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Abstract Productivity is the quintessential indicator of efficiency in any production

system. It seems it has become a norm in bibliometrics to define research productivity as

the number of publications per researcher, distinguishing it from impact. In this work we

operationalize the economic concept of productivity for the specific context of research

activity and show the limits of the commonly accepted definition. We propose then a

measurable form of research productivity through the indicator ‘‘Fractional Scientific

Strength (FSS)’’, in keeping with the microeconomic theory of production. We present the

methodology for measure of FSS at various levels of analysis: individual, field, discipline,

department, institution, region and nation. Finally, we compare the ranking lists of Italian

universities by the two definitions of research productivity.
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Introduction

Opthof and Leydesdorff (2010) criticized the statistical normalization of the Leiden CWTS

‘‘crown indicator’’. A year later, bibliometricians from the CWTS group (Waltman et al.

2011) admitted that the ‘‘old crown indicator’’ was mathematically inconsistent and

adopted the normalization method suggested by the above authors, leading to a ‘‘new

crown indicator’’: the mean normalized citation score, or MNCS. A counter-reply from

Leydesdorff and Opthof (2011) was not long in arriving: although agreeing with the new

statistical normalization, they then further recommended using the mean rather than the

median to field normalize citations.

In a parallel story, since the original introduction of the h-index in 2005 by physicist

Jorge E. Hirsch, over 1,600 articles have been written illustrating its merits and defects and

proposing one variant after another, to the extent even the most devoted historian of

bibliometrics would despair of tracing them all.

But is it possible that these two research performance indicators really merited all this

attention, or is it a case of ‘‘Much ado about nothing’’? These particular indicators have only

been the most popular among a myriad of others proposed over recent years by scholars and

practitioners. While bibliometricians undoubtedly intended to provide useful indicators and

ever more accurate and reliable methods, they have actually been the cause of increasing

confusion. The proliferation of proposals has actually generated a type of disorientation

among decision makers, no longer able to discriminate the pros and cons of the various

indicators for planning an actual evaluation exercise. The proof of this is the increasing

number of expert commissions and working groups at institutional, national and suprana-

tional levels, formed to deliberate and recommend on this indicator, that set of indicators, and

this or that measure of performance. Performance ranking lists at national and international

levels are published with media fanfare, influencing opinion and practical choices. The

impression of the current authors is that these rankings of scientific performance, produced by

‘‘non-bibliometricians’’ (THE 2013; SJTU 2013; QS 2013; etc.) and even by bibliometricians

(University of Leiden, SCImago, etc.), are largely based on what can easily be counted rather

than ‘‘what really counts’’. It is also our impression that the large part of the performance

evaluation indicators proposed in the literature arise from a primarily mathematical school of

thought. While knowledge in this area is fundamental in the methodology for application, our

personal conviction is that research evaluation indicators must necessarily derive from

economic theory. Since research activity is a production process, it should be analyzed from

the perspective of microeconomic theory of production. Performance, or the ability to per-

form, should be evaluated with respect to the specific goals and objectives to be achieved.

Because objectives may vary across research institutions and along time, recommending a

sole indicator of performance would be inappropriate. However this does not justify the

proliferation of hundreds of indicators, which while they may offer ease of calculation have

little or no utility for policy or management decisions. A nation or research institution could

aim to improve its average research productivity, or the rate of concentration of top articles or

top scientists, or aim for a combination of these efforts in different weights. However we

doubt that any government or research administrator could pursue any improvement that

would be revealed through measurement by the MNCS, h-index or average number of

publications per researcher. As a consequence, all the research evaluations based on these

indicators and their relative rankings are at best of little or no value, and are otherwise actually

dangerous, due to the distortions embedded in the information provided to the decision-

makers. What is certain is that the objectives for research systems must be stated in mea-

surable terms representing the desired outcome of production activity.
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In this work we intend to provide an operative definition of the principal indicator of

efficiency of any production unit, productivity. In the context of research organizations,

bibliometricians have become accustomed to define research productivity as the number of

publications per researcher, distinguishing it from impact, which they measure by citations.

Honestly, we are not able to date back the scholar who first introduced the above definition, but

already in 1926 Alfred J. Lotka used the number of publications in his milestone work (Lotka

1926) where he presented what it is now known as the Lotka’s law or research productivity.

Unfortunately, from an economic standpoint, and we remind that productivity is a concept

born into the economic theory, such definition makes little sense. It would be acceptable only if

all publications had the same value or impact, but that could not be further from the truth.

The objective of this paper is to operationalize the concept of productivity for the

specific context of research activity and propose a measurable form of productivity. We

will then present an indicator, Fractional Scientific Strength (FSS), which in our view is

thus far the best in approximating the measure of productivity. We will also illustrate the

methodology for measuring FSS in the evaluation of performance at various levels of

analysis: individual, field, discipline, department, institution, region and nation. Finally, we

compare Italian university ranking lists by the two definitions of productivity: FSS and

average number of publications per researcher.

Productivity in research activities

In this section, our intention is to operationalize the concept of research productivity in

simple terms and propose a proxy to measure it.

Generally speaking, the objective of research activity is to produce new knowledge.

Research activity is a production process in which the inputs consist of human, tangible

(scientific instruments, materials, etc.) and intangible (accumulated knowledge, social

networks, economic rents, etc.) resources, and where output, the new knowledge, has a

complex character of both tangible nature (publications, patents, conference presentations,

databases, etc.) and intangible nature (tacit knowledge, consulting activity, etc.). The new-

knowledge production function has therefore a multi-input and multi-output character. The

principal efficiency indicator of any production unit (individual, research group, depart-

ment, institution, field, country) is productivity: in simple terms the output produced in a

given period per unit of production factors used to produce it. To calculate research

productivity one needs adopt a few simplifications and assumptions.

On the output side, a first approximation arrives from the imposition of not being able to

measure any new knowledge that is not codified. Second, where new knowledge is indeed

codified, we are faced with the problem of identifying and measuring its various forms. It has

been shown (Moed 2005) that in the so-called hard sciences, the prevalent form of codification

for research output is publication in scientific journals. Such databases as Scopus and Web of

Science (WoS) have been extensively used and tested in bibliometric analyses, and are suffi-

ciently transparent in terms of their content and coverage. As a proxy of total output in the hard

sciences, we can thus simply consider publications indexed in either WoS or Scopus.1 With this

proxy, those publications that are not censused will inevitably be ignored. This approximation is

considered acceptable in the hard sciences, although not for the arts, humanities and a good part

of the social science fields. Other forms of output, particularly patents, can be identified in

1 Although the overall coverage of the two databases does differ significantly, evidence suggests that, with
respect to comparisons at large scale level in the hard sciences, the use of either source yields similar results
(Archambault et al. 2009).
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commercial or free databases such as Derwent and Espacenet. Patents are often followed by

publications that describe their content in the scientific arena, so the analysis of publications

alone may actually avoid in many cases a potential double counting.

Research projects frequently involve a team of researchers, which shows in co-authorship

of publications. Productivity measures then need to account for the fractional contributions of

single units to outputs. The contributions of the individual co-authors to the achievement of

the publication are not necessarily equal, and in some fields the authors signal the different

contributions through their order in the byline. The conventions on the ordering of authors for

scientific papers differ across fields (Pontille 2004; RIN 2009), thus the fractional contri-

bution of the individuals must be weighted accordingly. Following these lines of logic, all

performance indicators based on full counting or ‘‘straight’’ counting (where only the first

author or the corresponding author receive full credit and all others receive none) are invalid

measures of productivity. The same invalidity applies to all indicators based on equal frac-

tional counting in fields where co-author order has recognized meaning.

Furthermore, because the intensity of publications varies across fields (Garfield 1979;

Moed et al. 1985; Butler 2007), in order to avoid distortions in productivity rankings (Abramo

et al. 2008), one should compare researchers within the same field. A prerequisite of any

productivity assessment free of distortions is then a classification of each individual

researcher in one and only one field. An immediate corollary is that the productivity of units

that are heterogeneous for fields of research of their staff cannot be directly measured at the

aggregate level, and that there must be a two-step procedure: first measuring the productivity

of the individual researchers in their field, and then appropriately aggregating this data.

In bibliometrics we have seen the evolution of language where the term ‘‘productivity’’

measures refers to those based on publication counts while ‘‘impact’’ measures are those

based on citation counts. In a microeconomic perspective, the first operational definition

would actually make sense only if we then compare units that produce output of the same

value. In reality this does not occur, because the publications embedding the new

knowledge produced have different values. Their value is measured by their impact on

scientific advancements. As proxy of impact bibliometricians adopt the number of citations

for the units’ publications, in spite of the limits of this indicator (negative citations,

network citations, etc.) (Glänzel 2008). Citations do in fact demonstrate the dissemination

of knowledge, creating conditions for knowledge spillover benefits. Citations thus repre-

sent a proxy measure of the value of output. To each citation may also be given a different

weight, depending on the citing article influence, measured by number of citations accrued.

Comparing units’ productivity by field is not enough to avoid distortions in rankings. In

fact citation behavior too varies across fields, and is not unlikely that researchers belonging

to a particular scientific field may also publish outside that field (a typical example is

statisticians, who may apply statistics to medicine, physics, social sciences, etc.). For this

reason bibliometricians standardize the citations of each publication with respect to a

scaling factor stemming from the distribution of citations for all publications of the same

year and the same subject category.2 Different scaling factors have been suggested and

adopted to field normalize citations (average, median, z-score of normalized distributions,

etc.). Because interdisciplinary work may easily suffer in the evaluation from being mis-

placed in a categorical classification system (Laudel and Origgi 2006), few scholars have

2 The subject category of a publication corresponds to that of the journal where it is published. For
publications in multidisciplinary journals the scaling factor is generally calculated as the average of the
standardized values for each subject category.
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proposed to normalize citations by the number of bibliographic references of the citing

paper (Pepe and Kurtz 2012; Leydesdorff and Bornmann 2011).

On the side of production factors, there are again difficulties in measure that lead to

inevitable approximations. The identification of production factors other than labor and the

calculation of their value and share by fields is formidable (consider quantifying value of

accumulated knowledge or scientific instruments shared among units). Furthermore,

depending on the objectives of the assessment exercise, it could sometimes be useful to

isolate and examine the contribution to output of factors, that are independent of the

capacities of the staff for the units under examination (for example returns to scale, returns

to scope, available capital, etc.).

Total factor research productivity

The productivity of the total production factors is therefore not easily measurable. There

are two traditional approaches used by scholars to measure the total factor productivity:

parametric and non-parametric techniques.

Parametric methodologies are based on the a priori definition of the function that can

most effectively represent the relationship between input and output of a particular pro-

duction unit. These estimation processes have the purpose of determining the coefficients

(model parameters) of a regression equation describing the production function, usually a

Cobb-Douglas type equation. The main limitation of such methodology concerns the need

for advance definition of closed models describing the production function: this entails the

need to make assumptions on the relationship between input and output, for instance to

assume additive inputs rather than a linear function connecting the two values. Further-

more, parametric techniques cannot identify benchmark best practices, but define expected

(or optimal) performances at selected input levels.

The purpose of non-parametric methods, on the other hand, is to compare empirically

measured performances of production units (commonly known as Decision Making Units,

DMUs), in order to define an ‘‘efficient’’ production frontier, comprising the most pro-

ductive DMUs. The reconstruction of that frontier is useful to assess the inefficiency of the

other DMUs, based on minimum distance from the frontier. The main advantages of non-

parametric methods can be summarized as follows:

• Complex production systems with multiple inputs and outputs are assessed by means of

a single global efficiency value, the Total Factor Productivity, obtained with no pre-

defined weighting factors of any sort;

• No functional relationship needs to be established to define production processes, nor

do optimization or estimation processes;

• The frontier from which efficiency coefficients are calculated is obtained from actually

measured DMUs—in other words, comparisons are to real production units that are

used as references for best practices.

For both methodologies, correct identification of inputs and output indicators is crucial

to the reliability of the model application.

Given the characteristics of the two models described, the non-parametric approach is

generally preferable in the context of new knowledge production.

One of the non-parametric methods most commonly observed in the literature is the

DEA. The DEA was developed as a technique for assessing the efficiency of industrial

production systems (Charnes et al. 1978; Banker et al. 1984) and has extremely limited

applicability hypotheses: (1) homogeneity of DMUs—the production units must produce
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the same type of goods or services using the same type of resources; (2) convexity of the

analyzed set—the frontier includes all possible linear combinations of the efficient units;

(3) free disposability, meaning the possibility to eliminate resources with no costs.

There are two DEA application models: output-oriented and input-oriented. In the former,

the efficiency deviation from the frontier is evaluated as the maximum equiproportional

increase of all outputs allowed by the available inputs. This model is particularly appropriate

for scientific research, since in general the overall objective is not to reduce the input while

maintaining constant production, but to maximize production with the resources available.

The DEA methodology includes two distinct models for cases of absence (CRS) or presence

of returns to scale of production factors (VRS). The use of the CRS specification when not all

DMUs are operating at optimal scale, will result in measures of technical efficiency (TE)

which are confounded by scale efficiency (SE). The use of the VRS specification will permit

the calculation of TE devoid of these SE effects. The SE can be extracted by applying both

models to the same data set. The problem of calculating the frontier and the DEA efficiency

indexes can be formulated in terms of linear programming and is easily solved by using

specially developed software, such as the Efficiency Measurement System (EMS) developed

by the University of Dortmund (Scheel 2000). The use of the DEA method should, in any case,

be supported by technical-methodological comments which can help correctly interpret any

results arising out of it. First, the DEA is of purely deterministic nature: any deviation from the

frontier is associated with inefficiency, and it is not possible to take into consideration casual

elements or external noise which might have affected the results. Secondly, the calculated

efficiency measure is only valid for the variables that are measured and used by the model.

While representing measures of total productivity, those values depend exclusively from the

choice of variables, and might therefore not give a completely representative picture of the

efficiency of DMUs, especially as important input or output factors could be overlooked. In

the specific case of the bibliometric-type measurement of the production performance of

Universities with the DEA model, possible distortions might, for instance, arise if: (on the

input side) time is allocated incongruously between research and teaching or between dif-

ferent types of research (basic/applied), or production factors overlooked in the model are

non-homogenously available, such as scientific instruments, or non-employed staff (PhD

students, external collaborators); (on the output side) researchers have different inclinations

to codify their results under forms other than publication, or there are divergent agglomer-

ation3 or scope economies.

The measure of total factor productivity requires information on the different production

factors by unit of analysis. Instead of total factor research productivity, most often research

administrators are interested in measuring and comparing simply labor productivity, i.e.

output per unit value of labor, all other production factors being equal. The next section

describes the requirements for this kind of analysis.

Labor productivity in research activity and the FSS

In measuring labor productivity then, if there are differences of production factors avail-

able to each unit, one should normalize for these. Unfortunately, relevant data are not

easily available, especially at the individual level. Thus an often-necessary assumption is

that the resources available to units within the same field are the same. A further

assumption, again unless specific data are available, is that the hours devoted to research

3 A host of studies have demonstrated the positive effect of proximity of private research on the research
productivity of public laboratories (Siegel et al. 2003).
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are more or less the same for each individual. Finally, as occurs for output, the value of

researchers is not undifferentiated and this is reflected in the different cost of labor, which

varies among research staff, both within and between units. To measure the cost efficiency

or research units, one should normalize its output by the cost of labor. In a study of Italian

universities, Abramo et al. (2011) demonstrated that productivity of full, associate and

assistant professors is different. Because academic rank in general determines differenti-

ation in salaries, if information on individual salaries in unavailable, then one can still

reduce the distortion in productivity measures by differentiating performance rankings by

academic rank.

Next we propose our best proxy for the measurement of the average yearly labor

productivity at various unit levels (individual, field, discipline, department, entire orga-

nization, region and country). The indicator is FSS, which we have previously applied to

the Italian higher education context, where most of its embedded approximations and

assumptions are legitimate.

As noted above, for any productivity ranking concerning units that are non-homogenous

for their research fields, it is necessary to start from the measure of productivity of the

individual researchers or fields. Without these two building blocks, any measure at

aggregate level presents strong distortions (Abramo et al. 2008). In their measures of this

data, the authors gain advantage from a characteristic that seems unique to the Italian

higher education system, in which each professor is classified as belonging to a single

research field. These formally-defined fields are called ‘‘Scientific Disciplinary Sectors’’

(SDSs): there are 370 SDSs, grouped into 14 ‘‘University Disciplinary Areas’’ (UDAs). In

the hard sciences, there are 205 such fields4 grouped into nine UDAs.5

When measuring research productivity, the specifications for the exercise must also

include the publication period and the ‘‘citation window’’ to be observed. The choice of the

publication period has to address often contrasting needs: ensuring the reliability of the

results issuing from the evaluation, but also permitting conduct of frequent assessments.

For the most appropriate publication period to be observed see Abramo et al. (2012a),

while for the citation window that optimizes the tradeoff between accuracy of rankings and

timeliness of the evaluation exercise, see Abramo et al. (2012b).

Labor productivity at the individual level

At micro-unit level (the individual researcher level, R) we measure FSSR, a proxy of the

average yearly productivity over a period of time, accounting for the cost of labor. In

formula:

FSSR ¼
1

wR

� 1
t

XN

i¼1

ci

�c
fi ð1Þ

where, wR = average yearly salary of the researcher;6 t = number of years of work of the

researcher in the period of observation; N = number of publications of the researcher in

the period of observation; ci = citations received by publication i; �c = average of the

4 The complete list is accessible on http://attiministeriali.miur.it/UserFiles/115.htm, last accessed on Feb.
13, 2014.
5 Mathematics and computer sciences; physics; chemistry; earth sciences; biology; medicine; agricultural
and veterinary sciences; civil engineering; industrial and information engineering.
6 We assume that other production factors are equally available to all researchers. If not, their value should
be taken into account.
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distribution of citations received for all cited publications7 of the same year and subject

category of publication i; fi = fractional contribution of the researcher to publication i.

Fractional contribution equals the inverse of the number of authors, in those fields

where the practice is to place the authors in simple alphabetical order, but assumes dif-

ferent weights in other cases. For the life sciences, widespread practice in Italy and abroad

is for the authors to indicate the various contributions to the published research by the order

of the names in the byline. For these areas, we give different weights to each co-author

according to their order in the byline and the character of the co-authorship (intra-mural or

extra-mural). If first and last authors belong to the same university, 40 % of citations are

attributed to each of them; the remaining 20 % are divided among all other authors. If the

first two and last two authors belong to different universities, 30 % of citations are

attributed to first and last authors; 15 % of citations are attributed to second and last author

but one; the remaining 10 % are divided among all others.8 Failure to account for the

number and position of authors in the byline would result in notable ranking distortions

both at the individual (Abramo et al. 2013a), and aggregate (Abramo et al. 2013b) levels.

To calculate productivity accounting for the cost of labor, requires knowledge of the

cost of each researcher, information that is usually unavailable for reasons of privacy. In

the Italian case we have resorted to a proxy. In the Italian university system, salaries are

established at the national level and fixed by academic rank and seniority. Thus all pro-

fessors of the same academic rank and seniority receive the same salary, regardless of the

university that employs them. The information on individual salaries is unavailable but the

salaries ranges for rank and seniority are published. Thus we have approximated the salary

for each individual as the national average of their academic rank.

If information on salary is not available at all, one should at least compare research

performance of individuals of the same academic rank. Failure to account for the cost of

labor would result in ranking distortions as shown by Abramo et al. (2010).

We calculate the productivity of each scientist in each SDS and express it on a per-

centile scale of 0-100 (worst to best) for comparison with the performance of all Italian

colleagues of the same SDS; or as the ratio to the average productivity of all Italian

colleagues of the same SDS with productivity above zero.9 In general we can exclude, for

the Italian case, that productivity ranking lists may be distorted by variable returns to scale,

due to different sizes of universities (Abramo et al. 2012d) or by returns to scope of

research fields (Abramo et al. 2013d).

Labor productivity in a specific field

At field level S, the yearly average productivity FSSS over a certain period for researchers

in a university (region, country, etc.) in a specific SDS10 is:

7 A preceding article by the same authors demonstrated that the average of the distribution of citations
received for all cited publications of the same year and subject category is the most effective scaling factor
(Abramo et al. 2012c).
8 The weighting values were assigned following advice from senior Italian professors in the life sciences.
The values could be changed to suit different practices in other national contexts.
9 In a preceding article the authors demonstrated that the average of the productivity distribution of
researchers with productivity above 0 is the most effective scaling factor to compare the performance of
researchers of different fields (Abramo et al. 2013c).
10 We note again that a field is not an organizational unit, rather a classification of researchers by their
scientific qualifications. This does not mean that all the researchers in the same field and organization will
necessarily form a single research group that works together. As an example, we quote the SDS description
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FSSS ¼
1

wS

XN

i¼1

ci

�c
fi ð2Þ

where: wS= total salary of the research staff of the university in the SDS, in the observed

period; N = number of publications of the research staff in the SDS of the university, in

the period of observation; ci = citations received by publication i; �c = average citations

received by all cited publications of the same year and subject category of publication i;

fi = fractional contribution of researchers in the SDS of the university, to publication i,

calculated as described above.

For each SDS we can construct a university (region, country, etc.) productivity ranking

list by FSSS expressed in percentiles or as the FSSS ratio to average FSSS of all universities

with productivity above zero in the SDS.

The measures of productivity at field level permit identification of field strengths and

weaknesses and thus correctly inform research policies and strategies.

Labor productivity of multi-fields units

In multi-field organizational units (i.e. disciplines, departments, universities, regions,

nations), where there are researchers that belong to different fields, we are presented with

the problem of how to aggregate productivity measures for researchers from the various

fields. Two methods are possible, based on either the performance of individual researchers

(FSSR), or of the SDSs (FSSS) present in the unit under examination. The appropriate

choice depends on the objective for the measure. The first method emphasizes individual

performance while the second emphasizes field performance, which we note is a ‘‘virtual’’

unit, since the members of the SDS at a university do not necessarily work together on a

structured basis. The research administrator will perhaps be more interested in the per-

formance results derived under the first method, determined from the average of individual

productivities. On the other hand the policy-maker, not being particularly interested in the

performance variability within the organizational units but rather in comparison of the

overall productivity of the various research institutions, could prefer the performance

measure calculated by the second method. In the following subsections we present the two

measurement procedures.

Labor productivity of multi-fields units based on FSSR

We have seen that the performance of the individual researchers in a unit can be expressed

in percentile rank or standardized to the field average. The natural tendency would be to

express the productivity of multi-field units by the simple average of the percentile ranks of

the researchers. It should be noted though that the resort to percentile rank for the per-

formance measure in multi-filed units or for simple comparison of performance for

Footnote 10 continued
for FIS/03-Condensed matter physics: ‘‘The sector includes the competencies necessary for dealing with
theory and experimentation in the state of atomic and molecular aggregates, as well as competencies suited
to dealing with properties of propagation and interaction of photons in fields and with material. Compe-
tencies in this sector also concern research in fields of atomic and molecular physics, liquid and solid states,
semiconductors and metallic element composites, dilute and plasma states, as well as photonics, optics,
optical electronics and quantum electronics’’. In the Italian academic system it is quite common to find
‘‘Condensed matter physics’’ researchers working in two different departments (physics and engineering) at
the same university.
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researchers in different fields is subject to obvious limitations, the first being compression

of the performance differences between one position and the next. Thompson (1993) warns

that percentile ranks should not be added or averaged, because percentile is a numeral that

does not represent equal-interval measurement. Further, percentile rank is also sensitive to

the size of the fields and to the performance distribution. For example, consider a unit

composed of two researchers in two different SDSs (A and B, each with a national total of

10 researchers), who both rank in third place, but both with productivity only slightly

below that of the first-ranked researchers in their respective SDSs: the average rank per-

centile for the unit will be 70. Then consider another unit with two researchers belonging to

another two SDSs (C and D, each with 100 researchers), where both of the individuals

place third but now with a greater gap to the top scientists of their SDSs: their percentile

rank will be 97. In this particular example, a comparison of the two units using percentile

rank would certainly penalize the former unit.

The second approach, instead involving standardization of productivity by field average,

takes account of the extent of difference between productivities of the individuals. In

formula, the productivity FSSD over a certain period for department D, composed of

researchers that belong to different SDSs:

FSSD ¼
1

RS

XRS

j¼1

FSSRj

FSSR

ð3Þ

where: RS = research staff of the department, in the observed period; FSSRj
= produc-

tivity of researcher j in the department; FSSR = national average productivity of all pro-

ductive researchers in the same SDS of researcher j.

Labor productivity of multi-fields units based on FSSS

The second method for measurement of research unit productivity involves identifying all

the SDSs present in the unit and assigning each one a relative weight depending on size

(full time equivalent research personnel). As an example, for measurement of productivity

of a university (region, nation) in a discipline (UDA), beginning from the productivity of

the individual SDSs (FSSs), the productivity FSSU of a university in a specific UDA U, is:

FSSU ¼
XNU

k¼1

FSSSk

FSSSk

wSk

wU

ð4Þ

with: wSk
= total salary of the research staff of the university in the SDS k, in the observed

period; wU = total salary of the research staff of the university in the UDA U, in the

observed period; NU = number of SDSs of the university in the UDA U;

FSSSk
= weighted11 average FSSS of all universities with productivity above 0 in the SDS

k.

For the measure of the productivity of a department (or university, region, country), the

procedure is exactly the same: the only thing that changes is the size weight of the SDS,

which is no longer with respect to the other SDSs of the UDA, but rather to all the SDSs of

the department (university, region, country).

As noted, the appropriate choice between the two methods of measure for performance

of a multi-field unit depends on the aims of the evaluation. The first method, based on

11 The weight represents the relative size (in terms of cost of labor) of the SDS of each university.
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productivity of individual researchers, interprets the performance of the unit as the average

of the individual performances, meaning that the emphasis is on the individual. The other

method, based on productivity of fields, interprets the field as a unique group (even though

a virtual group), meaning that emphasis is on the overall product of the researchers that

belong to the field, independently of the variability of the individual contributions. The two

methods lead to performance results that are quite similar. In a future work we will provide

a comparative in-depth analysis of the two methods.

Comparison of university ranking lists based on different research productivity measures

In this section we compare the Italian university ranking lists by FSS with those by the

commonly accepted definition of productivity, i.e. number of publications per researcher,

which we call P. We also compare ranking lists by FSS with those by the main variant of P,

embedding fractional counting for co-authored publications, which we call FP. The pro-

duction period under observation is 2006–2010, while citations are counted on 31/12/2011.

Similar to (1), the number of publications achieved in the observed period is stan-

dardized for years of work over the observation period. The individual measurements are

then aggregated at the UDA level, through the same standardizations illustrated in (3):

PU ¼
1

RSU

XRSU

j¼1

Qj

�Q
ð5Þ

where: RSU = research staff of the university in the UDA U, in the observed period;

Qj = average annual output of researcher j, in the observed period; �Q = average annual

output of all productive national researchers in the same SDS of researcher j, in the

observed period.

We can now construct university ranking lists per UDA by FSS and P. Tables 1, 2

presents descriptive statistics about comparison of rankings. To make our measures more

robust we have excluded researchers with less than three years of work in the observed

period and universities with research staff below ten units in the UDA.

The last row shows values referring to all Italian universities without distinction per

UDA.12 The correlation between these rankings is clearly very high: the Spearman coef-

ficient of correlation is equal to 0.933; however a full 52 of the 61 universities evaluated

(85 %) change position between the two rankings, with an average shift equal of 4.9

positions and the median at 4. One university jumps 14 positions, moving from twentieth

place in the FSS ranking to thirty-fourth place in the ranking by P. Three out of 16

universities that placed in the first quartile for FSS finish in the second quartile for P.

The analysis by UDA offers interesting insights. The Medicine UDA shows the highest

level of correlation between the two ranking lists (Spearman coefficient 0.903). However

the Agricultural and veterinary sciences discipline is the one with the smallest shifts in

position: although only 27 universities are evaluated, 23 shows shifts in rank between the

two rankings; however the average shift is just 2.8 positions, with median 2 and maximum

shift of 10. At the opposite extreme is Physics: here the correlation between the two

rankings is low (Spearman coefficient 0.426), with an average shift of 10.7 positions and

median of 10. There is even a case of a university that jumps 34 positions, moving from

forty-first for FSS to seventh for P. Among the 11 universities at the top for FSS, only two

remain ‘‘top’’ for P. In reality, this UDA presents an unquestionable anomaly: particularly

12 In this case, universities with research staff in the hard sciences below 30 units were not considered.
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in the fields of ‘‘Particle and high-energy physics’’, research is often conducted through so-

called ‘‘grand experiments’’. The results typically have high scientific impact and are

accredited to a large part of the research staff of the partner organizations. They are

disseminated through publications with hundreds or even thousands of co-authors. Thus the

fractionalization of the author contribution in FSS gives productivity scores quite different

from those arising from P and resulting diverging ranking lists.

We now proceed to a further analysis that considers fractional counting, as defined in

(1) in place of full counting of coauthored publications. In formulae:

Table 1 Comparison of university ranking lists by P and FSS, per UDA

UDA No. of
universities

%
shifting
rank

Average
shift

Median
shift

Max
shift

Correl. From top to non
top quartile (%)

Mathematics and
computer science

50 98.0 7.1 5.5 28 0.781 38.5

Physics 43 93.0 10.7 10 34 0.426 81.8

Chemistry 41 97.6 6.7 5 25 0.726 45.5

Earth sciences 30 80.0 3.7 3 16 0.822 25.0

Biology 49 93.9 6.2 5 20 0.833 23.1

Medicine 42 90.5 4.1 3.5 16 0.903 36.4

Agricultural and
veterinary sciences

27 85.2 2.8 2 10 0.868 28.6

Civil engineering 35 88.6 3.8 3 11 0.878 33.3

Industrial and
information
engineering

42 90.5 7.0 5 28 0.682 27.3

Total 61 85.2 4.9 4 14 0.933 18.8

Table 2 Comparison of university ranking lists by FP and FSS, per UDA

UDA No. of
universities

%
shifting
rank

Average
shift

Median
shift

Max
shift

Correl. From top to non
top quartile (%)

Mathematics and
computer science

50 96.0 7.1 5 24 0.789 23.1

Physics 43 97.7 6.1 4 29 0.761 18.2

Chemistry 41 87.8 6.4 6 21 0.742 36.4

Earth sciences 30 86.7 3.9 3 12 0.822 25.0

Biology 49 85.7 4.6 3 19 0.897 23.1

Medicine 42 88.1 3.4 3 16 0.929 27.3

Agricultural and
veterinary sciences

27 88.9 3.7 2 13 0.784 28.6

Civil engineering 35 82.9 3.8 3 14 0.873 22.2

Industrial and
information
engineering

42 95.2 6.5 5 27 0.654 27.3

Total 61 82.0 4.0 3 14 0.952 18.8
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FPU ¼
1

RSU

XRSU

j¼1

FQj

FQ
ð6Þ

where: RSU = research staff of the university in the UDA U, in the observed period;

FQj= average annual fractional output of researcher j, in the observed period;

FQ = average annual fractional output of all productive national researchers in the same

SDS of researcher j, in the observed period.

As expected, the correlation between FP and FSS ranking lists is stronger than between

P and FSS; the number of shifts in each UDA is lower, as well as the number of universities

dropping from top quartile.

Discusssion and conclusions

Until now, bibliometrics has proposed indicators and methods for measuring research

performance that are largely inappropriate from a microeconomics perspective. The

h-index and most of its variants, for example, inevitably ignore the impact of works with a

number of citations below h and all citations above h of the h-core works. The h-index also

fails to field-normalize citations, to account for the number of co-authors and their order in

the byline, Last but not least, because of the different intensity of publications across fields,

productivity rankings need to be carried out by field (Abramo and D’Angelo 2007), when

in reality there is a human tendency to compare h-indexes for researchers across different

fields. Each one of the proposed h-variant indicators tackles one of the many drawbacks of

the h-index while leaving the others unsolved, so none can be considered completely

satisfactory.

The new crown indicator, on the other hand, measures the average standardized cita-

tions of a set of publications, which cannot provide any indication of unit productivity. In

fact a research unit with double the MNCS value of another unit could actually have half

the productivity, if the second unit produced four times as many publications. Whatever the

CWTS research group (Waltman et al. 2012) might claim for them, the annual world

university rankings by MNCS are not ‘‘performance’’ rankings—unless someone abnor-

mally views performance as average impact of product, rather than impact per unit of cost.

Applying the CWTS method, a unit that produces only one article with 10 citations has

better performance than a unit producing 100, where each but one of these gets 10 citations

and the last one gets nine citations. From a different standpoint, an organization may

worsen its MNCS ranking if it produces an additional article whose normalized impact is

below the previous MNCS value, which is a paradox. Further, the methodology reported

for producing the ranking lists does not describe any weighting for co-authorship on the

basis of byline order. Similar drawbacks are embedded is the SCImago Institutions

Ranking by their main indicator, the Normalized Impact, measuring the ratio between the

average scientific impact of an institution and the world average impact of publications of

the same time frame, document type and subject area. We do not further consider any of

the many annual world institutional rankings that are severely size dependent: the SJTU

Shanghai Jiao Tong University, THE-Times Higher Education and QS Quacquarelli Sy-

monds rankings, among others. These seem to represent skilled communications and

marketing operations, with the actual rankings resulting more from improvisation than

scientifically-reasoned indicators and methods. Gross attempts to compare the research

productivity of nations can be found in the groundbreaking work by May (1997). He
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measured the relative international standing of 15 countries in science, medicine and

engineering, by their shares of ISI-indexed publications and citations. The USA invariably

ranked at the top for such indicators in all scientific sectors In an attempt to separate the

effect of size (labor and capital) from the effect of the quality of the production factors, he

then ranked countries by citations per unit of spending. King (2004) updated May’s ori-

ginal work to 2002, covering a 10-year period. The new study increased the number of

nations analyzed (31), provided a longitudinal analysis over two five-year periods, added

further indicators (top 1 % highly cited articles; average citations per paper), provided for

normalization of citations to the mean for each field, and took account of year of publi-

cation, thus providing aggregate measures of the overall research standing of each country.

Outputs and outcomes were then normalized to inputs (researchers, expenditures, GDP).

Such attempts to normalize outputs and outcomes to inputs, have dealt with the data at the

aggregate level and have not been able to avoid the consequent distortions. In fact while

most scholars now typically normalize the observed output and citation data, accounting

for the field and year of publication, the data on input are not correspondingly divided

according to the fields of allocation, since the practitioners lack data on the numbers of

researchers and the expenditures per field in the individual countries under comparison.

Pepe and Kurtz (2012) have proposed a productivity indicator for individuals, the

research impact quotient, which has similarities with the FSS. It is the quotient of the

square root of ‘‘total research impact’’ to the time of production. The total research impact

normalizes external (non-self) citations by the number of co-authors of the cited paper and

the number of bibliographic references of the citing paper. While the elimination of self-

citations is an acceptable option, the normalization by the number of references of the

citing papers is questionable and would deserve further investigation. For papers with

cross-disciplinary impact in fact, the value of a citation is negatively related to the length

of the reference lists. A citation by a publication in physics would value less than that by a

paper in mathematics simply because the former’s list of references is in general longer.

The great majority of the more popular bibliometric indicators and the rankings based

on their use present two fundamental limits: lack of normalization of the output value to

the input value, and absence of classification of scientists by field of research. Without

normalization there cannot be any measure of productivity, which is the quintessential

indicator of performance in any production unit; without providing field classification of

scientists, the rankings of multi-field research units will inevitably be distorted, due to the

different intensity of publication across fields. An immediate corollary is that it is

impossible to correctly compare productivity at international levels. To date in fact there is

no international standard for classification of scientists and, we are further unaware of any

nations that classify their scientists by field at domestic level, apart from Italy. The

commonly accepted definition of productivity, i.e. the number of publications per

researcher, makes little sense, because publications have different values. We have pro-

posed a proxy measure of productivity, FSS, which embeds both quantity and quality of

production, and permits measurement at different organizational levels. Both the indicator

and the related methods can certainly be improved, however they do make sense according

to economic theory of production. Other indicators and related rankings, such as the simple

number (or fractional counting) of publications per researcher, or the average normalized

impact, cannot alone provide evaluation of performance - however they could assume

meaning if associated with a true measure of productivity. In fact if a research unit

achieves average levels of productivity this could result from both average number of

publications and meaningful impact, but also from the opposite case of high numbers of

publications and low impact. In this case, knowing the performance in terms of number of
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publications and average normalized impact would provide useful information on which

aspect (quantity or impact) of scientific production to strengthen for betterment of pro-

duction efficiency.

Aside from having an indicator of research unit productivity, the decision-maker could

also find others useful, such as ones informing on unproductive researchers, on top

researchers (10, 5, 1 %, etc.), highly-cited publications, dispersion of performance within

and between research units, etc.

For the large part of the objectives and contexts where evaluation of research perfor-

mance is conducted, productivity is either the most important or the only indicator that

should inform policy, strategy and operational decisions. We thus issue a two-fold call to

the scholars in the subject: first, to focus their knowledge and skills on further refining the

measurement of the FSS indicator in contexts of real use; second, to refrain from distri-

bution of institutions’ performance ranking lists based on invalid indicators, which could

have negative consequences when used by policy-makers and research administrators.

References

Abramo, G., Cicero, T., & D’Angelo, C. A. (2012a). What is the appropriate length of the publication period
over which to assess research performance? Scientometrics, 93(3), 1005–1017.

Abramo, G., Cicero, T., & D’Angelo, C. A. (2012b). A sensitivity analysis of researchers’ productivity
rankings to the time of citation observation. Journal of Informetrics, 6(2), 192–201.

Abramo, G., Cicero, T., & D’Angelo, C. A. (2012c). Revisiting the scaling of citations for research
assessment. Journal of Informetrics, 6(4), 470–479.

Abramo, G., Cicero, T., & D’Angelo, C. A. (2012d). Revisiting size effects in higher education research
productivity. Higher Education, 63(6), 701–717.

Abramo, G., Cicero, T., & D’Angelo, C. A. (2013a). Individual research performance: A proposal for
comparing apples to oranges. Journal of Informetrics, 7(2), 528–529.

Abramo, G., & D’Angelo, C. A. (2007). Measuring science: Irresistible temptations, easy shortcuts and
dangerous consequences. Current Science, 93(6), 762–766.

Abramo, G., D’Angelo, C. A., & Di Costa, F. (2008). Assessment of sectoral aggregation distortion in
research productivity measurements. Research Evaluation, 17(2), 111–121.

Abramo, G., D’Angelo, C. A., & Di Costa, F. (2011). Research productivity: Are higher academic ranks
more productive than lower ones? Scientometrics, 88(3), 915–928.

Abramo, G., D’Angelo, C. A., & Di Costa, F. (2013b). Investigating returns to scope of research fields in
universities. Higher Education,. doi:10.1007/s10734-013-9685-x.

Abramo, G., D’Angelo, C. A., & Rosati, F. (2013c). The importance of accounting for the number of co-
authors and their order when assessing research performance at the individual level in the life sciences.
Journal of Informetrics, 7(1), 198–208.

Abramo, G., D’Angelo, C. A., & Rosati, F. (2013d). Measuring institutional research productivity for the
life sciences: The importance of accounting for the order of authors in the byline. Scientometrics,
97(3), 779–795.

Abramo, G., D’Angelo, C. A., & Solazzi, M. (2010). National research assessment exercises: A measure of
the distortion of performance rankings when labor input is treated as uniform. Scientometrics, 84(3),
605–619.

Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing bibliometric statistics
obtained from the Web of Science and Scopus. Journal of the American Society for Information
Science and Technology, 60(7), 1320–1326.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale
inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

Butler, L. (2007). Assessing university research: A plea for a balanced approach. Science and Public Policy,
34(8), 565–574.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units.
European Journal of Operational Research, 2, 429–444.

Garfield, E. (1979). Is citation analysis a legitimate evaluation tool? Scientometrics, 1(4), 359–375.

Scientometrics (2014) 101:1129–1144 1143

123

http://dx.doi.org/10.1007/s10734-013-9685-x


Glänzel, W. (2008). Seven myths in bibliometrics. About facts and fiction in quantitative science studies.
Kretschmer & F. Havemann (Eds) Proceedings of WIS fourth international conference on webomet-
rics, informetrics and scientometrics and ninth COLLNET meeting, Berlin, Germany.

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the
National Academy of Sciences, 102(46), 16569–16572.

King, D. A. (2004). The scientific impact of nations—What different countries get for their research
spending. Nature, 430, 311–316.

Laudel, G., & Origgi, G. (2006). Introduction to a special issue on the assessment of interdisciplinary
research. Research Evaluation, 15(1), 2–4.

Leydesdorff, L., & Bornmann, L. (2011). How fractional counting of citations affects the impact factor:
Normalization in terms of differences in citation potentials among fields of science. JASIST, 62(2),
217–229.

Leydesdorff, L., & Opthof, T. (2011). Remaining problems with the ‘‘New Crown Indicator’’ (MNCS) of the
CWTS. Journal of Informetrics, 5(1), 224–225.

Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington
Academy of Sciences, 16(12), 317–324.

May, R. M. (1997). The scientific wealth of nations. Science, 275(5301), 793–796.
Moed, H. F. (2005). Citation analysis in research evaluation. Springer, ISBN: 978-1-4020-3713-9.
Moed, H. F., Burger, W. J. M., Frankfort, J. G., & Van Raan, A. F. J. (1985). The application of bibliometric

indicators: Important field- and time-dependent factors to be considered. Scientometrics, 8(3–4),
177–203.

Opthof, T., & Leydesdorff, L. (2010). Caveats for the journal and field normalizations in the CWTS
(‘‘Leiden’’) evaluations of research performance. Journal of Informetrics, 4(3), 423–430.

Pepe, A., & Kurtz, M. J. (2012). A Measure of total research impact independent of time and discipline.
PLoS ONE, 7(11), e46428.

Pontille, D. (2004). La Signature Scientifique: Une Sociologie Pragmatique de l’Attribution. Paris: CNRS
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