2009) presented

Fig. 1 An R&D logic model with inputs, performance and external influences
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representative R&D inputs and performance factors for a GSP-level performance analysis.

The important R&D inputs were a government subsidy to the GSP, GSP budget from the

government subsidy recipient, staff members and the post-project period. The four key

performance factors suggested included published articles, patent applications and regis-

trations, patents used, and profited commercialization sales. Additionally, some external

influence factors were pointed out, such as the institution type, R&D collaboration, the

internal R&D capability, accumulated knowledge, and experience of the institution (Geuna

et al. 2003; Stephan 2010). As described in Sect. 4, Fig. 1 is designed as a parsimonious

model composed of verifiable quantitative characteristics of GSPs analyzed in the present

study.

In particular, regarding national technology innovation R&D programs, representative

R&D logic models are the ATP’s R&D logic model (Ruegg and Feller 2003; Shipp et al.

2005; Ruegg 2006) and the RTDDP’ R&D logic model (McLaughlin and Jordan 1999).

These two typical R&D logic models contain the stepwise chain structure of creating

performance, and they provide a general framework for evaluating public-sector R&D

performance especially. Hence, this methodological framework is adopted for the present

study. Furthermore, the R&D logic models classify some important measures of R&D

performance. Also, Hsu and Hsueh (2009) provided a summary of representative factors of

R&D inputs and performance of GSPs. In particular, they divided the four performance

factors into the two sequential time ordered categories: (1) the intermediate outputs

(publication articles, patent stocks) and (2) the final outputs (patents used in commer-

cialization, profited commercialization).

The total of ten variables describe the overall characteristics of each observation (i.e.,

GSP), which included R&D inputs, performance and external influence factors as shown in

Fig. 1. For the input variables, three characteristics are considered: R&D Budget (X1),

R&D Period (X2), and R&D Workforce (X3). The five performance variables analyzed are

SCI Publications (Y1), Patent Registration (Y2), Technology Transfer (Y3), Sales (Y4) and

New Employment (Y5). The present study also considers two additional external influence

variables such as Institution Type (T1) and R&D Collaboration Type (T2).

As explained in Sect. 4, the five performance variables (Y1, Y2, Y3, Y4, and Y5) are

converted into five corresponding binary variables defined as Eq. (1) to Eq. (5) to deal with

the sample characteristics. For example, for the ith observation, if the condition of Y1i[ 0

(i.e., the case of SCI Publications performance creation success), then the corresponding

SCI Publications performance creation success-failure binary variable B1i is defined as 1.

However, the potential information loss can occur to some extent when the five continuous

variables are converted into the corresponding five binary variables. Therefore, if it is

possible, it is better to use the original continuous variables rather than to use the corre-

sponding binary variables. But, as seen in the related literature, typical samples regarding

technology innovation R&D projects tend to be sparse matrices in which most of the

elements are zero. Mainly, for this reason, to cope with this nonnormal and censored

characteristic of the sample, the present study attempts the binary variable conversions in

spite of the information loss. Therefore, there is a trade-off between the benefits and the

disadvantages of the variable conversions (Fritsch and Lukas 2001; Laursen and Salter

2004, 2006; Berchicci 2013; Robin and Schubert 2013).

Specifically, many studies reported data transformation before applying nonparametric

regression models to the samples (e.g., (1) Logarithmic data transformation: Mairesse and

Mohnen 2002; Greene 2003; Laursen and Salter 2006; Berchicci 2013; Robin and Schubert

2013; (2) Binary-Logit data transformation: Fritsch and Lukas 2001; Laursen and Salter

2004). After these data transformations, the literature aforementioned applied
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nonparametric models (e.g., Logit, Poisson and Tobit regression models) to the trans-

formed samples (Mullahy 1986; Gujarati 1995; Winkelmann and Zimmermann 1995;

Fritsch and Lukas 2001; Mairesse and Mohnen 2002; Greene 2003; Laursen and Salter

2004; Laursen and Salter 2006; Berchicci 2013; Robin and Schubert 2013).

In evaluating the performance of technology innovation R&D programs, the number of

publication articles is regarded as one of the key short-term, technical output performance

factors accompanied with patent stocks. For this reason, SCI Publications (Y1 ? B1) is

included as one of the short-term, technical output variables of the present study. In

particular, the studies listed below used the number of academic articles published in

journals as one of the short-term, technical output variables for evaluating R&D perfor-

mance: Georghiou (1999), Osawa and Murakami (2002), Ruegg and Feller (2003), Lee and

Park (2005), Meng et al. (2006), Wang and Huang (2007), Eilat et al. (2008), Hsu and

Hsueh (2009), Thomas et al. (2011). In addition, the following studies analyzed the number

of patents registered in patents offices as one of the output variables for evaluating R&D

performance: Osawa and Murakami (2002), Revilla et al. (2003), Ruegg and Feller (2003),

Chen et al. (2004), Lee and Park (2005), Wang and Huang (2007), Eilat et al. (2008),

Hashimoto and Haneda (2008), Hsu and Hsueh (2009), Kim et al. (2009), Thomas et al.

(2011), Cullmann et al. (2012).

Meanwhile, in the variables selection stage, NTIS data availability was checked

beforehand and the core dataset closely related to GSP-level performance evaluation was

extracted for the sample preparation. Because data uploaded into the NTIS are examined

thoroughly, the reliability of the sample is regarded as fully verified.

B1i ¼
1 if Y1i [ 0;
0 otherwise

�
ð1Þ

B2i ¼
1 if Y2i [ 0;
0 otherwise

�
ð2Þ

B3i ¼
1 if Y3i [ 0;
0 otherwise

�
ð3Þ

B4i ¼
1 if Y4i [ 0;
0 otherwise

�
ð4Þ

B5i ¼
1 if Y5i [ 0;
0 otherwise

�
ð5Þ

Two external influence variables T1 and T2 are defined as Eq. (6) and Eq. (7),

respectively. First, T1 is a 4-level categorical variable. According to the institution type of

the ith observation, T1 has four distinct values, T1i = L (Large Company), T1i =

U (University), T1i = R (Research Laboratory) and T1i = S (SME). Next, the binary

variable T2 is defined as Eq. (7) in which T2 is classified into two separate values based on

the R&D collaboration type of the ith observation, T2i = 1 (R&D Collaboration) and

T2i = 0 (Single Institution R&D).

Specifically, X1 is the pure amount of government R&D subsidy, and institution type,

denoted by T1i = R, referred to government-funded research laboratory only. Meanwhile,

the four institution types can be categorized into two broader institution types a for-profit

(i.e., Large Company and SME) and not-for-profit (i.e., University and Research
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Laboratory). If only the ith observation reported R&D collaboration activities between the

two heterogeneous institution types conducted within itself, then T2i is equal to one.

T1i ¼

L if the ith observation by ‘Large Company’;
U if the ith observation by ‘University’;
R if the ith observation by ‘Research Laboratory’;
S otherwise ði.e.; ‘SME’Þ

8>><
>>:

ð6Þ

T2i ¼
1 if the ith observation by ‘R&D Collaboration’;
0 otherwiseði:e:; ‘Single Institution R&D’Þ

�
ð7Þ

Model (1) is a binary logistic regression model defined as Eq. (8), which explains the

binary response variable B1 with the three predictor variables X1, T1, and T2. Therefore,

Model (1) analyzes SCI Publications performance creation success-failure probability

response to changes in the R&D budget, types of institution, and R&D collaboration. As

verified in Sect. 4, statistically significant positive (?) correlations existed among the three

input variables X1, X2, and X3. Assuming that the multicollinearity problem could be

caused by including the three input variables together in the regression model, Model (1) is

established as a reduced model that contains only one representative input variable X1. In

the same manner of Model (1) in Eq. (8), Model (2) in Eq. (9) is defined to analyze the

relationship between the response variable B2 and the three predictor variables. For

interpretation purpose, Eq. (10) is derived from the Logit transformation formula in which

the logistic distribution link function is applied to the probability of B1i = 1 (i.e., SCI

Publications performance creation success probability p1i). Therefore, Eq. (10) becomes a

general linear regression model, and its response variable is the natural log-transformation

of the odds ratio of p1i.

�Model 1ð Þ : EðB1jX1; T1; T2Þ
¼ f ðX1; T1; T2Þ

¼ expðb0 þ b1X1 þ bT1T1 þ bT2T2Þ
1 þ expðb0 þ b1X1 þ bT1T1 þ bT2T2Þ

ð8Þ

�Model 2ð Þ : EðB2jX1; T1; T2Þ
¼ f ðX1; T1; T2Þ

¼ expðb0 þ b1X1 þ bT1T1 þ bT2T2Þ
1 þ expðb0 þ b1X1 þ bT1T1 þ bT2T2Þ

ð9Þ

lne
p1i

1 � p1i

� �
¼ b0 þ b1X1 þ bT1T1 þ bT2T2 ð10Þ

Because T1 is a 4-level categorical variable, Model (1) in Eq. (8) is converted to

Eq. (11) in practice based on the reference case and reference levels specified in Sect. 4. In

Eq. (11), T1 is replaced by three binary variables, T1U , T1R, and T1S where T1U , T1R, and

T1S correspond to the three institution types, University, Research Laboratory and SME,

respectively. In the same context, Eq. (10) is converted to Eq. (12). The T1 variable

applied conversion is commonly to from Model (2) to Model (5) explained afterwards.
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�Model 1ð Þ : EðB1jX1; T1U ; T1R; T1S; T2Þ
¼ f ðX1; T1U ; T1R; T1S; T2Þ

¼ expðb0 þ b1X1 þ bT1UT1U þ bT1RT1R þ bT1ST1S þ bT2T2Þ
1 þ expðb0 þ b1X1 þ bT1UT1U þ bT1RT1R þ bT1ST1S þ bT2T2Þ

ð11Þ

lne

p1i

1 � p1i

� �
¼ b0 þ b1X1 þ bT1UT1U þ bT1RT1R þ bT1ST1S þ bT2T2 ð12Þ

According to the chain structure of the research model as depicted in Fig. 1, a series of

three additional successive binary logistic regression models are developed from Model (3)

in Eq. (13) to Model (5) in Eq. (15). As seen, Model (3) in Eq. (13) analyzes the rela-

tionship between the response variable B3 (i.e., Technology Transfer performance creation

success-failure binary variable) and two predictor variables, B1 and B2. Likewise, Model

(4) in Eq. (14) carries out further investigation on the relationship between the response

variable B4 and another predictor variable B3. Finally, Model (5) in Eq. (15) is regarded as

a fully extended model that relates the New Employment performance creation success-

failure binary variable B5 located at the end of the research model to the remaining four

binary performance predictor variables positioned ahead (i.e., B1, B2, B3 and B4).

�Model 3ð Þ : EðB3jX1; T1; T2; B1; B2Þ
¼ f ðX1; T1; T2; B1; B2Þ

¼ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1 þ bB2B2Þ
1 þ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1 þ bB2B2Þ

ð13Þ

�Model 4ð Þ : EðB4jX1; T1; T2; B1; B2; B3Þ
¼ f ðX1; T1; T2; B1; B2; B3Þ

¼ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1 þ bB2B2 þ bB3B3Þ
1 þ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1 þ bB2B2 þ bB3B3Þ

ð14Þ

�Model 5ð Þ : EðB5jX1; T1; T2; B1; B2; B3; B4Þ
¼ f ðX1; T1; T2; B1; B2; B3; B4Þ

¼ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1 þ bB2B2 þ bB3B3 þ bB4B4Þ
1 þ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1 þ bB2B2 þ bB3B3 þ bB4B4Þ

ð15Þ

Based on the theoretical background found in the literature, the following four

hypotheses are proposed to answer the three aforementioned research questions.

Hypothesis 1 A positive (?) correlation exists between the input variables.

Hypothesis 2 A positive (?) correlation exists between the input and performance

variables, but the correlation strength reduces gradually as the position of each perfor-

mance variable moves forward along with the research model chain path from the short-

term, technical outputs, to the long-term, socioeconomic impacts, via the mid-term, eco-

nomic outcomes.
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Hypothesis 3 A positive (?) correlation exists between the previous and subsequent

performance variables.

Hypothesis 4 A performance difference exists between institution types and between

R&D collaboration types.

Hypothesis 4.1 For-profit institutions obtain higher performance creation success prob-

ability in the mid-term, economic outcomes. Not-for-profit institutions obtain higher per-

formance creation success probability in the short-term, technical outputs.

Hypothesis 4.2 Compared to single institution R&D, R&D collaboration induces a

higher performance creation success probability.

Empirical analysis

Description of the sample

As mentioned, the sample analyzed in the present study is a set of completed GSPs within

two representative national technology innovation R&D programs administered by the

MSIP (i.e., formerly the MKE) with the Korean government, the Industry Convergence

Technology Development Program (ICTDP) and Global Expertise Technology Develop-

ment Program (GETDP), over the last five performance follow-up survey years

(2009–2013). Initially, the sample consisted of 2036 completed GSPs, which was divided

into two groups, such as 1627 ICTDP’s and 409 GETDP’s completed GSPs.

It is noted that some papers cope with the time lag very simply. For example, Berchicci

(2013) and Wang and Huang (2007) used the samples of R&D inputs and performance

with the 3-year time lag. Meanwhile, the present study used the sample with the time lag

statistics as follows: the mean = 57.29 months and the median = 54.00 months. Fur-

thermore, the sample of the present study was composed of completed GSPs so that the

performance data were gleaned for the duration from GSPs’ completion to the performance

follow-up survey year of 2013. Even though the completion years of each GSP were

slightly different, this sample can be regarded as properly considering the time lag between

R&D inputs and performance.

For the initial sample, the first data collection was conducted through the NTIS DBMS

provided by Korea Institute of S&T Evaluation and Planning (KISTEP). For the second

data investigation stage, the data obtained from the NTIS DBMS were verified and missing

data from the first data collection stage were gleaned using the eR&D DBMS operated by

the Korea Evaluation Institute of Industrial Technology (KEIT). After the two stages, 1314

completed GSPs of ICTDP and 226 completed GSPs of GETDP, for a total of 1540

completed GSPs were prepared, which was 75.6 % of the initial sample. The third online

survey was carried out to verify the data reliability associated with the technology transfer

royalty and sales. Consequently, the sample of n = 929 completed GSPs (i.e., 45.6 % of

the initial sample) was prepared and consisted of 841 completed GSPs from ICTDP and 88

completed GSPs from GETDP.

Table 1 shows the descriptive statistics of the sample. As seen, the five continuous

performance variables, Y1, Y2, Y3, Y4, and Y5, are severely skewed to the right, respec-

tively. For example, even if Y2 has the smallest coefficient of variation (CoefVar), its

CoefVar is equal to 2.48. With respect to the five continuous performance variables, the

number of observations with a value greater than zero (i.e., the number of observations
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achieving performance) are as follows: (1) the two short-term, technical output variables,

Y1, 456 (456/929 9 100 = 49 %) and Y2, 428 (46 %), (2) the two mid-term, economic

outcome variables, Y3, 259 (28 %) and Y4, 182 (20 %) and (3) the socioeconomic impact

variable, Y5 143 (15 %). Here, an interesting phenomenon is found that the number of

observations achieving performance decreases monotonically when the position of each

performance variable moves forward along with the research model chain path from the

starting to ending points. These proportions exactly coincide with the means of the five

binary variables, B1, B2, B3, B4 and B5 (mean = 0.49, 0.46, 0.28, 0.20, and 0.15,

respectively). Again, the inherent scarcity of observations achieving performance can be

confirmed because the medians of these five continuous performance variables are zero. In

preparing the sample, the exchange rate of 1000 Won/$1 USD was applied to the raw data

to convert monetary units, and Y3 was defined as the number of completed GSPs generated

with a technology transfer royalty greater than zero.

Table 1 Descriptive statistics of the sample

Variable Name Type Unit and count
(%)

Mean StDev CoefVar Median Max

R&D budget X1 Continuous (US$ 106) 2.69 3.15 1.17 1.50 26.46

R&D period X2 Continuous (Years) 3.63 1.40 0.38 3.00 10.00

R&D workforce X3 Continuous (Man-Years) 6.52 6.57 1.01 4.40 54.80

SCI publications Y1 Continuous 3.23 8.71 2.69 0.00 159.00

Patent registration Y2 Continuous 3.17 7.84 2.48 0.00 130.00

Technology
transfer

Y3 Continuous 0.90 2.76 3.08 0.00 30.00

Sales Y4 Continuous (US$ 106) 0.72 7.13 9.97 0.00 195.34

New employment Y5 Continuous 2.05 10.04 4.91 0.00 203.00

Institution type T1 Multinomial

L 81 (8.72 %)

U 179 (19.27 %)

R 314 (33.80 %)

S 355 (38.21 %)

Total 929
(100.00 %)

R&D
collaboration
type

T2 Binary 0.47

Binary conversion
of Y1

B1 Binary 0.49

Binary conversion
of Y2

B2 Binary 0.46

Binary conversion
of Y3

B3 Binary 0.28

Binary conversion
of Y4

B4 Binary 0.20

Binary conversion
of Y5

B5 Binary 0.15

L large company, U university, R research laboratory, S SME
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Regarding the external influence variable T1, the sample composition proportions are as

follows: (1) T1 = L, 81 (81/929 9 100 = 8.72 %); (2) T1 = U, 179 (19.27 %); (3)

T1 = R, 314 (33.80 %); and (4) T1 = S, 355 (38.21 %). Hence, 436 observations

(46.93 %) were conducted among for-profit institutions (i.e., Large Company and SME),

and 493 observations (53.07 %) were carried out among not-for-profit institutions (i.e.,

University and Research Laboratory). The two types of institutions are proportionate to

each other. The external influence variable T2 has Mean = 441/929 = 0.47. Hence,

among the sample of n = 929 observations, R&D collaboration is observed within 441

GSPs while the other 488 GSPs are conducted using single institution R&D (i.e., T2 = 0).

Frequency analysis

Prior to analyzing the series of successive binary logistic regression models discussed later,

a preliminary frequency analysis on the sample is necessary. A relevant frequency analysis

can provide insight and guidance to build an organized and systematic regression analysis

framework. Table 2 summarizes the sample frequencies classified by the two performance

creation success-failure binary variables B1 and B2, respectively. Table 2 reveals that the

reduction patterns of observations achieving the performance are quite different in each

case. For example, among 428 observations satisfying the condition of B2 = 1, 151 (151/

428 9 100 = 35 %) observations obtain B3 = 1, and 277 (65 %) observations obtain

B3 = 0. Among 501 observations that satisfied the condition of B2 = 0, 108 (108/

501 9 100 = 22 %) observations obtain B3 = 1 but 393 (78 %) observations obtain

B3 = 0. It is expected that an observation with Patent Registration performance creation

success is more likely to achieve Technology Transfer performance that is placed

immediately after Patent Registration in the research model (i.e., 35[ 22 %).

By stepping down one layer, among 151 observations satisfying the condition of

(B2 = 1 and B3 = 1), 50 (50/151 9 100 = 33 %) observations obtain B4 = 1, and 101

(67 %) observations obtain B4 = 0. Further, among 277 observations satisfying the con-

dition of (B2 = 1 and B3 = 0), 46 (46/277 9 100 = 17 %) observations obtain B4 = 1,

and 231 (83 %) observations obtain B4 = 0. Similarly, compared to observations that

achieves Patent Registration performance only, those that achieves both Patent Registra-

tion and Technology Transfer performance show a higher probability for Sales perfor-

mance creation success that is located immediately after the two previous performance

factors (i.e., 33[ 17 %).

The following case may be the most notable illustration showing the relationship

between the two directly connected performance factors. Fifty observations satisfy the

conditions of B2 = 1, B3 = 1, and B4 = 1. Among them, 35 (35/50 9 100 = 70 %)

observations obtain B5 = 1, which outnumbers the opposite group of 15 observations that

obtain B5 = 0. On the contrary, among 101 observations that satisfy the conditions of

B2 = 1, B3 = 1, and B4 = 0, 3 (3/101 9 100 = 3 %) observations obtain B5 = 1, and 98

(97 %) observations obtain with B5 = 0. It is noted that the key prerequisite for New

Employment performance creation success could be generating Sales (i.e., 70[ 3 %).

From the frequency analysis, it can be anticipated that two directly connected performance

factors in the research model would have a strong positive (?) relationship with each other.

In other words, the successor performance creation can be dependent on whether the

predecessor performance is created.
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(r 3 c) Contingency table

Table 3 supplements the interpretation on the frequency analysis above by providing accom-

panying statistical significance. In particular, Table 3 is a contingency table in which each value

ofB2 is arranged for the stratum, and two values ofB3 andB4 are decomposed into the row levels

(r = 2) and column levels (c = 2), respectively. Referring to the case of Table 3b with the

stratum of B2 = 1, two test statistics, Pearson Chi-Sq (v2) = 15.303 and Likelihood Ratio

v2 = 14.809 have P values of 0.000***; the v2 independence test for null hypothesis can be

rejected. A strong interaction exists between B3 and B4; therefore, it can be concluded that

the B4 column frequencies significantly depend on the two values of B3. In Table 3, *, ** and
*** indicate statistical significance at the significance level a = 10, 5 and 1 %, respectively.

Table 2 Contingency table of the sample based on the performance creation

B1 B2

B1 = 0 473 B2 = 0 501

B3 = 0 348 B3 = 0 393

B4 = 0 280 B4 = 0 338

B5 = 0 271 B5 = 0 328

B5 = 1 9 B5 = 1 10

B4 = 1 68 B4 = 1 55

B5 = 0 18 B5 = 0 19

B5 = 1 50 B5 = 1 36

B3 = 1 125 B3 = 1 108

B4 = 0 82 B4 = 0 77

B5 = 0 79 B5 = 0 74

B5 = 1 3 B5 = 1 3

B4 = 1 43 B4 = 1 31

B5 = 0 19 B5 = 0 14

B5 = 1 24 B5 = 1 17

B1 = 1 456 B2 = 1 428

B3 = 0 322 B3 = 0 277

B4 = 0 289 B4 = 0 231

B5 = 0 284 B5 = 0 227

B5 = 1 5 B5 = 1 4

B4 = 1 33 B4 = 1 46

B5 = 0 12 B5 = 0 11

B5 = 1 21 B5 = 1 35

B3 = 1 134 B3 = 1 151

B4 = 0 96 B4 = 0 101

B5 = 0 93 B5 = 0 98

B5 = 1 3 B5 = 1 3

B4 = 1 38 B4 = 1 50

B5 = 0 10 B5 = 0 15

B5 = 1 28 B5 = 1 35

Total 929 Total 929
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Additionally, compared to the stratum of B2 = 0 in Table 3a, that of B2 = 1 in

Table 3b shows the larger proportion for B3 = 1. Furthermore, confined within Table 3b,

the proportion of B4 = 1 in the case of (B2 = 1, B3 = 1) is larger than the corresponding

value in the case of (B2 = 1, B3 = 0). It is difficult to confirm the statistical significance

on this proportion difference. In this context, it is necessary to analyze the sample sys-

tematically using a series of successive binary logistic regression models discussed below

to understand the overall structural relationship among R&D inputs, performance, and

external influence variables simultaneously associated with statistical significance.

R&D input and performance variables’ correlation analysis

When a correlation exists among the R&D input variables X1, X2 and X3, the multi-

collinearity impairs the precision of the estimated regression coefficients as a whole. When

a full model including all these input variables together is estimated, the standard errors of

the estimated regression coefficients usually tend to be inflated drastically. Therefore, the

stability of the estimated regression models cannot be ensured. In a general linear

regression analysis, the degree of multicollinearity can be measured by Variance Inflation

Factor (VIF). Because of the nonparametric characteristics in the present study, three kinds

of correlation coefficients among the input variables are scrutinized, including the para-

metric Pearson’s r and the nonparametric Kendall’s sB and Spearman’s qs (Table 4). As

seen in Table 4, strong correlations exist among these input variables, as expected. In

particular, the largest correlation coefficients are found between X1 and X3, and all nine

correlation coefficients in Table 4 have their own P values at 0.000***. Therefore,

Hypothesis 1 is accepted. Hereafter, assuming that X1 is a representative input variable, a

reduced model is analyzed associated with the input variable X1 only.

On the whole, most of correlation coefficients are positive (?) with statistical signifi-

cance between R&D input variables and between performance variables. Additionally,

between R&D input variables and performance variables, the majority of correlation

coefficients are positive (?) accompanied with statistical significance. For a few instances

only, negative (-) correlations are found between Y1 and Y4, Y5 and between X2 and Y4,

Y5. In Sect. 4.5.5, it is confirmed again that the binary variable of SCI Publications is not

significant to the three response variables B3, B4 and B5.

Table 3 v2 independence tests
on the contingency table

*, **, *** indicate statistical
significance at the significance
level a = 10, 5, 1 %,
respectively

B4 = 0 B4 = 1 Total Proportion (%)

(a) B2 = 0

B3 = 0 338 55 393 78

B3 = 1 77 31 108 22

Total 415 86 501 100

Pearson v2 = 12.890, DF = 1, P = 0.000***

Likelihood ratio v2 = 11.705, DF = 1, P = 0.001***

(b) B2 = 1

B3 = 0 231 46 277 65

B3 = 1 101 50 151 35

Total 332 96 428 100

Pearson v2 = 15.303, DF = 1, P = 0.000***

Likelihood ratio v2 = 14.809, DF = 1, P = 0.000***
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Table 4 Correlation coefficients of R&D input and performance variables

X1 X2 X3 Y1 Y2 Y3 Y4

X2 Pearson’s r
(P value)

0.146
(0.000***)

Kendall’s sB
(P value)

0.122
(0.000***)

Spearman’s
qs

(P value)

0.166
(0.000***)

X3 0.640
(0.000***)

0.120
(0.000***)

0.458
(0.000***)

0.124
(0.000***)

0.631
(0.000***)

0.170
(0.000***)

Y1 0.176
(0.000***)

0.226
(0.000***)

0.315
(0.000***)

0.207
(0.000***)

0.314
(0.000***)

0.287
(0.000***)

0.278
(0.000***)

0.392
(0.000***)

0.380
(0.000***)

Y2 0.429
(0.000***)

0.147
(0.000***)

0.436
(0.000***)

0.229
(0.000***)

0.228
(0.000***)

0.172
(0.000***)

0.305
(0.000***)

0.333
(0.000***)

0.302
(0.000***)

0.218
(0.000***)

0.399
(0.000***)

0.406
(0.000***)

Y3 0.387
(0.000***)

0.073
(0.025**)

0.389
(0.000***)

0.022
(0.496)

0.309
(0.000***)

0.173
(0.000***)

-0.034
(0.215)

0.182
(0.000***)

0.056
(0.046**)

0.196
(0.000***)

0.223
(0.000***)

-0.041
(0.213)

0.231 0.066 0.225

(0.000***) (0.045**) (0.000***)

Y4 0.036
(0.273)

-0.040
(0.221)

0.091
(0.006***)

-0.016
(0.617)

0.039
(0.237)

0.047
(0.152)

0.035
(0.174)

-0.194
(0.000***)

0.009
(0.724)

-0.103
(0.000***)

0.063
(0.027**)

0.187
(0.000***)

0.045
(0.170)

-0.233
(0.000***)

0.012
(0.716)

-0.120
(0.000***)

0.072
(0.028**)

0.205
(0.000***)

Y5 0.084
(0.010***)

-0.085
(0.010***)

0.053
(0.104**)

-0.036
(0.268)

0.033
(0.312)

0.075
(0.023**)

0.156
(0.000***)

0.017
(0.514)

-0.165
(0.000***)

0.007
(0.791)

-0.074
(0.010***)

0.062
(0.030**)

0.122
(0.000***)

0.667
(0.000***)

0.022
(0.507)

-0.197
(0.000***)

0.009
(0.790)

-0.085
(0.009***)

0.070
(0.032**)

0.132
(0.000***)

0.715
(0.000***)
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Logistic regression analysis

Model structure

Table 5 shows the primary results obtained from analyzing Model (1). In Table 5, the case

of the response variable B1 = 1 is defined as the reference case. As for the two external

influence variables, the levels of T1 = L and T2 = 0 are defined as the reference levels.

The main results from Model (2) to Model (5) are summarized in Tables 6, 7, 8 and 9,

respectively. Hereafter, a more detailed explanation is provided on the results of Model (1)

in Table 5, and then only the unique and complementary contents listed in the remaining

tables are discussed additionally.

Model diagnosis

Regarding Model (1) with a total of five predictor variables, the null hypothesis Eq. (16)

and the alternative hypothesis Eq. (17) are established to test the model significance. In

contrast to Model (1), the null hypothesis model including only the intercept term could be

estimated. In the likelihood ratio test, the deviance difference between Model (1) and the

null hypothesis model is calculated as v2 ¼ DFitted ð1Þ � DNull ¼ 213:253, and P = 0.000***

where DFitted ð1Þ and DNull denote the deviance of Model (1) and the null hypothesis model,

respectively. Hence, Eq. (17) is accepted, and Model (1) is significance as a whole.

H0 : b1 ¼ bT1U ¼ bT1R ¼ bT1S ¼ bT2 ¼ 0 ð16Þ

H1 : bi 6¼ 0 for at least one i ði ¼ 1; T1U ; T1R; T1S; T2Þ ð17Þ

In addition to the basic likelihood ratio test, three v2 goodness of fit test statistics are

provided based on Pearson, Deviance, and Hosmer–Lemeshow. Among them, two v2

goodness of fit test statistics, calculated using the Pearson and Deviance methods, have

P values of less than 0.01, which implies that Model (1) is a sufficient fit for the sample.

Figure 2a illustrates the diagnostic plot showing of the Delta v2 (Dv2) versus the pre-

dicted probability to pinpoint ill-fitted observations in Model (1). For example, the

observation with the worst (i.e., the largest) Dv2 = 27.321 has the highest predicted

probability = 0.964. By scrutinizing the sample, this worst observation includes raw data,

such as X1 = 20.90 and T1 = R. Considering the X1 mean = 2.69 and median = 1.50,

this observation consumes a comparably large amount of X1. However, it fails to achieve

SCI Publications performance. Consequently, even though some observations of the

sample spend a relatively large amount of R&D inputs, they fails to achieve any perfor-

mance at all, which can be one reason for the ill-fit.

In the range greater than the predicted probability of 0.5 in Fig. 2a, a group of obser-

vations is noticed as existing in the top-right upward trajectory, which shows exponential

increases in Dv2. These observations can be interpreted as SCI Publications performance

creation failures having their own B1 = 0, in spite of relatively higher predicted proba-

bilities likely derived from relatively larger R&D inputs. On the other hand, in the range of

less than or equal to the predicted probability of 0.5, as seen in Fig. 2a, a group of

observations also forms a top-left upward trajectory with an exponentially increasing Dv2.

These observations can be regarded as SCI Publications performance creation successes

having their own B1 = 1 in spite of relatively lower predicted probabilities affected by

smaller R&D inputs. For example, the observation with the minimum predicted
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probability = 0.182 and Dv2 = 4.515 includes raw data such as X1 = 0.34 and

T1 = S. Considering the two central measures of X1, this observation consumes a rela-

tively small amount of X1; however, in practice, it achieves SCI Publications performance.

Scanning down the diagnostic plots from Fig. 2a–e, an interesting movement of the Dv2

trajectory is detected. As illustrated, the top-right upward trajectory diminishes, and the

top-left upward trajectory becomes clearly notable. In summary, despite the high predicted

probability, some observations fail to create the short-term, technical output performance.

On the contrary, overcoming the low predicted probability, multiple observations succeed

in creating not only the economic outcomes, but also the socioeconomic impact

performance.

Three measures of association of Model (1) are calculated to examine the prediction

capability: (1) Somer’s D = 0.55, (2) Goodman–Kruskal c = 0.55, and (3) Kendall’s

sA = 0.28. Practically, these measures of association can be referred to in the comparisons

with the remaining four models [Model (2) to Model (5)]. In Model (1), all three measures

Fig. 2 Delta v2 versus predicted probability diagnostic plots
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of association are greater than the corresponding values of the other three models from

Model (2) to Model (4); therefore, the prediction capability of Model (1) is excellent. As

comprehensively explained in Table 10, the predictor variable X1 in Model (1) has the

largest absolute value of the estimated coefficient and the strongest statistical significance

compared to the X1 s from Model (2) to Model (5). This may contribute to the superior

prediction capability of Model (1). It also meets the expectation that SCI Publications

performance creation success probability could be explained better by the predictor vari-

able X1 because SCI Publications, a short-term, technical output performance, is placed

closest to the R&D inputs in the research model. Besides Model (1), Model (5) also has

relatively larger measures of association, including Somer’s D = 0.85 and Goodman–

Kruskal c = 0.86. In the comparisons of measures of association, Model (1) and Model (5)

are superior to the other three models from the prediction perspective.

Among the 215,688 (=456 9 473) pairs of (success, failure) observations, the number

of concordant pairs (166,882; 77.4 %) is larger than the number of discordant pairs

(48,084, 22.3 %). In this binary logistic regression analysis, the concordant pair indicates

the pair with the predicted probability of the success observation is larger than the pre-

dicted probability of the failure observation. Inversely, the discordant pair is defined as the

pair whose predicted probability of the failure observation is higher than that of the success

observation. In terms of the concordant and discordant pair counts, Model (1) gains good

Table 10 Summary of significant predictor variables in Model (1)–Model (5)

Expected
Sign

Model (1) Model (2) Model (3) Model (4) Model (5)
Eq. (8) Eq. (9) Eq. (13) Eq. (14) Eq. (15)

Response variable B1 B2 B3 B4 B5

Predictor variable (factor
level)

(?) X1 X1 X1 X1

Coefficient (?) 0.179 (?) 0.153 (?) 0.095 (?) 0.092

(P value) (0.000***) (0.000***) (0.000***) (0.001***)

(?) B2 B2 B2

(?) 0.658 (?) 0.699 (?) 0.541

(0.000***) (0.000***) (0.072*)

(?) B3

(?) 0.968

(0.000***)

(?) B4

(?) 4.123

(0.000***)

(?) or (-) T1 (U) T1 (U) T1 (U)

(?) 1.489 (?) 1.057 (-) 1.126

(0.000***) (0.000***) (0.002***)

T1 (S) T1 (S)

(-) 0.894 (?) 1.419

(0.001***) (0.000***)

(?) T2 T2

(?) 0.314 (?) 0.278

(0.036**) (0.079*)

Scientometrics (2015) 105:1399–1439 1427

123



predictive power on the probability for B1. Among the five models, Model (5) has the

largest proportion of concordant pairs (99.2 %) and Model (1) has the second largest

proportion (77.4 %). The other three models retain similar quantities, 69.4, 68.1, 75.0 %,

respectively. Therefore, Model (5) and Model (1) show better prediction capabilities,

which also agrees with the interpretation of the measures of association.

Model estimation (1): input versus performance

As shown in Table 5, X1 is a statistically significant predictor variable in Model (1) with a

positive (?) estimated coefficient b̂1 ¼ 0:179 and P = 0.000***. Based on the odds ratio

exp(b̂1) = 1.20, we interpret that SCI Publications performance creation success proba-

bility odds ratio increases 1.20-fold with 1 unit increment in X1. Meanwhile, it is known

that changes in the odds ratio increase when the probability of success is closer to 0.5

(Hosmer and Lemeshow 2000; Montgomery et al. 2001; Minitab 2005; IBM SPSS 2009).

Table 7 details the results from the binary logistic regression analysis on Model (3). As

seen, compared to Model (1), Model (3) has an extended structure that includes a total of

seven predictor variables in which the two response variables of Model (1) and Model (2)

(i.e., B1 and B2) are inserted as additional predictor variables to verify the relationship

between the successor performance B3 and the two directly connected predecessor per-

formance B1 and B2. The case of the response variable B3 = 1 is defined as the reference

case (Table 7). Likewise, Table 7 shows that the levels of T1 = L and T2 = 0 are the

reference levels. Furthermore, for the two newly added predictor variables, reference levels

are defined as B1 = 0 and B2 = 0. In Table 7, X1 is also a statistically significant predictor

variable in Model (3), which has a positive (?) estimated coefficient b̂1 ¼ 0:095 and

P = 0.000***. The odds ratio is exp(b̂1) = 1.10. An interesting point is that changes of the

estimated coefficients of X1 are (?) 0.179*** ? (?) 0.153*** ? (?) 0.095*** ? (?)

0.092*** ? (?) 0.010 through the successive model extension from Model (1) to Model

(5). As seen, all five estimated coefficients of X1 have positive signs (?) consistently, and

the absolute values decrease monotonically along with the successive model extension.

Finally, in Model (5), the estimated coefficient of X1 becomes statistically insignificant.

Therefore, a phenomenon is found that R&D inputs can exert their influence more on the

chronologically adjacent short-term, technical output performance factors such as B1 and

B2. Afterwards, against the mid-term, economic outcome performance factors such as B3

and B4, the influence decreases. Moreover, it is expected that it would not be easy for the

R&D inputs to demonstrate their influence in the long-term, socioeconomic impact per-

formance factor B5 located farthest. Therefore, Hypothesis 2 is accepted.

Model estimation (2): external influences

Table 5 presents three distinct estimated coefficients associated with T1 in Model (1),

except for the reference level T1 = L. The level T1 = U has a positive (?) estimated

coefficient, b̂T1U ¼ 1:489 and P = 0.000***, which is statistically significant to the

response variable B1. Because the level of T1 = U yields a positive (?) estimated coef-

ficient, the odds ratio exp(b̂T1U ) = 4.43 is larger than one. Thus, SCI Publications per-

formance creation success probability odds ratio increases 4.43-fold when the level of T1

changes from the reference level T1 = L to T1 = U. Next, the level of T1 = S has a

negative (-) estimated coefficient, b̂T1S ¼ �0:894 and P = 0.001***, which is statistically
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significant to the response variable B1. Because the level of T1 = S has a negative (-)

estimated coefficient, the odds ratio, exp(b̂T1S ) = 0.41 is less than one. Therefore, SCI

Publications performance creation success probability odds ratio decreases 0.41-fold by

changing the level of T1 from the reference level T1 = L to T1 = S. The decreasing

sequence of exp(b̂T1U ) = 4.43*** ? exp(b̂T1R ) = 1.25 ? exp(b̂T1S ) = 0.41*** implies

that SCI Publications performance creation success probability odds ratio decreases when

institution type changes from the not-for-profit to for-profit as follows: University

(1st) ? Research Laboratory (2nd) ? Large Company (3rd) ? SME (4th). Therefore,

SCI Publications performance creation success probability is sensitive to institution types.

Specifically, University shows the best, and SME the worst in SCI Publications perfor-

mance. The two other institution types (i.e., Research Laboratory and Large Company) are

located in between and are not statistically significantly different.

The results regarding T1, listed in Tables 5, 6, 7, 8 and 9 are also summarized in

Table 11. As for Model (2) in Table 6, three odds ratios are arranged as

exp(b̂T1U ) = 2.28*** ? exp(b̂T1R ) = 1.42 ? exp(b̂T1S ) = 0.73, which shows exactly the

same sequence as Model (1) in Table 5. Similarly, Patent Registration performance cre-

ation success probability odds ratio declines when institution type changes from the not-

for-profit to for-profit. Regarding the two response variables, B4 and B5 in Tables 8 and 9,

a completely opposite sequence is found. Because the odds ratios of T1 in Table 8 yield an

increasing sequence, exp(b̂T1U ) = 0.54 ? exp(b̂T1R ) = 0.62 ? exp(b̂T1S ) = 4.13***,

Sales performance creation success probability odds ratio also increases when institution

type changes from the not-for-profit to for-profit as follows: University (4th) ? Research

Laboratory (3rd) ? Large Company (2nd) ? SME (1st). Even though statistical signifi-

cances are not accompanied, the odds ratios of T1 in Table 9 can also be arranged as

exp(b̂T1R ) = 0.44 ? exp(b̂T1U ) = 0.48 ? exp(b̂T1S ) = 1.51 (i.e., Research Laboratory

(4th) ? University (3rd) ? Large Company (2nd) ? SME (1st)). Sales and New

Employment performance creation success probability odds ratio increases when institu-

tion type changes from research-oriented not-for-profit to commercialization-oriented for-

profit institutions. Therefore, Hypothesis 4.1 is partially accepted. Specifically, SME

performs best in the aspect of Sales. Meanwhile, University is excellent in the two per-

formance factors of SCI Publications and Patent Registration.

Second, T2 has a positive (?) estimated coefficient, b̂T2 = 0.314 and P = 0.036**

(Table 5), which is statistically significant to the response variable B1. Based on the odds

ratio exp(b̂T2) = 1.37, SCI Publications performance creation success probability odds

ratio increases 1.37-fold with the change from the reference level T2 = 0 to T1 = 1. As

seen in Tables 5, 6, 7, 8 and 9, the coefficients of T2 are estimated with a positive (?) sign

Table 11 Performance comparisons between institution types

Institution type T1 factor
level

SCI
publications

Patent
registration

Technology
transfer

Sales New
employment

B1 B2 B3 B4 B5

Large company L 3rd 3rd 3rd 2nd 2nd

University U 1st*** 1st*** 4th*** 4th 3rd

Research
laboratory

R 2nd 2nd 1st 3rd 4th

SME S 4th*** 4th 2nd 1st*** 1st
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consistently as (?) 0.314** ? (?) 0.202 ? (?) 0.278* ? (?) 0.097 ? (?) 0.227;

however, only two models yield statistical significance (i.e., Model (1) and (3)). For this

reason, external influences of R&D collaboration may be restricted within the boundary up

to the mid-term, economic outcome performance. Hence, Hypothesis 4.2 is also partially

accepted.

Model estimation (3): performance chain

This section presents a comprehensive investigation on how closely the time-ordered

previous and subsequent performance factors relate to one another. First, between the

response variable B3 and the two predictor variables B1 and B2 of Model (3) in Table 7,

only B2 has a positive (?) estimated coefficient, b̂B2 = 0.658 and P = 0.000***, and is

statistically significant to the response variable B3. Based on the odds ratio,

exp(b̂B2) = 1.93, Technology Transfer performance creation success probability odds ratio

increases 1.93-fold when an observation achieves Patent Registration performance in

advance. In particular, among a total of seven predictor variables in Model (3), B2 has the

largest odds ratio.

Second, Table 8 explains the relationship between the response variable B4 and three

predictor variables B1, B2 and B3 of Model (4). Among them, only two, B2 and B3, have

positive (?) estimated coefficients, b̂B2 = 0.699 and b̂B3 = 0.968 accompanied with

P = 0.000***. We can interpret this result that Sales performance creation success prob-

ability odds ratio increases 2.01-fold and 2.63-fold, respectively when an observation

achieves Patent Registration and Technology Transfer performance based on the two odds

ratios, exp(b̂B2) = 2.01 and exp(b̂B3) = 2.63. As a result, not only Patent Registration but

also Technology Transfer performance creation success can be crucial to enhancing Sales

performance creation success probability. In the comparison of the two odds ratios, it is

confirmed that B3 closer to B4 has a stronger relationship than does B2 indirectly con-

nected to B4.

Third, referring to Model (5) in Table 9, we identify that the two predictor variables of

B2 and B4 are statistically significant to the response variable of B5. Most notably, B4 has

the largest positive (?) estimated coefficient, b̂B4 = 4.123 with P = 0.000***. Based on

the odds ratio, exp(b̂B4) = 61.71, it can be anticipated that New Employment performance

creation success probability odds ratio increases as much as 61.71-fold when an obser-

vation achieves Sales performance. This finding implies that New Employment perfor-

mance creation success probability odds ratio increases drastically by achieving Sales

performance in advance. In the comparison with B4, B2 still survives as a significant

predictor variable against the response variable B5 even though both the absolute size of

the estimated coefficient and the statistical significance are weakened slightly. Specifically,

B2 has a positive (?) estimated coefficient, b̂B2 = 0.541 with P = 0.072*, and its odds

ratio is exp(b̂B2) = 1.72.

Table 10 provides a summary of significant predictor variables in the series of five suc-

cessive binary logistic regression models analyzed from Tables 5, 6, 7, 8 and 9. When we

navigate backward along with the research model shown in Fig. 1, the path of B5 / B4 /
B3 / B2 / X1 is clearly identified and statistically significant. Therefore, Hypothesis 3 is

accepted. Meantime, the binary variable of SCI Publications (B1) does not show any sta-

tistical significance in the three models from Model (3) to Model (5). It implies that the

influence of SCI Publications is relatively weaker compared with Patent Registration against
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the three subsequent performance factors B3, B4 and B5. Therefore, the factor of scientific

publications is more an indicator of scientific exploration than of commercialization, and the

influence of scientific publications on the economic growth can be indirect.

Sensitivity analyses: prediction models

Figure 3 presents a sensitivity analysis of the predicted probability for B2 = 1 based on

Model (2) in Table 6. The range of X1 is 0–20 (US$ 106), and the predicted probability is

calculated for the four distinct levels of T1. The key features displayed in Fig. 3 are as

follows. First, the predicted probability for Patent Registration performance creation

success shows a smooth S-shape nonlinear growth curve. Below the inflection point of X1,

around 10, the predicted probability increases sharply, and it changes rather slowly after

the inflection point. Second, as mentioned in the interpretation of the estimated coefficients

of T1, the level of T1 = U has the highest predicted probability for Patent Registration

performance creation success. On the other hand, the two for-profit institutions, denoted by

T1 = L and T1 = S, show relative lower predicted probabilities.

Two panels in Fig. 4 present another illustration in which the predicted probability for

B4 = 1 is displayed based on Model (4) in Table 8. Figure 4 reveals obviously contrasted

features against Fig. 3. First, in Fig. 4a, the predicted probability for Sales performance

creation success seems insensitive to changes in X1, which forms a slightly low slope linear

trend. Second, the curves in Fig. 4b shift upward compared with the corresponding curves

in Fig. 4a, which means that Sales performance creation success probability increases by

changing the institution type from T1 = U to T1 = S. Third, Sales performance creation

success probability is very sensitive to the performance of its two predecessors. In par-

ticular, an observation achieving Technology Transfer performance can expedite Sales

performance creation.

Fig. 3 Sensitivity analysis on the predicted probability of patent registration (B2) with the common
condition of T2 = 1
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Conclusions

A systematic framework has been emphasized to enhance the reliability of a national R&D

program performance evaluation. By using an appropriately designed framework, the

accountability of a R&D performance evaluation can be enhanced to plan subsequent R&D

programs and budget allocation in practice. Meanwhile, the applicability of a typical R&D

logic model that is taken for granted in public sector R&D performance evaluations and

Fig. 4 Sensitivity analysis on the predicted probability of sales (B4) with the common conditions of T2 = 1
and B1 = 1: a T1 = U, b T1 = S
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should be verified by examining the relationship among various R&D inputs, performance,

and external influence factors. It is also necessary to develop a well-organized model and

application procedure based on a typical R&D model.

The present study analyzed a sample of n = 929 completed GSPs during the last five

performance follow-up survey years (2009–2013) in representative national technology

innovation R&D programs administered by the Korean government. The main feature of

the present study was the series of five successive binary logistic regression models that

considered both the stepwise chain structure of the research model and the nonparametric

sample characteristics simultaneously. The two additional categorical and binary variables

were incorporated into the model and were associated with the external influences.

Major results of the present study are summarized as follows. First, strong positive (?)

correlations were found among the three R&D input variables from the parametric and

nonparametric perspectives. In particular, the correlation coefficients between X1 and X3

are larger than the other correlation coefficients as a whole. Second, the R&D input

variable X1 (i.e., R&D Budget) had the positive (?) estimated coefficients consistently

against all five response variables concerned in the present study. The absolute values of

these coefficients decreased monotonically along with the successive model extension.

Therefore, it can be pointed out that R&D inputs could exert their influence more on the

chronologically adjacent short-term, technical output performance factors. Afterwards,

against the mid-term, economic outcome performance factors, the R&D inputs’ influence

is diminishing gradually. Moreover, in the sensitivity analysis, we found that the predicted

probability for Patent Registration performance creation success showed a smooth S-shape

nonlinear growth curve as X1 increased. Third, a statistically significant relationship was

identified among the performance factors. This finding implies that the successor perfor-

mance creation can be very dependent on whether predecessor performance is achieved.

Specifically, the path of B5 / B4 / B3 / B2 / X1 was more clearly detected in the

research model shown in Fig. 1. Among the two short-term, technical output performance

factors, Patent Registration retained more connections with subsequent performance fac-

tors compared to SCI Publications. Fourth, as for the external influence variable T1, the

institution type of SME performed the best with respect to Sales performance. On the

contrary, University was excellent in both SCI Publications and Patent Registration.

Further, the external influence of R&D collaboration can be restricted within the boundary

up to the mid-term, economic outcome performance.

Based on the results summarized above, some policy implications can be proposed with

respect to R&D performance management. First, because of the strong relationship

between the two directly connected performance factors, we need to encourage a

sequential performance creation as much as possible to extend a GSP R&D performance

creation life cycle. Second, practitioners should carefully apply measures of efficiency that

can quantify the size of ratio of outputs over inputs to performance factors beyond the mid-

term, economic outcomes boundary, because the influence of R&D inputs is effective only

within that boundary. Third, considering the significant performance differences between

institution types and between R&D collaboration types, it is required to select perfor-

mance-oriented GSPs in building subsequent R&D programs. Specifically, it is required to

expedite R&D collaboration. An SME-friendly planning and deployment is also recom-

mended for national technology innovation R&D programs focusing on Sales performance

especially. The probability prediction models can also be used to pinpoint some benchmark

of GSPs that actually create performance in spite of a low predicted probability.

The present study did not consider other key R&D inputs, such as R&D capability and

accumulated R&D knowledge and experience owned by the institutions; therefore, these
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intangible R&D inputs should be reflected in a future modification of the research model.

Furthermore, ordinal logistic regression models can be incorporated into the successive

regression analysis procedure to reflect more finely categorized values of the five R&D

performance variables.

Appendix

In Sect. 4.5.5, the binary variable of SCI Publications (i.e., B1) does not obtain any

statistical significance in the three subsequent models from Model (3) to Model (5). It

implies that the influence of SCI Publications is relatively weaker compared with Patent

Registration to the three subsequent performance factors B3, B4 and B5.

Now, it is necessary to see if there is an indirect influence of scientific publications. For

this, the original research model in Fig. 1 is modified as Fig. 5 shown below. In Fig. 5, the

arc linking between SCI Publications (B1) and Technology Transfer (B3) is disconnected,

and a new arc is added to connect between SCI Publications (B1) and Patent Registration

(B2) in order to verify the relationship between scientific publications and patent stocks. To

verify the relationship between scientific publications and patent stocks, it is needed to

modify Model (2). Equation (18) is the modified model, Model (2)-Modified, where a new

predictor variable B1 is newly added.

�Model 2ð Þ�Modified: EðB2jX1; T1; T2; B1Þ
¼ f ðX1; T1; T2; B1Þ

¼ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1Þ
1 þ expðb0 þ b1X1 þ bT1T1 þ bT2T2 þ bB1B1Þ

ð18Þ

Table 12 shows the results from the binary logistic regression analysis with Model (2)-

Modified. Between the response variable B2 and the predictor variables B1 in Model (2)-

Modified, B1 has a positive (?) estimated coefficient, b̂B1 ¼ 0:778 and P = 0.000***, and

is statistically significant to the response variable B2. Also, based on the odds ratio,

exp(b̂B1) = 2.18, Patent Registration performance creation success probability odds ratio

increases 2.18-fold when an observation achieves SCI Publications performance in

advance. Therefore, there is a strong relationship between the two technical output factors,

Fig. 5 A modified research model for verifying an indirect influence of SCI publications (Y1 ? B1)
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which implies that scientific publications can exert their influences indirectly on the mid-

term, economic outcomes via patent stocks beforehand.
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