
A decade of research in statistics: a topic model approach

Francesca De Battisti • Alfio Ferrara • Silvia Salini

Received: 19 May 2014 / Published online: 12 March 2015
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Abstract Topic models are a well known clustering approach for textual data, which

provides promising applications in the bibliometric context for the purpose of discovering

scientific topics and trends in a corpus of scientific publications. However, topic models

per se provide poorly descriptive metadata featuring the discovered clusters of publications

and they are not related to the other important metadata usually available with publications,

such as authors affiliation, publication venue, and publication year. In this paper, we

propose a methodological approach to topic modeling and post-processing of topic models

results to the end of describing in depth a field of research over time. In particular, we work

on a selection of publications from the international statistical literature, we propose an

approach that allows us to identify sophisticated topic descriptors, and we analyze the links

between topics and their temporal evolution.

Keywords Probabilistic topic models � Scientometrics � Clustering � Text mining

Introduction

The statistical literature has remarkably changed in recent years. Many authors studied this

evolution, with different approaches. For example, (Genest 1997, 1999) analyzed respec-

tively sixteen international journals publishing statistical theories during the period

1985–1995 and eighteen international journals, half of which are specialized in probability

theory and the other half in statistics during the period 1986–1995. Papers, authors, and
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adjusted page counts yield measures of productivity for institutions and countries that con-

tributed to fundamental research in statistics and probability during that period. Genest (2002)

updated the previous works on world research output in probability and statistics collecting

data until 2000. The data provide valuable information on the evolution of publication habits,

in terms of the volume of research, the length of papers, co-authorship practices.

Schell (2010) suggested that dissemination of ideas from theory to practice is a sig-

nificant challenge in statistics; therefore quick identification of articles useful to practi-

tioners would greatly assist in this dissemination, thereby improving science. For this

purpose, he studied and used the citation count history of articles to identify key papers for

applied biostatisticians that appeared between 1985 and 1992 in 12 statistics journals.

Stigler (1994) studied the use of citation data to investigate the role that statistics journals

play in communication within that field and between statistics and other fields. The study

looks at citations as import-export statistics reflecting intellectual influence. Ryan and

Woodall (2005) attempted to identify the 25 most-cited statistical papers, providing some

brief commentary on each paper on their list. This list consists, to a great extent, of papers

that are on non-parametric methods, have applications in the life sciences, or deal with the

multiple comparisons problem. They also briefly discussed some of the issues involved in

the use of citation counts.

In this paper we investigate a decade of research in statistics with a topic model

approach. Through the topic model algorithms, applied to our data, with a suitably pre-

liminary cleaning, we identify the most relevant topics in statistical literature between 2000

and 2010, obviously according to the three journals considered, and we describe them,

associating keywords and publication venue, authors affiliation countries, and year. We

also study the citation distribution by topic. Lastly, we show the topic evolution, an

innovative approach to investigate the issue, and the mutual relations among them.

Specifically, we have implemented two different approaches: (1) in order to study topic

nowadays, we have identified topics by working on the whole corpus of papers; (2) in order

to study topic evolution, we have analyzed topics that can be found by taking into account

only the papers produced year by year; in the latter case we were dealing with 11 different

corpora and we have generated a set of topics for each corpus independently.

In addition, in this context, we will analyze a posteriori the topic characteristics as-

signing to them bibliometric indices, based on citations as well as the typical descriptors of

the papers that compose them. Thus, within the same subject category, it is possible to

identify topics with a different impact.

The paper is organized as follows: in ‘‘The corpus of publications data’’ section , we

describe the collected data. ‘‘Probabilistic topic models as bibliographic descriptors’’

section is devoted to describe probabilistic topic models. In ‘‘Current topics’’ and ‘‘Topic

evolution’’ sections we present the results obtained with the ‘‘topic nowadays’’ and with

the ‘‘topic evolution’’ approaches, respectively. In ‘‘Conclusions’’ section we give our

concluding remarks.

The corpus of publications data

In this work, we consider papers published between 2000 and 2010 in one of the following

journals:

– The Annals of Statistics (Ann. Stat.)

– Journal of the American Statistical Association (JASA)
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– Journal of the Royal Statistical Society. Series B (JRSS(B))

Data were collected in June 2013 and stored in our bibliometric database, which is de-

signed according to the model presented in Ferrara and Salini (2012). Since our goal is to

identify methodological innovations in statistics that have marked the history of statistical

research in the last years, we have chosen three journals that are universally known to

publish contributions of methodological and foundational innovation in statistics. The three

journals are all in the top decile of Statistics & Probability according to the various

bibliometric indices (IF, 5year-IF, Eigenfactor score, etc.). Moreover they have a long

tradition of publishing works that are at the leading edge of methodological development,

with a strong emphasis on relevance to statistical practice. For these three journals, we

create a reference corpus which is used for all the analysis activities that are described in

the rest of the paper. The corpus is created by collecting, for each paper in the journals, the

metadata concerning authors and their countries of affiliation, title and abstract, year of

publication, and the number of citations received by the paper. The paper titles and

abstracts, in particular, will be used in order to extract relevant keywords and linguistic

information from the corpus papers.

In Table 1, we show the distribution of papers and citations per year of the three

selected journals resulting from Web of Science. It can be noted that JASA is the journal

with the highest number of paper published. The number of papers published in time

increases for The Annals of Statistics but remains constant for the other two journals. We

note that in the table the citations refer to papers and not to authors. For example, 3536

represents the number of citations in June 2013 from Web of Science to papers published

in The Annals of Statistics in the year 2000. Obviously the average number of citations is

decreasing with time. Indeed, the citations for more recent papers are lower than for older

papers, as we expect.

In Table 2, we show the distribution of papers by country of affiliation and journal. In

this case, if two authors of the same paper come from two different countries, the citations

are counted two times. Therefore the total number of citations of the previous table is lower

than the total number of citations in this table. An author from the United States of

Table 1 Distribution of papers per year and journal

Year Ann. Stat. JASA JRSS(B)

Papers Cit. Mean Papers Cit. Mean Papers Cit. Mean

2000 72 3536 49.11 136 4509 33.15 52 2558 49.19

2001 67 4134 61.70 116 6577 56.70 48 2655 55.31

2002 68 1879 27.63 120 5210 43.42 52 5928 114.00

2003 84 2155 25.65 99 2570 25.96 56 1740 31.07

2004 99 4309 43.53 107 4131 38.61 57 1973 34.61

2005 98 2091 21.34 116 3378 29.12 41 1907 46.51

2006 109 2274 20.86 137 3658 26.70 42 1616 38.48

2007 112 2183 19.49 141 2323 16.48 45 1122 24.93

2008 107 2070 19.35 166 2033 12.25 51 1080 21.18

2009 147 2112 14.37 168 1172 6.98 47 639 13.60

2010 126 920 7.30 149 649 4.36 25 321 12.84

Total 1089 27663 25.40 1455 36210 24.89 516 21539 41.74
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America is present in at least one paper in two in case of JASA and The Annals of

Statistics. On JRSS (B), even if the United States authors are the most numerous, there is a

significant presence of British authors with respect to the other countries.

Table 3 shows the papers that are cited more than 500 times. The most attractive

concepts and/or techniques, according to the three considered journals and their Editors’

decisions, seem to be boosting, false discovery rate, clustering, microarray and gene

expression data.

A typical intuition looking at a collection of papers is that papers can be grouped into

‘‘topics’’. The latter could then be described and connected to each other. Moreover, a topic

should generate other topics over the years. In the next sections we will develop these

ideas.

Probabilistic topic models as bibliographic descriptors

Topic models are based on the idea that documents are a combination of topics, where a

topic is defined as a probability distribution over words. Documents are observed, while

topics (and their distributions) are considered as hidden structures or latent variables. Topic

modeling algorithms are statistical methods that analyze the words of the original docu-

ments to discover the topics that run through them, how these topics are connected to each

other, and how they change over time (Blei 2012). The simplest and most commonly used

Table 2 Distribution of papers per country and journal

Ann. Stat. JASA JRSS(B)

Country Papers Country Papers Country Papers

United States 913 United States 2158 United States 446

France 174 United Kingdom 150 United Kingdom 219

Germany 110 Canada 100 Australia 52

Canada 88 China 64 Canada 38

United Kingdom 75 Germany 59 Germany 36

Netherlands 68 Australia 47 France 27

Australia 62 France 45 Netherlands 26

Israel 40 Spain 43 Italy 24

China 34 Hong Kong 40 China 22

Hong Kong 33 Singapore 35 Switzerland 22

Switzerland 31 Italy 34 Belgium 21

Belgium 30 Belgium 32 Taiwan 20

Italy 30 Switzerland 32 Denmark 18

Spain 22 Taiwan 31 Spain 18

South Korea 19 Netherlands 25 Norway 17

Denmark 18 South Korea 18 Japan 13

Japan 17 Israel 17 Hong Kong 12

Singapore 16 Norway 12 Singapore 11

Taiwan 14 Finland 10 Finland 8

India 12 Austria 8 Israel 7
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probabilistic topic approach to document modeling is the generative model Latent Dirichlet

Allocation (LDA) (Blei et al. 2003). The idea behind LDA is that documents blend

multiple topics.

A topic is defined to be a distribution over a fixed vocabulary. For example the statistics

topic has words about statistics with high probability. The model assumes that the topics

are generated before the documents. For each document, the words are generated in a two-

stage process: (1) randomly choose a distribution over topics (Dirichlet distribution); (2)

for each word first randomly choose a topic from the distribution over topics and then

randomly choose a word from the corresponding distribution over the vocabulary. The

central problem for topic modeling is the use of the observed documents to infer the latent

variables. Topic models are probabilistic models in which data are treated as arising from a

generative process that includes hidden (or latent) variables. This process defines a joint

probability distribution over both the observed and hidden random variables.

The conditional distribution of the hidden variables given the observed variables, also

called posterior distribution, is computed. The numerator of the conditional distribution is

the joint distribution of all the random variables, which can be easily computed; the

denominator is the marginal probability of the observations, or the probability of seeing the

observed corpus under any topic model. Theoretically, it can be computed by summing the

joint distribution over every possible instantiation of the hidden topic structure; practically,

because the number of possible topic structures is exponentially large, this sum is difficult

to compute.

Topic modeling algorithms fall into two categories, which propose different alternative

distributions to approximate the true posterior: sampling-based algorithms, as Gibbs

sampling, and variational algorithms. The first group considers a Markov chain, a sequence

of random variables, each dependent of the previous, whose limiting distribution is the

posterior (Steyvers and Griffiths 2007); the second group of algorithms, instead, represents

a deterministic alternative to sampling-based algorithms (VEM). Rather than ap-

proximating the posterior with samples, variational methods posit a parameterized family

of distributions over the hidden structure and find the member of the family that is closest

to the posterior; in this way, they transform the inference problem into an optimization

problem. In 2007, a correlated topic model (CTM) was proposed, which explicitly models

the correlation between the latent topics in the documents (Blei and Lafferty 2007). In this

paper, we rely on VEM algorithms instead of CTM because VEM algorithms provide more

than a topic explanation for each paper. This overlapping between topics is important to

find topic correlations, which is one of the main goals of our work.

Choosing the number of topics

As discussed before, topic models are latent variable models of documents that exploit the

correlations among the words and latent semantic themes in a collection of papers (Blei

and Lafferty 2007). An important consequence of this definition is that the expected

number of topics (i.e., the latent variables) is supposed to be set before the computation of

the model itself. Thus, since the number of topics has to be set a priori, choosing the best

number of topics for a given collection of papers is not trivial. In the literature (Hall et al.

2008; Blei 2012) this problem has been addressed in different ways, but always looking for

a compromise between the need for a high number of topics to cover all the themes in the

document collection and the need for a limited number of topics, which can be more easily

understood and verified by experts in the domain of data collected.

418 Scientometrics (2015) 103:413–433

123



In order to help in choosing the number of topics of interest, a measure of perplexity has

been introduced (Grün and Hornik 2011). The idea is that model selection with respect to

the number of topics is possible by splitting the data into training and test datasets. The

likelihood for the test data is then approximated using the lower bound for VEM esti-

mation. In particular, perplexity is a measure of the ability of a model to generalize to

unseen data. It is defined as the reciprocal geometric mean of the likelihood of a test corpus

given the model, as follows:

PerplexityðwÞ ¼ exp � logðpðwÞÞ
PD

d¼1

PV
j¼1 nðjdÞ

( )

where nðjdÞ denotes how often the jth term occurred in the dth document.

The common method to evaluate perplexity in topic models is to hold out test data from

the corpus to be trained and then test the estimated model on the held-out data. Higher

values of perplexity indicate a higher misrepresentation of the words of the test documents

by the trained topics. Perplexity is a measure of the quality of the model learned by LDA in

predicting future data from the same distribution as the data used to train the model. In

doing so, it measures an interesting characteristic of an inference algorithm: given that the

model is the same, the best algorithm (in terms of quality of the learned result) will have

better perplexity than the others. Perplexity is usually the first or second metric used to

judge statistical model quality (other popular methods being test-set likelihood or even

marginal probability of the data given the model), but it is too coarse, hence recently the

topic modeling community has been moving towards more accurate metrics (Mimno and

Blei 2011). Even though these more refined metrics carry a lot more weight and show you

all sorts of interesting information, bear in mind that test-set perplexity is probably cor-

related with all of them. In this paper, we run a set of pre-tests on the whole collection of

paper at hand, by executing the VEM algorithm with a variable number of topics, ranging

from 10 to 400, and by collecting the perplexity values of each execution. The resulting

perplexity plot is shown in Fig. 1.
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Fig. 1 Perplexity plot for a number of topics ranging from 10 to 400
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Looking at the perplexity plot, we can see how the perplexity dramatically decreases

from a level of 400–200, just moving from 10 to 30 topics. Then, the decrement continues

reaching a more or less stable value of 100/120 with 120 or more topics. Since we are

interested in having low levels of perplexity but also in keeping as low as possible the

numbers of topics, we decided to limit ourselves to 120 topics.

We briefly recall that each topic is associated as an explanation with each paper together

with a measure of relevance (average quality) of that paper for the topic. Thus, a first

measure of the ability of topics to explain papers is the average level of paper relevance per

topic. Moreover, we are also interested in counting the number of papers explained by each

topic. The idea is that a solution where topics explain more papers is better than a solution

where topics are capable of explaining less papers, in that the former one provides a better

synthesis of the paper corpus. But of course, the two situations are comparable only if the

average level of relevance per topic is the same or similar. A relevant issue working with

topic models is to determine when a topic has to be considered as a good explanation for a

paper at hand. In particular, given a topic T, a paper p, and the relevance qðp; TÞ of T with

respect to p, we say that p is explained by T if qðp; TÞ� the.1 Therefore, we call the

explanation threshold. In order to determine the explanation threshold the, we start from

two main requirements: (1) corpus coverage: we are interested in finding a threshold value

such that the fraction of papers in the corpus that are explained by at least one topic is high;

(2) explanation quality: we are interested in finding a threshold value such that the average

quality (i.e., relevance) of topic explanations is high. More formally, the corpus coverage

Cthe

P for a corpus of papers P and an explanation threshold the is defined as:

Cthe

P ¼
j fpi j pi 2 P ^ qðpi; TÞ� theg j

j P j

where j fpi j pi 2 P ^ qðpi; TÞ� theg j is the cardinality of the set of corpus papers which

are explained by at least one topic with a value of relevance higher than, or equal to, a

given explanation threshold the. The explanation quality Qthe

P is defined as:

Qthe

P ¼

PjPj

i¼1

qðpi; TÞ j pi 2 P ^ qðpi; TÞ� the

K

where K ¼j fpi j pi 2 P ^ qðpi; TÞ� theg j is the number of papers having at least one

explanation topic T such that qðpi; TÞ� the. We can observe that, as expected, when the

corpus coverage increases, the explanation quality decreases. In fact, topics with high

quality explanations are more focused on a limited number of papers. On the opposite,

when we set a low level of the explanation threshold, the number of papers that are

explained by at least a topic is higher, but the average quality of accepted explanations is

lower. This situation is illustrated in Fig. 2, where we report the values of corpus coverage

and explanation quality for different levels of the explanation threshold the when we

consider 120 topics.

By taking into account the results shown in Fig. 2, we use as value of the explanation

threshold the point where the distance between corpus coverage and explanation quality is

minimal, that is the ¼ 0:4. Thus, working on 120 topics and using an explanation threshold

1 In our approach, the relevance qðp;TÞ of a topic T for a paper p is the log-likelihood returned for each
paper by the VEM algorithm implementation as provided in the R topicmodels package (Grün and
Hornik 2011).
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of 0.4, the coverage of corpus is of 1974 papers out of 3048 (64.76 %).2 The average

explanation quality is 0.59.

Current topics

As reported in the previous section, in our first experiment with topic models we calculate 120

topics by working on the whole corpus of papers considering for each paper title and abstract.

Then, we select the top-30 prominent topics (i.e., topics explaining the highest number of

papers), in order to have a limited and easily understandable collection of topics which

explain the paper corpus with a good level of relevance. The complete list of 30 topics3 that

have been presented in this paper is reported in Table 4, where we anticipate a selection of

keywords that we extract from each topic in order to help the reader in understanding the

contents of the topics. The procedure of keyword selection, that is also capable of extracting

compound keywords, is detailed in ‘‘Finding the most relevant topic keywords’’ subsection.

Topic description

One of the most interesting uses of topics is to provide a synthetic map of the corpus of

papers that have been collected, in order, in general, to give a high level view of the most

relevant concepts, keywords, and themes that have been addressed in a time period for a

specific field of research. In our case, limited to the three journals considered, we identify

the relevant themes in the last 10 year in statistics. In order to obtain this result, we first

need to associate each topic with a descriptor providing information about the most

relevant keywords describing the topic and some useful statistical information concerning

the publication venue distribution of papers per topic (useful to understand if there are

2 We note that the total number of papers is lower than the total number of papers in the corpus, because we
excluded from the topic analysis those papers with incomplete metadata as well as those containing editorial
material but not a proper scientific contribution.
3 T960 with 124 papers was not considered here because it groups Discussion papers. Similarly T906 with
20 papers was not considered here because it groups all the Erratum papers.

Fig. 2 Corpus coverage and explanation quality at different values of explanation threshold
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journals that are more specialized in some topics) and a distribution of the topic papers per

year, country, and number of citations.

More formally, we can define a descriptor DT of a topic T as a five-tuple of the form

DT ¼ hKT ; JT ; YT ;CT ;RTi, where KT ¼ hðk1; r1Þ; ðk2; r2Þ; . . .; ðkj; rjÞi denotes a list of the j

most relevant keywords describing T together with the relevance ri of the keyword ki for T;

JT ¼ hðj1; n1Þ; ðj2; n2Þ; . . .; ðjk; nkÞi denotes the list of the k most relevant journals for T

together with the fraction ni of papers explained by T that have been published by the

journal ji; YT ¼ hðy1; n1Þ; ðy2; n2Þ; . . .; ðyl; nlÞi denotes the list of the l most relevant years

for T together with the fraction ni of papers explained by T that have been published in yi;

CT ¼ hðc1; n1Þ; ðc2; n2Þ; . . .; ðcm; nmÞi denotes the list of the m most relevant countries for T

together with the fraction ni of authors of papers explained by T that have been affiliated in

an institution located in the country ci; finally RT denotes the distribution of citations per

papers that have been explained by T.

Table 4 Top-30 topics per number of papers

ID # of papers Most rel. keywords

929 43 False, discovery, false discoveries

938 41 Clustered, models, data

875 36 Spatial, models, processes

958 33 Bootstrap, estimator, model

936 28 Designs, optimal, optimal designs

864 27 Quantile, quantile regression, estimation

918 26 Regressions, dimension, dimension reduction

941 26 Wavelet, estimation, thresholding

893 25 Models, estimator, penalized

862 23 Spectral, periodogram, spectral density

869 23 Volatility, jump, discretized

881 23 Spline, models, regression

891 23 Extremes, extreme value, value

909 23 Memory, long, long memory

911 23 Diffusions, estimators, deformable

925 22 Hazards, model, hazards models

897 21 Stepup, procedure, controlling

922 21 Rankings, signed, models

930 21 Filters, particle filtering, model

943 21 Recurrent, event, recurrent events

952 21 Graphs, models, tree

955 21 Bandwidths, bandwidth selection, regression

861 20 Design, aberrant, fractional factorial

903 20 Sequential, sequential analysis, design

927 20 Depth, projection, multivariate

950 20 Regression, estimates, robust

873 19 Optimal designs, designs, statistical

879 19 Disclosure, frailty, model

923 19 Deconvolution, models, wavelet

935 19 Brownian motion, shape constraints, density estimation
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Finding the most relevant topic keywords

In order to determine the keyword descriptor KT for the topic T, we first select the set

PT ¼ fpi j qðp; TÞ� theg of papers explained by the topic T, that is the set of papers with

relevance qðp; TÞ higher than, or equal to, the explanation threshold with respect to the topic

T. In such a way, we create a textual corpus that is then pre-processed by using some

standard natural language processing techniques (NLP) in order to create a vector of terms

for each paper. The NLP techniques used are elision removal (log-likelihood ! log like-

lihood), lower case normalization (New York ! new york), and stop words removal (the

next step ! next step). During the pre-processing step, we decided not to use some other

common techniques like stemming, in order to provide a more human readable descriptor.

Instead, we introduced bi-gram research. In our approach, a bi-gram is a pair of terms that

often occur together in the corpus and, thus, can be interpreted as a single compound term

(e.g., false discovery). In order to determine relevant bi-grams, we associate a measure of

mutual information Iðti; tjÞ with any pair of adjacent terms ti and tj. Iðti; tjÞ is defined as4:

Iðti; tjÞ ¼ log
pðti; tjÞ

pðtiÞ � pðtjÞ

� �

where pðti; tjÞ is the ratio between the number of occurrences of the pair ðti; tjÞ to the number

of occurrences of all the pairs of adjacent terms in the corpus; pðtiÞ is the ratio between the

number of occurrences of ti to the total number of occurrences of any term in the corpus.

Iðti; tjÞ measures the relevance of the occurrences of the pair ðti; tjÞ with respect to the

relevance of the occurrences of the terms ti and tj separately. We select the most relevant pairs

as those pairs that appear more than twice in the corpus and have a value of mutual infor-

mation higher than a fixed threshold equal to 1. Then we substitute the relevant pairs to the

single terms in the vector. As soon as all the papers explained by the topic T (i.e., papers in PT )

are associated with a vector of terms, we calculate the most relevant keywords describing T as

the list of the most relevant vector terms that are the terms with the highest relevance

according to a TF-IDF like measure. The term frequency TFðtiÞ of a term ti is calculated as the

number of occurrences of ti in all the term vectors associated with papers in PT . The inverse

document frequency IDFðtiÞ of a term ti is calculated as follows:

IDFðtiÞ ¼ log
j P j

1þ j fp 2 P : ti 2 pg j

� �

where j P j is the total number of papers in the corpus (not only those explained by the

topic T), while j fp 2 P : ti 2 pg j is the number of paper vectors containing ti. Finally, the

relevance ri of a keyword ki, given the corresponding term ti, is calculated as

ri ¼ TFðtiÞ � IDFðtiÞ. In order to select the most relevant keywords, we experimentally

observed that we can take the terms that have a cumulative relevance higher than 10 % of

the sum of all the terms’ relevances.

Finding publication venue, year, country, and citation descriptors

The approach used for determining the other descriptors JT ; YT , and CT is basically the

same. We simply count the number of papers in PT aggregated by the dimension of

4 In the subsequent formula and in all the other formulae in the rest of the paper, the log symbol refers to the
base-10 logarithm.
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interest, that can be the journal, the year, or the country. For what concerns countries, we

associate a paper with each country of affiliation of its author. Finally, we take the whole

list of journals, years and countries together with the fraction of papers associated with

each source, year or country over the total number of papers (authors in case of countries)

in PT .

Another descriptor that can be associated with a topic is its impact, based on citations.

Since citations are associated to every paper, it is possible to aggregate them to obtain

bibliometric measures related to the topic. In addition to the mean and/or the median of the

citations, and the classical h-index (Hirsch 2005), a graph of the citation distribution in the

topic can be produced to highlight if all the papers have a similar number of citations or

not. In the first case it would mean that the topic, and not the paper or the author, is able to

produce itself a certain level of citations.

Example

In order to provide an example of topic description, in Table 5 we take into account a

sample of paper titles that are explained by the topic T929 related to false discovery rate.

According to the approach described in the previous sections, we calculate the de-

scriptors of the topic T929 by determining the most relevant keywords and the publication

source, year, and country distribution, which are reported in Table 6.

The descriptors can also be used to provide a graphical representation of a topic,

according to the following approach. A topic is represented as a circle, whose diameter is

proportional to the number of papers explained by the topic at hand (this is useful when

more than one topic is depicted in the same map). The topic circle contains the keywords

that are printed in a tag-cloud fashion, where the dimension of each keyword is propor-

tional to its relevance for the topic. Then, the other descriptors are associated with the

circle as plots reporting the relevance of each element of the descriptor. An example of

such a graphical representation is shown in Fig. 3.

The T929 is characterized by the keywords false discovery, discovery rate, multiple

testing. The three journals addressed this topic, more particularly The Annals of Statistics

and JASA. The spread has been fluctuating over the years and tended to increase over time,

with a peak in 2009. The most represented country is the United States. The citations are

Table 5 Example of papers explained by the T929

Title Year Journal Authors Cit Rel

False discovery and false nondiscovery rates
in single-step multiple testing procedures

2006 Ann. Stat. Sarkar S.K. 30 0.92

The positive false discovery rate: A
Bayesian interpretation and the q-value

2003 Ann. Stat. Storey J.D. 506 0.84

Strong control, conservative point estimation
and simultaneous conservative consistency
of false discovery rates: A unified
approach

2004 JRSS(B) Storey J.D.; Taylor J.E.;
Siegmund D.

379 0.79

Operating characteristics and extensions of
the false discovery rate procedure

2002 JRSS(B) Wasserman L.;
Genovese C.

205 0.76

A direct approach to false discovery rates 2002 JRSS(B) Storey J.D. 1526 0.75

The control of the false discovery rate in
multiple testing under dependency

2001 Ann. Stat. Benjamini Y.;
Yekutieli D.

1403 0.72
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Table 6 Descriptors for topic
T929

Keywords Years Countries

False 0.49 2010 3 United States 51

Discovery 0.48 2009 8 Israel 8

False
discoveries

0.45 2008 5 Germany 7

Discovery rates 0.36 2007 7 United
Kingdom

1

Rates 0.29 2006 4 Italy 1

Procedure 0.20 2005 2 Singapore 1

Multiple 0.19 2004 6 France 1

Testing 0.19 2003 2 Austria 1

Control 0.19 2002 5 Switzerland 1

Multiple testing 0.15 2001 1 South Korea 1

… … 2000 1 … …

Journals Citations

Ann. Stat. 17 Total 5530

JASA 16 Mean 128.6

JRSS(B) 10 Median 20

H-index 21

Countries

Ann. Stat.
JASA

JRSS(B)

unknown
united states

united kingdom
switzerland
south korea

singapore
new zealand

italy
israel

germany
france
austria

2012
2011
2010
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2008
2007
2006
2005
2004
2003
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2001
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Fig. 3 Graphical representation of topic T929
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not distributed evenly among the paper, but, as it can be observed in Table 5, there are

papers with a very high number of citations. The median equal to 20 is much lower than the

mean which is equal to 128.6. This shape is in accordance with the well known empirical

laws governing the distribution of citations. In practice, the number of citations received by

scientific papers appears to have a power-law distribution (Newman 2006). The distribu-

tion of citations is a rapidly decreasing function of citation count. Zipf plot is well suited

for determining the large-x tail of the citation distribution (Gupta et al. 2005). For other

topics, another pattern could be observed. In ‘‘Citation distribution per topics’’ subsection a

more detailed analysis of citations intra topics will be presented.

Topic mutual relations

An interesting feature of topics is their mutual relations. In particular, we propose a

similarity relation rðTi; TjÞ between two topics, which is based on their terminology, as

follows. Let the dictionary D be the set of all the terms used in the corpus, i.e., all the terms

appearing in the title or abstract of at least one paper of the entire collection. The topic

similarity rðTi; TjÞ between two topics Ti and Tj is based on a weight wl associated with

each term tl 2 D with respect to Ti and Tj, respectively. In particular, given the topics Ti

and Tj, we define two vectors of terms Vi and Vj, which have the following form:

Vi ¼ hw1;w2; . . .;wni; Vj ¼ hw1;w2; . . .;wmi

where n and m are the number of terms extracted from Ti and Tj, respectively. In particular,

given a term tk 2 D, its corresponding weight wki with respect to Ti is equal to 0 if tk does

not appear in Ti (i.e., is not used either in a title or in a abstract of any paper explained by

Ti); otherwise, wki is calculated using the TF-IDF method discussed in ‘‘Topic description’’

subsection. Analogously, we calculate the weight wkj for the topic Tj. On this basis, we

evaluate the similarity rðTi; TjÞ between Ti and Tj as the correlation between their corre-

sponding vectors of terms Vi and Vj, as follows:

rðTi; TjÞ ¼
P

wikwil
ffiffiffiffiffiffiffiffiffiffiffiffiP

w2
ik

p ffiffiffiffiffiffiffiffiffiffiffiffiP
w2

jk

q

where wik denotes the weight attributed to keyword tk for topic Ti.

Example

In order to clarify the evaluation of term-based topic similarity, we introduce a very

simple example, by taking into account the topics T929 (false, discovery, false discoveries,

discovery rates, rates) and T878 (models, endpoints, partitioning, decision, procedures),

that have the following keyword descriptors:

– T929: false (0.49), discovery (0.48), false discoveries (0.45), discovery rates (0.36),

rates (0.29), procedure (0.2), multiple (0.19), testing (0.19), control (0.19), multiple

testing (0.15), values (0.11), large scale (0.09), controlling false (0.08), simultaneous

(0.07), hypothesis (0.07)

– T878: models (0.2), endpoints (0.15), partitioning (0.14), decision (0.12), procedures

(0.11), testing (0.11), lq (0.11), bayes (0.11), primary (0.1), multiple (0.1), decision

theory (0.1), principle (0.09), discovery (0.09), equivalence (0.08), best (0.08)

By considering the two term vectors corresponding to T929 and T878, we retrieve several

terms in common (e.g., procedure, testing, discovery) that are used to determine the
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product vector of common terms, which is equal to 0.1051. The sum of all the weights in

the two vectors is equal to 1.0458 for T929 and 0.4515 for T878. This leads to a similarity

equal to 0.2225 that is calculated as follows:

rðT929; T878Þ ¼ 0:1051

1:0458 � 0:4515
¼ 0:2225

In Table 7 the list of topics, with the relative keywords, ordered by descending similarity

with T929 is reported.

Topic map

Since a topic is associated with a set of papers, it can be seen as the collection of papers

that are explained by the topic at hand according to the explanation threshold the. As we

have seen, a topic can have a variable degree of similarity to other topics and can be

described by the most occurrent terms in the papers therein contained. Moreover, each

paper is associated with the paper contributors, usually the authors, with the venue of

publication, with the publication year, and with the number of citations received. In order

to provide a synthetic and comprehensive view of the topics addressed by a corpus of

papers, we introduce the notion of topic map. A topic map is a graph where nodes represent

topics and edges represent similarity relations between topics. Moreover, each node of the

topic map can be graphically represented by a circle containing the most relevant k terms

extracted from the papers explained by the corresponding topic. A term’s font size is

proportional to the number of occurrences of the term in the topic, using conventional tag

clouds. The circle area is proportional to the number of papers explained by the topic. Also

the graphical disposition of nodes is relevant, since it is determined in order to display

similar topics as close as possible one to each other. The edge width is proportional to the

strength of the similarity relation. Finally, a node/topic could be also labelled with country,

publication source, and year descriptors. As an example of very simple topic map, we show

in Fig. 4 a portion of the topic map for the topics extracted around T929 presented in the

Table 7 List of topics ordered by descending similarity with T929

T r Contents

878 0.23 Step-up/down procedure, multiple endpoints, multiple comparisons, finite action
problem, Dirichlet process

897 0.23 Multiple testing, step-up/down procedure, family wise error rate, bootstrap, statistical
process control

935 0.18 Estimating, distribution, Brownian motion, concave, densities

874 0.10 Oracle inequalities, aggregation, model selection, order-restricted inference,
lipoprotein lipase

917 0.10 Horvitz–Thompson estimator, calibration, logistic regression, generalized linear
model, population size

908 0.09 Racial profiling, nonstationary random process, SLEX library, autoregressive model,
criminology

890 0.09 Statistical process control, average run length, model selection, LISREL, shift
function

893 0.09 SCAD,Variable selection, LASSO, resampling, model selection, penalized likelihood

... ... ...
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previous example. In our example, we show in each topic only the topic ID and the three

most relevant keywords.

Citation distribution per topics

As just mentioned before, it is not obvious that, within the same subject category, each

topic has the same level of citations and then the same benchmark values for bibliometric

indicators. Moreover, also the citation distribution could differ from topic to topic. In order

to check this hypothesis, we select five topics with different citation patterns. In Table 8,

for each topic we show the number of papers, the h-index5, the number of papers with more

than 500 citations, the number of papers with more than 100 citations. Moreover for the

citations the mean, the standard deviation, the median, the interquartile range (IR) and the

Gini coefficient6 are reported. We can also represent the citation distribution through the

Lorenz curve, that is the graphical representation developed by the American economist

Max Lorenz in 1905 for the wealth distribution. In our application (see Fig. 5), the

horizontal axis is the proportion of papers and the vertical axis is the proportion of cita-

tions. A straight diagonal line represents perfect equal distribution of citations per paper;

the Lorenz curve lies beneath it, showing the real distribution of the citations. The dif-

ference between the straight line and the curved line is the amount of concentration, this

area represents the Gini coefficient.

Fox example, T929, related to false discovery rate and previously discussed in this

section, has a citation mean lower than T878 related to multiple comparisons, but its

citation median and its h-index are much higher. This means that in T929 the citations are

less concentrated than in T878; in fact the Gini coefficient is smaller.

This is evident also looking at the standard deviation and the IR that are higher for topic

T878 with respect to T929.

T929

T878

T897

T935

T964

T893

T890

T867

T874

false, 
discovery, 
false discoveries

models, 
endpoints, 
partitioning

models, 
estimator, 
penalized

model, 
wishart, 
wishart distributions

stepup, 
procedure, 
controlling

runs, 
chart, 
comparisonpolca, 

aggregating, 
tests

estimating, 
distribution, 
brownian motion

estimators, 
conical, 
bernstein

T917
surveys, 
post, 
frame surveys

T908
racial, 
racial bias, 
new york

T890
runs, 
chart, 
comparison

Fig. 4 Topic map representing topics extracted around T929

5 We recall that topic with an index of h includes h papers each of which has been cited in other papers at
least h times.
6 Corrado Gini’s concentration index; the value 0 indicates equality or uniform distribution, the value 1
indicates maximum concentration.
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Topic evolution

In order to study the evolution of a scientific field in time, the idea of focusing on the years

associated with topics is the most natural approach but it is also affected by a structural

problem: in fact, topics are statistically discovered over the whole corpus, which includes

papers that have been published in different years. This means that the number of papers

published in a given year affects the whole composition of topics and, potentially, may lead

to a situation where topics that were popular in years featured by a limited number of

publications are not discovered at all. Our idea is that, instead of focusing on the whole

corpus of papers, we are now interested in studying the topics that can be found by taking

into account only the papers produced year by year. According to this approach, we are

now dealing with 11 different corpora (i.e., one per year) and we generate a set of topics for

each corpus independently. Then, we study the similarity relations existing between the

topics associated with one year and the topics associated with the subsequent year. Our

hypothesis is that a similarity relation between a topic TiðyÞ, deriving from the corpus of

papers published in the year y, and a topic Tjðyþ1Þ, derived from the year yþ 1, is a useful

index of a possible evolution of the topic Ti into the topic Tj.

Table 8 Citation pattern per topics

Topic Papers h-index 500þ 100þ Mean Std Median IR Gini

960 124 10 0 0 4 11 0 1 0.88

929 43 21 3 8 129 316 20 70 0.78

967 18 13 0 3 47 48 26 64 0.53

878 15 7 1 1 178 625 7 31 0.89

904 9 7 0 0 10 5 9 6 0.26
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Fig. 5 Lorenz curve of citations
per topic
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As an example, we discuss the case of two papers:

a. Storey J.D. (2002), A direct approach to false discovery rates, JRSS(B)

b. Ronchetti E.; Cantoni E. (2001), Robust Inference for Generalized Linear Models,

JASA

In Fig. 6, we report a topic evolution map in which the topics that contain papers (a and b)

are highlighted. The topics here are extracted year by year. In the evolution map, topics,

represented as circles, are ordered according to years and are linked one to each other by

arrows which represent similarity relations among topics. The similarity has been calcu-

lated as discussed in ‘‘Current topics’’ section. Three topics include the false discovery rate

(i.e., T567, T661, and T685), and another one includes ‘‘multiple testing’’ (i.e., T702),

which is a related broader topic. These have been reported as gray, shadowed circles in the

map. The topic chain is created as follows: given a topic TiðyÞ derived from year y, we

calculate the similarity between TiðyÞ and all the topics Tjðyþ1Þ derived from the subsequent

year yþ 1; then, we set up a similarity threshold ths and we create a link between TiðyÞ and

all the topics Tjðyþ1Þ such that rðTiðyÞ; Tjðyþ1ÞÞÞ � ths.

In such a way, the evolution map suggests possible evolution paths connecting topics

extracted from papers published in the early period (i.e., 2000–2003) and topics extracted

from papers of the late period (i.e., 2008–2010).

Looking at the map, it is possible to understand which topics have chained over the

years, leading to the current research topics. For example T640 (microarray, not para-

metric, semi-parametric regression, functional data) is connected to both previous routes

that include topics such as false dicovery rate (T567), robust methods (T546), functional

data analysis (T628), robustness issues in multivariate data analysis (T622). T663 (risk

factors, multicenter survival studies, hazard function) is connected with the topic T685
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523 563546
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Fig. 6 Topic evolution map
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Table 9 Most relevant keywords for topics appearing in Fig. 6

ID # of p. Most rel. keywords

2000

523 19 Monotonicity regression, testing monotonicity, sequential testing

525 27 Toxicology, research, functional linear models

2001

546 34 Robust methods, penalized likelihood, conditional heteroscedastic model

548 21 Serial correlation, coverage, doses

2002

563 26 Censoring, frailty model, cox regression

567 22 False discovery rate, publication bias, earthquake

2003

580 16 Differentially expressed, differentiability, paired

586 32 Stochastic optimization, moderate deviations, sequential analysis

584 22 Cusum, leukemia, extremes

2004

602 24 Hazard, isotropy, shared frailty models

605 24 Prediction error, modes, predictive

2005

622 27 Robustness multivariate data, random graphs, generalized linear models

626 28 Crossover designs, fused lasso, meta analysis

628 39 Functional data analysis, long memory, observation times

2006

641 35 Fit tests, testing order, robust estimates generalized

646 17 Causal, causal inference, neighborhood

640 37 Locally stationary processes, semi-parametric regression, functional data

648 34 Binary regression, run, bayesian wavelet

2007

661 27 Discovery rates, multistage, controlling

665 33 Outcome, discretely sampled, estimation treatment

667 25 Support vector, vector machines, support vector machines

663 38 Risk factors, survival studies, hazard function, comment

2008

685 46 Randomized experiment, clinical trials, false discovery rate, comment, rejoinder

683 31 Capture recapture, test positives, smoothly clipped

686 30 Lasso, competing risks, data competing

680 35 Clustering, gibbs, gibbs samplers

2009

700 50 High-dimensional regression, large-scale prediction problems, comment

703 37 Panel count, panel count data, mises distribution

702 43 Multiple testing, testing, testing dependence

704 44 Lasso, high dimensional, large covariance

707 35 Tail index, tails, transformations

706 36 Log linear models, log linear, singular value decompositions

2010
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(randomized experiment, clinical trials, false discovery rate) preceding T700 (high-di-

mensional regression, large-scale prediction problems) and T727 (weighted distance es-

timation, missing at random, variable selection).

The list of most relevant keywords for topics appearing in Fig. 6 is reported in Table 9.

Looking at Table 9 it is possible to see that some arguments, the biggest ones in Fig. 6,

identified by keywords as comment, letters editor, rejoinder, etc., have generated a lit-

erature debate besides a lot of papers. The evolutionary map highlights the new challenges,

according to the three considered journals and their Editors’ decisions, that the big data has

generated in statistics, due to both high-dimensionality and large sample size. It should

however be noted that the map in Fig. 6, as already said, includes only the evolution over

the years generated by T525 and T523. It is a capture of the larger map, difficult to

represent graphically in whole, which contains the ’hot’ topics for each year. This map

definitely needs to be explored in future.

Conclusions

Working on a selection of publications from the international statistical literature, we have

applied the topic model approach and post-processed the results to the end of describing in

depth the corresponding segment of the field over the years. The aim of our analysis was to

verify the existence of predominant topics, explained by different descriptors, and to de-

termine whether these topics generate patterns of citations. Our results seem to confirm the

expectations. Accordingly, the common evaluation approaches, based on normalization with

respect to a field, lose significance; a normalization with respect to the topic would seem more

appropriate. Our approach raises a critical situation: with high heterogeneity of data, the

identified topics exhibit a problem of robustness; in literature some other methods to cluster

textual data exist. Moreover, our contribution doesn’t claim to be exhaustive; it presents a

case study that raises matter for debate. Taking into account our recommendations, com-

parisons between the topic model approach and other methods of clustering would be pos-

sible, with the purpose to normalize the bibliometric data with respect to the topics.
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