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Abstract In this paper, we make use of keywords in scientific articles in solar energy

during the period 2000–2013 to investigate scientific relatedness at the topic level (i.e.

relatedness between topic and topic) and the country level (i.e. relatedness between topic

and country). The bibliometric analyses show that both publications and knowledge topics

exhibit significant rise, and China has exceeded the USA and developed into the largest

scientific producer after 2010. We determine the degree of relatedness by means of the

topics co-occurrence network and explore the evolving dynamic processes of scientific

relatedness which indicates decreasing patterns in the two countries. The results also

highlight differences between the research directions in the USA and China: in the USA

‘‘energy efficiency and environment’’ prove more developed, while in China ‘‘solar power’’

shows more central. This study assesses the extent to which the scientific relatedness exerts

influence on the literature productivity at the country level. We find negative relationships

between scientific relatedness and publications in both of countries. Our work has potential

implications for the future policies with respect to the innovative research in the solar

energy field.

Keywords Scientific relatedness � Co-occurrence � Innovation output � Solar energy

Introduction

Knowledge production and scientific change are crucial to economic growth (Solow 1956).

The rapid scientific development has substantially stimulated knowledge convergence

which affects the progress of innovation (Kodama 2005). With that trend, knowledge and

scientific relatedness has obtained great attentions (Joo and Kim 2010; Makri et al. 2010).
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The relatedness of scientific topic with other topics presents quite different characteristic.

For instance, some scientific knowledge is diverse enough to interact with other knowledge

(Geum et al. 2012), while some knowledge elements have low combinatorial potential.

Knowledge productivity of each country is unbalanced (Guan and Ma 2007), and the

geographical distribution of knowledge elements is also uneven. For example, some sci-

entific studies of developed countries involve vast knowledge elements and own plenty of

scientists (Livingstone 2010). The distribution of knowledge productivity has changed over

the past decade due to the global trend and international collaborations (Zhang et al. 2010).

The traditional centers like North America have been exceeded by some Asian countries

(Matthiessen and Schwarz 2010).

The USA and China are most the same in the geographical area (9,629 million, 9,600

million, respectively) and the population of the USA is about a quarter of China’s popu-

lation. China’s economy has been growing so fast in recent years and its GDP has sur-

passed Japan after 2010 and occupies the second position only to the United States. What’s

more, the average annual GDP growth rate of China was 9.9 % during 1952–2013

(National Bureau of Statistics of China, http://www.stats.gov.cn/). Some scholars consid-

ered that China’s economy will be equal with that of the USA in size in about 10 years

(Virmani 2005). China is also the second largest nation in energy consumption. Energy

demand pressures promote the government to review its energy and economic policies to

support the sustainable development (Li et al. 2007). Both the USA and China are trying to

make impressive strides in harnessing sources of solar energy (Fthenakis et al. 2009). For

example, China has the largest solar panels producer (Bradsher 2010) and the United States

shows significant research strengths in solar energy field (Hassan et al. 2014). The growth

of the scientific and technological capacities of China can be expected to reinforce its

economic development (Zhou and Leydesdorff 2006). The USA and China are two nations

which are prominent scientific producers. China has significantly increased its publication

output in solar energy in recent years which is close in terms of publication output with the

USA. A comparative study in solar energy in two prominent nations can contribute to the

scientific research and professional technology of this field.

This raises some questions: How the relatedness between knowledge element and others

evolves with time? What’s the difference between the relatedness in the USA and China?

To what extent does the scientific relatedness exert influence on the literature productivity?

Previous studies have showed that technological relatedness can explain the entries and

exits of cities which are specialized in those knowledge (Rigby 2013), and relatedness is a

main driving force behind technological change (Boschma et al. 2013). However, few

scholars have focused on the scientific relatedness (Boschma et al. 2014). There is little

empirical evidence on the impact of scientific relatedness on the innovation output,

especially at the country level.

The goals of this article are to compare the evolution processes of scientific relatedness

in the USA and China and explore the impact of relatedness on scientific output in the

period 2000–2013. Specifically, we thoroughly analyze the relatedness between knowledge

and knowledge, and after that we investigate the relatedness between knowledge and

country. Then, this paper assesses the extent to which the scientific output of knowledge

topic is dependent on its relatedness. In order to measure the main indices, we use key-

words to discuss the co-occurrence relationships among knowledge topics and explore the

dynamic evolution of scientific topics. Evolutionary patterns of relatedness are also

compared between the USA and China. Analyzing the relatedness at the country level aims

to examine contrasts between the scientific knowledge in the USA and China. More
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specifically, we can compare the role how the relatedness affect the output in the two

countries.

The rest of the paper is organized as follows. ‘‘Literature review’’ second section

reviews related literature on relatedness and innovation theories which lead to our

hypotheses. Afterwards, in Sect. ‘‘Data and context’’, we describe our data and compare the

knowledge topics in the USA and China through constructing co-occurrence networks.

Section ‘‘Relatedness between topic and topic’’ analyzes the relatedness between topic and

topic and explore the dynamic evolution of relatedness. Section ‘‘Relatedness between

topic and country’’ investigates the relatedness between topic and country. Section

‘‘Analyses: relatedness and output’’ empirically tests our hypotheses and explains the

results. While Sect. ‘‘Conclusion’’ presents the conclusion and discussion.

Literature review

The production of innovation usually demands knowledge from multiple scientific fields

(Schumpeter 1934). Attentions on the relationship between knowledge and innovation

output raises a question: What kind of influence will the relatedness of knowledge exert on

the innovation output. The relatedness between the topic and other topics could bring about

combinatorial opportunities (Wang et al. 2014). However, if the combinatorial capacity of

the knowledge topic with other topics is too strong, the potential of their creative con-

vergence could be largely exhausted (Kim and Kogut 1996). Relative to the knowledge

topic with high relatedness, the knowledge which has weak relatedness tends to have an

advantage in scientific performance. First, the knowledge transfer among knowledge topics

which have high relatedness is repetitive most of the time. Content transferred among such

knowledge may also represent homogenous and unuseful information. While as the

information transmitted among the low relatedness knowledge topics demonstrates non-

redundant and useful (Hansen 1999), which makes such knowledge topic exposed to varied

topics (Granovetter 1973). Different perspectives and approaches can extend innovative

expertise (Coser 1975) which is crucial to innovation. Second, due to the low similarity of

knowledge topics with low relatedness (Granovetter 1983), knowledge exchange oppor-

tunities are provided to produce ideas collision and innovative spark (Jerome 2013), which

is helpful to stimulate innovation in different scientific backgrounds and areas. Existing

studies suggest the technology portfolio of actors should not be too related (Granstrand

et al. 1997; Hussinger 2010). Diversification of related knowledge can be helpful for

researchers to understand emerging technological opportunities and keep up with rapid

technological developments (Hussinger 2010). What’s more, knowledge topic with weak

relatedness suffers less constrains, which presents strong autonomy. Relatively weak

relatedness will bring fresh knowledge, making innovation easier. Thus, a knowledge topic

owning low relatedness with other knowledge topics tends to be strong in innovation

output.

At the country level, relatedness between topic and country measures the closeness

between knowledge topic and country. We also think that relatedness between topic and

country will have a negative impact on scientific output, which is due to two reasons. On

the one hand, although knowledge production shows path dependence (Garud and Karnoe

2013), such path dependence limits the learning of new knowledge. Relatively high

relatedness between topic and country indicates that the topic is cognitively close to the

country and the percentage of knowledge topics associated with the specific topic is high in

that country (Boschma et al. 2014). As such, knowledge topic in that country may reach a
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point where its scientific value has been exhausted (Carnabuci and Bruggeman 2009)

suggesting the costs may ultimately exceed the benefits (Phelps et al. 2012). The explo-

ration space of a topic which has high relatedness with the country is limited and under

restrictions. We can predict that further output on that topic in that country is no longer

fruitful. On the other hand, it is an inevitable tendency that knowledge production shows

globalization (Hassan and Haddawy 2013). This international collaboration will promote

the process of international communication and knowledge dissemination (Ma et al. 2014)

which narrow the cognitive gap among nations. For this reason, the scientific output of the

topic owning low relatedness with the country will increase with great potential. Based on

the above discussion and arguments, we will propose our hypotheses:

Hypothesis: Scientific relatedness has a negative relationship with scientific output.

Hypothesis (a): The relatedness between the topic and other topics negatively affects its

scientific output.

Hypothesis (b): The relatedness between the topic and country negatively affects its

scientific output.

Data and methodology

Data and context

We draw on data sets of articles to analyze the USA and China research innovation

networks in the period spanning 2000–2013. Though the research of solar energy has a

long history, it has not been seen as a priority area of research until more recently (Hassan

et al. 2014). The period 2000–2013 involving relatively new information and plentiful

empirical data can be used to capture recent research trends and identify the current top

collaborative authors. What’s more, we found that China has only 31 papers, yet the USA

has 333 papers in this field in 1999. On the one hand, few scientific documents may lead to

sparse networks. On the other hand, this big gap which is found between the United States

and China before 2000 may result in uncomparability. Mainly due to that China shows

significant increase in scientific documents and the gap with the United States is narrowed

after 2000, our study interval is 2000–2013. Two scientific data sets downloaded from the

Web of Science (WoS) form the core of our study. The database has been utilized

extensively in early research (Zhu and Guan 2013). Searching terms which are adopted in

this paper to retrieve solar energy data records, are developed by Sanz-Casado et al.

(2013), and ‘‘Appendix’’ displays the retrieval profile for solar energy. Many research

fields utilize bibliometric methods to analyze the research trend form publication output,

keywords, subject category, etc. (Mallik and Mandal 2013).The total number of articles

identified in the WoS is 70,562 over the period 2000–2013. The sample includes

156 countries. The database is mainly centered in the United States, which is in number

one position responsible for 14,342 publications. China, in the second position, is asso-

ciated with 11,896 articles published. Figure 1 plots on the number of the USA and China

articles since 2000. Both of countries show significant growths in research productivity. As

clearly displayed by Fig. 1, the USA occupied an absolutely leading position and China

took the second largest scientific producer before 2011. Glancing at the figure, the expo-

nential growths in solar energy articles in both countries stand out. China has a relatively
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high scientific productivity in solar energy (CN: y = 28.6e.341x, R2 = .995) and has

exceeded the USA after 2011 (US: y = 227.2e.168x, R2 = .965).

A large proportion of articles for each of the countries have more than one topic. The

convergence of knowledge, contributes to the growth in research output for the USA,

China and the world. The keywords are related to the topic (Cataldi et al. 2010) in the set of

solar energy publications. Keywords summarize the core content of literature which can

reflect the theme distribution and characteristics in a particular field (Glänzel and Thijs

2012). The use of keywords in the set of solar energy publications provides us with an

indication of the cognitive developments of topics within the field (Rip and Courtial 1984).

Keywords can be used to map knowledge structure (Su and Lee 2010), which are useful

and important for the readers and authors. Accurate and concise keywords can arouse the

reader’ interest and attention, which are good for the citations of the article, so almost

every author writes the keywords seriously and accurately. We also considered the clas-

sification of WoS to construct the co-occurrence network. But the less number of classi-

fications (N = 200 here) urges us to give up the idea. We used data from WoS to track the

country’s scientific activities. The dataset contains details about articles, including pub-

lished dates, countries, and keywords. Keywords by WoS have been considered valid

proxies to trace scientific development. Scientific researchers categorize keywords care-

fully which are usually anchored on a subject matter. Changes in a country’s keywords

over time can be clearly discerned which makes the internal cognitive structure visible

(Mutschke and Haase 2001). In this study, we use a key word as proxy for a topic. We

clean the dataset for the reason that different words may represent the same concept, such

as ‘‘solar cells’’ and ‘‘solar cell’’. Figure 2 shows the dynamic processes of topic numbers

for the USA and China. As displayed in Fig. 2 on the whole, the number of topics of the

USA per year is far more than China before 2010. Nevertheless, the gap between the USA

and China has remarkably narrowed year by year. Both of the USA and China perform the

impressively exponential growth pattern (US: y = 383.2e.167x, R2 = .961; CN:

y = 78.94e.306x, R2 = .990). However, the USA retains growth in a relatively stable sit-

uation and has lost its leading position after 2010 which is occupied by China. China

demonstrates a great speed and strength of the catch-up process. Note that the growth in

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r 

of
 a

rt
ic

le
s

year

US

CN

0.341 2

0.168 2

: 28.6 , 0.995
: 227.2 , 0.965

x

x

CN y e R
US y e R

= =
= =

Fig. 1 Growth in solar energy scientific articles

Scientometrics (2015) 102:1595–1613 1599

123



topic numbers in the USA is exceeded by growth in China. The USA used to be the major

scientific producer, but in the topic quantity in the solar energy field, China dominates.

Article output presented in Fig. 1 does not exhibit the full feature of academic status. As

a comprehensive index of richness and uniformity of data, diversification can describe the

distribution of the topic share (Rafols and Meyer 2010). From a RBV (resource-based

view) perspective, the countries engaging in topic diversification are willing to exploit

existing scientific resources to develop new capabilities which enhance innovation

(Quintana-Garcı́a and Benavides-Velasco 2008). Diversified countries can manage more

opportunity for knowledge utilization, and their profit will increase due to topics combi-

nation arising from diversification. Given these perspectives, we seek to probe into the

topic diversification of the two countries. In our study, diversification is measured by the

entropy measure developed by Palepu (1985) which is calculated from articles data at the

focal year by using the following equation: D ¼
PN

k Pk ln 1
Pk

� �
. Where Pk is the proportion

of articles in the topic k, and ln 1
Pk

� �
is the weight for each topic k, for a country with

N different topics. In order to present the dynamic change feature of topic diversification in

the solar energy field, we calculate the time series data of topic share in the period

2000–2013 for the USA and China. Figure 3 portrays topic diversification of two countries,

reflecting the national dynamic change. The figure reveals that the USA always has a

higher diversification than China; however, the topic diversification gap is relatively

smaller after 2007. After then, China closes the gap at the rapid rate.

Current focal points of academic research in solar energy field are different cross

nations. Social network analysis like co-word occurrence analysis, co-authorship analysis,

and other indicators of scientific discovery and knowledge production, has been a useful

tool for bibliometric analyses (Kumar and Jan 2014). In order to observe the differences

and similar among countries, Fig. 4 visualizes crucial connections in the country-topic

association network (2-mode network) in solar energy field in 2013. The visualization

identifies different nodes which include country (square node) and its associated topics

(circular nodes). Topic nodes whose degrees exceed 3 and edges whose weights exceed 2
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are showed in Fig. 4, and some major countries (G7countries: The United States, Britain,

France, Germany, Japan, Italy, and Canada) and China are included in the figure. We just

show 24 topic labels which are most frequently on articles (i.e. Solar Cells, Nanostructures,

Organic Photovoltaics, Morphology ……). Based on network structure, the more massive

the academic productivity of a node in the network, the larger that vertice is visualized.

The USA is the largest country node in the network, China is ranks second, and Germany is

third. We can find that these countries are most extensively associated to academic topics

in their respective scientific activities, which demonstrates that they are the three most

comprehensive of the literature producers in this network. We can identify closely linked

major topics of a country by the size of nodes in each country’s sub-network. In the USA

sub-network, for example, the ‘‘Solar Cells’’ node is largest, with the extensive association

to the USA node. Furthermore, we find that Nanowires, Organic Photovoltaics, Zno,

Density Functional Theory, Saudi Arabia, Plasma Expansion, and Spacecraft Arcing, are

all vastly connected to the USA. Another high density sub-network that we can identify in

Fig. 4 is that China and associated topics. Dye-sensitized Solar Cells, Polymer Solar Cells,

Solar Cells, Counter Electrode, Optical Properties, Tio2, Solar Energy, and Self-assembly

are all highly associated with China, reflecting that they have received increasing attention

in current research in China. Besides helping to identify country-associated major topics, in

the center of the network (Fig. 4), one may find some topics connecting with many

countries, suggesting that they attract common concerns in many countries. Take ‘‘Solar

Cells’’, for example, which not only connects to the USA, but also to Germany, Japan,

England, and France, revealing an interrelationship between these countries. However, this

is also true of some quite specific topics, which are associated with specific countries. Take

Organic Dyes (whose label is not shown in Fig. 4) for example, it only connect to China,

revealing a phenomenon that some specific topics acquire analyses from a single nation.

In this study, we used keywords as important information to construct co-occurrence

networks of keywords. Like patents, the keyword provides a means to organize scholarly

literature intellectually (Leydesdorff et al. 2014). Figure 5 represents the largest connected

component of topic co-occurrences graphically in 2013 in the USA. Nodes represent topic

and lines represent keywords co-occurrence. Edges are presented in this figure if and only
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if their weights exceed 2, which means the number of the co-occurrence between two

topics exceed 2. Topic nodes whose degrees exceed 2 are showed in Fig. 5, which means

those topic nodes connect with at least three other topic nodes. The size of the nodes

corresponds to the number of articles in each topic. Figure 5 shows the co-occurrence maps

of the keywords analyzed in the USA. As mentioned above, the maps show the important

associations between topics. We further detect scientific sub-networks using Girvan–

Newman algorithm in Fig. 5, and the color of each topic indicates the subgroup to which it

belongs. Girvan-Newman algorithm is a method of community identification developed by

Newman and Girvan (Newman and Girvan 2004) which uses centrality indices and

approaches an iterative process to find community boundaries. Figure 5 displays it clearly

that four subgroups detected in the co-occurrence network in the USA. Subgroup I (red)

which is mainly involved in the solar power literature includes the biggest node: solar cells.

Subgroup II (black) located at the top right of Fig. 5 is mainly associated with the chemical

synthesis. Subgroup III (yellow) has relatively low article production reflecting the con-

vergence between solar energy and other renewable energy. Subgroup IV (blue) named

‘‘efficiency and environment’’ is that with the dense associations among its different topics.

As one observes from Fig. 6, the topics are classified into 3 subgroups in China.

Subgroup I (red) is in the center of the whole network which is related to solar power

literature, and it has the maximum number of topics. Subgroup II (black) corresponding to

‘‘chemical synthesis’’ is on the left side of Fig. 6. Subgroup III (blue) named ‘‘other

energy’’ has few relationships with other subgroups. As indicated by Figs. 5 and 6, China

has different subgroups classifications comparing with the USA. Nevertheless, their

research priorities have a lot in common, such as ‘‘Dye-sensitized Solar Cells’’, ‘‘Polymer

Solar Cells’’, ‘‘Optical Properties’’, etc. The possible reasons why the subgroups classifi-

cations are different between the USA and China are as follows: on the one hand, the USA

pays more attention to efficiency of energy utilization (Howarth et al. 2000) and the impact

on the environment (Chu and Majumdar 2012) than China does. On the other hand, China

relies on extensive method of economic growth (Fei et al. 2011). Significant investment-

Fig. 4 2-mode network
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driven and factor-driven growth is a specific feature of China’s economic development

(Sabir and Sabir 2010). Thus, in the USA, ‘‘energy efficiency and environment’’ prove

more developed, while in China, ‘‘solar power’’ shows more central.

According to the basic theory of social networks, topic nodes with high betweenness

centrality are considered to represent keys of research directions (Chi and Young 2013).

Topics with relatively high betweenness centrality play important roles to bridge and link

with other academic topics. They are always at the hub of a network and critical for the

formation of some sub-networks (Valente 2012). We rank topics in Figs. 5 and 6

according to their betweenness centrality which is multiplied by 100. Top 10 topics in the

USA and China are listed in Table 1. As reported in Table 1, the highest topic is ‘‘Solar

Cells’’ in both of countries, fully demonstrating the importance of it. The remaining topics

rankings vary in two countries, but we find that 3 topics (italics and bold) are both ranked

in the top 10 in the USA and China after comparing.

Relatedness between topic and topic

To measure the relatedness between topic and topic, we use Ron Bosch’s methods and

compute relatedness based on topic co-occurrence analysis (Boschma et al. 2014). A

simple and normalized measure is utilized to analyze the relatedness of scientific topics.

Two keywords are considered to be associated with each other if they co-occur on one

article. Thus, we could obtain a co-occurrence matrix in solar energy field in each period.

After then, we use Jaccard index to normalize the value represents the co-occurrences

(Leydesdorff 2008). According to previous studies, we define Rijt as the relatedness

between topic i and topic j at time t which is given in the Eq. (1).

Rijt ¼
occij

occi þ occj � occij

ð1Þ

We define occij as the co-occurrences numbers between topic i and topic j. Besides, occi

represents the total number of occurrences of topic i which can be calculated through

summing up the number of ith row of the co-occurrences matrix. Similar with occi, occi

denotes the amount of occurrences of j. We also construct Rit as the relatedness of topic i at

time t which is displayed in the following equation:

Table 1 Top 10 high betweenness centrality topics

US Centrality China Centrality

Solar Cells 51.36 Solar Cells 36.74

Solar Energy 31.11 Dye-sensitized Solar Cells (dsscs) 34.24

Organic Photovoltaic (opv) Cell 28.15 Photocatalysis 22.03

Polymer Solar Cells 25.55 Polymer Solar Cells 18.34

Morphology 24.64 Tio2 16.11

Efficiency 22.34 Hydrogen Production 13.16

Solar 21.75 Solar Energy 11.73

Renewable Energy 19.55 Graphene 9.77

Water Splitting 14.58 Thin Films 9.12

Nanowires 13.46 Semiconductor Cds 8.85
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Rit ¼
Pn

i 6¼j Rijt

n
ð2Þ

where n denotes the number of topics having co-occurrence relationships with i. We further

compute the scientific relatedness of the whole network at time t on the above basis. The

relatedness of network Rt function given by:

Rt ¼
Pm

i Rit

m
¼
Pm

i

Pn

i6¼j
Rijt

n

m
ð3Þ

where m denotes the number of topics belonging to the whole network. Early studies have

investigated co-occurrences of technology classes (Luan et al. 2013), co-occurrences of

title words (Milojević et al. 2011). However, little scientific work analyzes the evolution of

the scientific relatedness cross the time. In order to fill the gap, we plot the dynamic change

of Rt over the time period of 2000–2013. As showed in Fig. 7, both the USA and China

have displayed a decrease in relatedness. Overall, even the numbers of articles and topics

involved in the solar energy have been rapidly increasing over time, the average scientific

relatedness between topics have dramatically declined year by year. Due to emerging

topics and development of science, this evolving curve represents that topic associates with

a wide range of topics. However, the associations are weaker over years.

Relatedness between topic and country

To further investigate how close a topic is to country, we construct a country-topic level

variable Rict through combining the relatedness Rijt with the countries. Information about

countries is acquired from the author addresses concluded in articles. In our study, articles

are fully distributed to each author nation (Boschma et al. 2014). Rict which describes the

relatedness between topic i and country c at time t is given by formula (4):

Rict ¼
P

j2c;j 6¼i uijt
P

j6¼i uijt

ð4Þ

where
P

j2c;j 6¼i uijt means the number of topics that can be found in the dataset of the

country c which topic i links to at time t.
P

j 6¼i uijt represents the total number of topics
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which topic i links to at time t. For instance, if a specific topic i is related to 50 other topics

in the whole dataset, and country occupies 10 topics, then the Rict will be equal to

10/50 9 100 % = 20 %. Rict can been seen as the percentage of topics found in a country,

and as such, we could attribute topics to country in each year.

Table 2 shows scientific relatedness between the USA and China and top 10 topics

appeared which most frequently on articles in 2013 (Rict is multiplied by 100). For

instance, the degree of scientific relatedness between the country-the USA and the topic

‘‘Solar Cells’’ is 18.89, which implies that researchers from the USA are concentrated on

18.89 % of the topics that are related to ‘‘Solar Cells’’. Comparing with China, we find that

8 topics (italics and bold) are both ranked in the top 10 in the USA and China and there are

some significant differences between the two countries. For example, the scientific relat-

edness between the country- the USA and the topic ‘‘Dye-sensitized Solar Cells’’ is 7.65,

whereas the value is 44.39 in China representing that the researchers from China are

specialized in more topics related to ‘‘Dye-sensitized Solar Cells’’ than the USA.

Analyses: relatedness and output

We collect our sample by downloading all solar energy articles from WoS which contain

details about publish dates, authors, and locations to construct topic co-occurrence matrices

as discussed above. In order to achieve a high precision in analyzing networks and get a

fine-grained analysis of relatedness dynamics (Gulati et al. 2012), we use one-year win-

dows from 2000 to 2013 to construct co-occurrence networks. The total dataset finally

includes 156 countries and 64,658 scientific topics. The sample involved in the USA

includes 23,933 topics and there are 21,284 topics in China dataset. Our goal is to

empirically investigate the impact of relatedness on innovation output. Our analysis unit is

topic, and we regress the number of articles containing this topic in the next year on its

scientific relatedness.

The dependent variable Outputt?1 is the number of articles containing this topic in the

given year (t ? 1). The explanatory variable Rit means the average scientific relatedness of

topic i with other topics in year t. Another important explanatory variable is Rict which

shows the relatedness of topic i with country c in year t. We control some factors which can

Table 2 Scientific relatedness between countries and topics

US China

Topic Articles Rict Topic Articles Rict

Solar Cells 113 18.89 Dye-sensitized Solar Cells 208 44.39

Photovoltaics 91 39.28 Solar Cells 182 26.27

Solar Energy 67 28.36 Polymer Solar Cells 79 55.12

Thin Films 41 18.65 Tio2 57 43.24

Organic Photovoltaics 35 38.54 Solar Energy 52 19.58

Dye-sensitized Solar Cells 31 7.65 Photocatalysis 48 48.53

Conjugated Polymers 30 22.34 Conjugated Polymers 46 32.34

Morphology 28 32.54 Thin Films 45 22.47

Polymer Solar Cells 26 20.70 Organic Solar Cells 45 30.92

Organic Solar Cells 26 20.83 Optical Properties 44 34.53
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influence the dependent variable in our analysis. Productivity of topic is controlled by a

key variable: Stock which is constructed by the total number of articles in which a topic

occurs on a given 1 year period. To control for the impact of network structures on the

innovation output, we include variables: centrality and structural holes. The centrality of

the topic in the co-occurrence network is measured by Pajek software. Due to that

betweenness centrality can measure the ability of topic controlling the resource; we use

betweenness centrality as the centrality measure (Kumar and Jan 2013):

CB nið Þ ¼
P

j\k gjk nið Þ=gjk

g� 1ð Þ g� 2ð Þ ð5Þ

where gjk is the amount of the shortest paths from node j to k, gjk nið Þ shows the number of

paths that pass i and g is the number of nodes in the network.

We compute structural holes using Burt’s measure (Burt 1992). The index CO displays

the extent to which all of i’s ego network is invested in its associations with j. The CO

index is computed as following equation:

COi ¼
X

j

pij þ
X

q;q 6¼i;q6¼j

piqpqj

 !2

ð6Þ

where pij is the ratio of i’s relationships invested in linking j. Due to the fact that the value

of COi is perhaps bigger than 1 (Lee 2010), we subtract COi from 2 to obtain the structural

holes Si (Wang et al. 2014; Guan et al. 2014) which is shown in Eq. (7).

Si ¼ 2� COi: ð7Þ

Table 3 provides some descriptive statistics and the correlation of the variables included

in our analysis of the USA. We can obtain that control variables—stock, Structure holes,

Centrality are all positively related to the output, which is consistent with early study.

We also analyze some descriptive statistics and the correlation of the variables included

in our analysis of China. The result displayed in Table 4 is similar with Supporting the

prior literature review, Rit is negatively related to topic’s article output in both the USA and

China (r = -.08, p \ .01; r = -.15, p \ .01, respectively), and a negative correlation is

found that Rict is negatively related to its output (r = -.23, p \ .01; r = -.21, p \ .01,

respectively).

As showed in Tables 3 and 4, there are no obvious bivariate correlations among

explanatory variables. We also find that the highest VIF (variance inflation factor) is 3.01,

which suggests that multicollinearity is not a concern (O’brien 2007). The dependent

Table 3 Means, standard deviations, and correlations (US)

Mean SD Output Stock Structure holes Centrality Rit

Output .64 2.55

Stock 1.40 2.08 .83**

Structure holes 1.44 .24 .30** .33**

Centrality .001 .005 .66** .73** .25**

Rit .19 .12 -.08** -.08** -.76** -.04**

Rict .79 .31 -.33** -.23** -.25** -.18** .10**

* p \ .05; ** p \ .01
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variable in our study is count variable and takes non-negative integer values (the number of

articles). We find our dependent variables suffer from overdispersion. The mean of

dependent variable is .64 and the SD is 2.55 in the USA, and the mean of the dependent

variable is .91 and the SD is 3.65 in China. We use negative binomial models which can

accommodate over dispersion (Cameron and Trivedi 2013). According to the results of the

Hausman test (p \ .001), we decide to utilize fixed effects models which are appropriate

for the data (Hausman 1978). Table 5 shows the results of the Negative Binomial model

with fixed effects. Model 1 included all control variables of the USA, and model 2 adds Rit

and Rict. After that, we put all control variables of China into model 3, and model 4 adds Rit

and Rict. There has been no significant difference between the USA and China. As we

expected, models 1 and 3 with control variables indicate that stock and structure holes are

positively associated with article output. However, centrality is negatively associated with

article output non- significantly. In models 2, Rict has a significant negative impact on the

innovation output (b = -.903, p \ .01), and compared with that, the coefficient for Rit is

negative and non-significant (b = -.181, p [ .05). In models 4, both Rict and Rit exhibit

the negative and significant influence (b = -.557, p \ .01; b = -3.328, p \ .01,

respectively). As such, our results support that higher scientific relatedness leads to lower

scientific output.

Conclusion

In this study, we comparatively understand the scientific relatedness of the USA and China

between 2000 and 2013, taking a network approach in the solar energy field based on the

panel data from WoS database. Both differences and similarities are found in the scientific

research of the two countries. The results of our analysis generate the following findings.

While the literature productivity of the USA is the highest before 2011, China has

shown an incremental increase and exceeds the USA in 2011, becoming a new major

scientific contributor to the solar energy field. Both of countries show an exponential

growth process in the numbers of knowledge topics. The USA demonstrates an obvious

low growth rate in topic numbers, while China displays a noticeable rise so as to have

developed into the largest scientific topic producer since 2010. Although the topic diver-

sification of China is always lower than the USA, the gap between the USA and China is

smaller over the recent years.

Table 4 Means, standard deviations, and correlations (China)

Mean SD Output Stock Structure holes Centrality Rit

Output .91 3.65

Stock 1.52 2.62 .91**

Structure holes 1.41 .24 .33** .36**

Centrality .001 .005 .71** .77** .29**

Rit .15 .11 -.15** -.15** -.75** -.07**

Rict .76 .33 -.28** -.21** -.27** -.18** .10**

* p \ .05; ** p \ .01
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We apply social network method to extract country information and keywords from the

database to visualize a 2-mode network, helping us to identify country-associated major

topics. Word co-occurrences network is representative of research priorities which is

widely used in capturing key knowledge topics. Comparative different structures of word

co-occurrences networks are detected in the USA and China. Both of countries show the

important associations with ‘‘solar energy’’, ‘‘chemical synthesis’’, ‘‘combining with other

energy’’. However, the USA displays the concerns on the ‘‘Efficiency and environment’’.

Moreover, we construct keywords co-occurrences networks to analyze the relatedness

between knowledge topic and topic, and then we make use of relatedness between

knowledge topic and topic to develop the variable: relatedness between knowledge topic

and country. As such, there are two kinds of scientific relatedness involved in this paper:

(1) relatedness between topic and topic; (2) relatedness between topic and country. We also

investigate the dynamic change of scientific relatedness over the time. A dramatically

declined trend of scientific relatedness is found. We then investigate how close a topic is to

country through analyzing the relatedness between topic and country. We obtain that 8

same topics are both ranked in the top 10 in the USA and China.

Furthermore, previous studies have used patent and literature documents to the influence

of scientific relatedness on emergence and disappearance of topics (Boschma et al. 2014;

Rigby 2013) and investigated the relationship between the knowledge relatedness and

innovation outcome at the firm level (Tanriverdi and Venkatraman 2005). Our study

investigates the impact of scientific relatedness on the innovation output in the solar energy

field during the year 2000–2013. As expected, we find empirical evidence that scientific

relatedness tend to negatively affect the scientific performance both in the USA and China.

Our study contributes to the innovation and knowledge research.

The theory contribution of our research as follows. First, we contribute to the literature

of scientific relatedness at the topic level (i.e. relatedness between topic and topic) and the

country level (i.e. relatedness between topic and country). Secondly, we study on what

extent the scientific relatedness exerts influence on the literature productivity at the country

level. Finally, we make a better understanding of the research directions in the USA and

China. Our work has potential implications for the future innovative research in the solar

energy field.

Our work may help policymakers and researchers about the further scientific devel-

opment at the country level. This is an urgent issue in solar energy sciences due to

importance of energy development. Our results show that researchers should take into

Table 5 Results of regression models

Model 1 2 3 4
US China

Stock .027** (.003) .027** (.003) .028** (.002) .020** (.002)

Structure holes 1.063** (.726) 1.138** (.091) 1.463** (.068) .604** (.093)

Centrality -.172 (1.699) .949 (1.534) -1.610 (1.699) -.168 (1.541)

Rict -.903** (.071) -.557** (.076)

Rit -.181 (.237) -3.328** (.230)

Cons -.985** (.124) -.616** (.180) -1.341** (.118) 1.040* (.185)

Log likehood -6,552.927 -6,467.972 -5,978.780 -5,827.576

Wald chi2 584.48 785.10 1,198.92 1,526.30

* p \ .05; ** p \ .01
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account the relatedness of the topics. At country level, the scientific relatedness between

the topic and the country negatively affect the innovation performance in the next period.

Thus, nation government should provide a policy direction and pay attention to support the

topics which have low scientific relatedness with this country. These topics are cognitively

far to the country, and they have great potential to be developed in this country. In addition,

our results suggest that each country should clear directions for research and focus on the

research topics which have low scientific relatedness instead of imitating other nations.

Researchers should focus on the scientific topics which owning low relatedness in order to

yield more scientific output.

The current study has several strengths. We differentiated two kinds of scientific

relatedness and operate them in different ways. We empirically tested the relationship

between scientific relatedness and innovation performance which fills the gaps in the

previous studies. There are also some limitations in our study. We should note that our

empirical setting is solar energy field; future studies should collect data from wider fields to

check the consistency of results. In addition, we just investigate the relationship between

scientific relatedness and the number of articles; future studies could probe the deep

mechanism between them and the origin of scientific relatedness.
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Appendix: Retrieval profiles for solar energy

TS = (‘‘solar energy*’’ OR ‘‘solar radiation’’ OR ‘‘solar cell*’’ OR ‘‘solar photovoltaic*’’

OR ‘‘solar power’’ OR ‘‘solar heat*’’ OR ‘‘solar plant*’’ OR ‘‘solar concentrate*’’ OR ‘‘solar

thermal’’ OR ‘‘solar collect*’’ OR ‘‘solar technolog*’’) AND PY = (2000–2013) Refined by:

Document Type = (ARTICLE) AND [excluding] Web of Science Categories = (HORTI-

CULTURE OR PLANT SCIENCES OR FORESTRY) Databases = SCIEXPAND-

ED,SSCI, CPCI-S, CPCI-SSH Timespan = 2000–2013 Lemmatization = On.
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