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� Akadémiai Kiadó, Budapest, Hungary 2013

Abstract This study examines long-term trends and shifting behavior in the collaboration

network of mathematics literature, using a subset of data from Mathematical Reviews

spanning 1985–2009. Rather than modeling the network cumulatively, this study traces the

evolution of the ‘‘here and now’’ using fixed-duration sliding windows. The analysis uses a

suite of common network diagnostics, including the distributions of degrees, distances, and

clustering, to track network structure. Several random models that call these diagnostics as

parameters help tease them apart as factors from the values of others. Some behaviors are
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consistent over the entire interval, but most diagnostics indicate that the network’s

structural evolution is dominated by occasional dramatic shifts in otherwise steady trends.

These behaviors are not distributed evenly across the network; stark differences in evo-

lution can be observed between two major subnetworks, loosely thought of as ‘‘pure’’ and

‘‘applied’’, which approximately partition the aggregate. The paper characterizes two

major events along the mathematics network trajectory and discusses possible explanatory

factors.

Keywords Mathematics research � Collaboration networks � Evolving

networks

Mathematics Subject Classification 91D30 � 05C82

Introduction

The evolution of real-world networks, particularly social networks, has been of rising

interest. As time-resolved databases of scientific literature (and of other network-theoretic

data) have grown in size and duration, increasingly perceptive diagnostics and rich models

of network behavior have been developed (Grindrod and Higham 2013; Holme and

Saramäki 2011). Most of these studies have investigated limiting behavior in network

structure, such as average distance and clustering, or consistencies in network evolution,

such as preferential attachment and transitive closure (Barabási et al. 2002; Newman

2001c, 2004; Tomassini and Luthi 2007). In contrast, in this paper we investigate the

irregularities in the evolution of a collaboration network.

We draw our data, spanning a quarter-century, from the MathSciNet database, which

consists of publication records from the secondary journal Mathematical Reviews (MR)

published by the American Mathematical Society. We study the evolution of the network

with respect to several well-established diagnostics and distributions, both in raw form, for

meaningful comparison to other collaboration networks, and relative to the predictions of

several popular random graph models. While mathematics is as methodologically mature a

discipline as any, it is widely viewed as a solitary, or minimally collaborative, enterprise.

Mathematics collaboration networks have been shown to exhibit lower connectivity than

other scholarship networks (Newman 2001a), but, as in other disciplines, there has been

discussion of rising collaborativeness in mathematics (Grossman 2002), the characteriza-

tion of which may be viewed as a central goal of this study.

Evolving collaboration networks have been modeled graph-theoretically in three prin-

cipal ways (our terminology): the cumulative model that compiles a network incrementally

over time from a fixed beginning (Barabási et al. 2002; Tomassini and Luthi 2007), the

active model consisting of a sequence of graphs constructed across several comparable

intervals of time (Goyal et al. 2006; Grossman 2002), and the temporal model that rep-

resents the collaboration network as a single time-resolved structure (Holme and Sara-

mäki2011). We require for our analysis a model that can be viewed locally in time, which

precludes a cumulative model; this is just as well, since our data by no means trace to the

inception of mathematics publishing. Whereas we are not interested in the careers of

individual mathematicians, we do not require the comprehensive (and memory-intensive)

temporal model.
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The paper is organized as follows: ‘‘Design’’ section describes the data we use and the

graph-theoretic approach we take. ‘‘Results’’ section consists of several subsections in

which we analyze specific structural properties such as connectivity, distance, and clus-

tering. We interpret these analyses, consider possible real-world factors, and suggest fur-

ther avenues of research in ‘‘Discussion’’ section, and we wrap up the exposition in

‘‘Conclusion’’ section.

Design

Motivating questions

Our study addresses three overarching questions:

1. How does the network evolve, and what irregularities punctuate this evolution?

2. How does the collaboration network of authors in the mathematical sciences compare

to other collaboration networks?

3. How do collaborative trends differ across subdisciplines within the mathematical sciences?

In each subsection of ‘‘Results’’ section we describe the structural properties we intend to

trace over time, then present and discuss the results in the context of these questions. At

each step we build upon the previous steps, for instance by invoking maximum-entropy

models of the network determined by previously evaluated diagnostics (such as the Erd}os–

Rényi model after evaluating the network size and density), or by analyzing the time series

themselves (change point analysis, last section).

Data

The MR database contains bibliographic information on publications tracing back to 1940.

We extracted, for each entry published within the time period 1985–2009, an encoded

publication index, the year of publication, an encoded ID for each author (consistent

throughout the database), and the subject classification(s) assigned to the publication by MR

editors.1 Our extracted data includes nearly 1.6 million publications that credit nearly 430,000

authors. We study these data as a proxy for the mathematics literature over this time period.

This interpretation carries many caveats, which MR takes pains to address, making it

probably as complete and correct as any scientific publication database given the breadth of

its scope. For instance, MR solicits mathematics literature across countries and languages

(Jackson 1997) and takes steps to reconcile different naming conventions for common authors

(Grossman and Ion 1995). However, not only what mathematics literature is excluded from

MR but what other literature is written by authors who appear in this database will be absent

from this analysis. See Ref. (Glänzel 2002) for a thorough discussion of such considerations.

Additionally, a recent analysis of the Science Citation Index (SCI) reveals that the database

accounts for a decreasing proportion of the total scientific output. The same trend could be at

work here, rendering MR a gradually less complete subset of the mathematics literature. Such

possibilities are not our focus, but we will remain conscious of them.

Other subsets of data extracted from the MR database have been studied graph-theo-

retically (Chung and Lu 2002; Clauset et al. 2009; Grossman 2002; Grossman and Ion

1 These classifications are increasingly often suggested by authors and reviewers but are ultimately decided
upon by the editors.
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1995; Larsen and von Ins 2010; Price 1963; Soffer and Vázquez 2005). Table 1 compares

several calculations performed on the cumulative network from 1940 to 2000 (Grossman

2002) and their equivalents on that from 1985 to 2009 (present paper). These will be

discussed in more detail in the next section. The comparisons are not strictly appropriate

due to the different durations over which networks are constructed, but nevertheless herald

trends we observe within our 25-year interval—some that have been observed in many

collaboration networks, such as toward more, and more frequent, coauthorship, and others

that have not, to our knowledge, been described elsewhere, for instance an increasing

proportion of authors in the largest component.

Models and methods

We modeled the MR network as a graph in two ways. The two-mode attribution graph

G2 = (P, N, E2) consists of nodes of two ‘‘modes’’: the set N corresponding to researchers

and the set P corresponding to publications. Each edge ði; jÞ 2 E2 � N � P indicates that

publication i is attributed to researcher j (among possible others). The coauthorship graph

G1 = (N,E1) is the one-mode projection of G2 onto N. It has node set N, and each edge

ðj; j0Þ 2 E1 � N � N indicates that researchers j and j0 have coauthored at least one pub-

lication. A study of the MR attribution graph was an open question from (Grossman 2002),

in which only the coauthorship graph was scrutinized.

In the next section we present our analysis, organized in sections according to the structural

properties being investigated (connectivity, decomposition into components, etc.). Much of our

analysis consists of time series of single-value diagnostics, such as the vertex and edge counts of

graphs and their average degrees. To construct a time series for diagnostic D over an interval [a, b],

take a graph G and a fixed duration Dt. For each t ¼ aþ Dt; aþ Dt þ 1; . . .; b� 1; b, take Gt to

be the graph constructed over the interval ½t � Dt; t� and compute D(Gt). The time series is

then ðDðGaþDtÞ; . . .;DðGbÞÞ. Following the time resolution of the database, we let t take

integer values between 1984þ Dt and 2009, where the value t corresponds to the moment of

changeover from calendar year t to calendar year t ? 1. For example, when Dt ¼ 5 we get

time series of length 21 computed over the intervals 1985–1989 through 2005–2009.

In addition to the ‘‘aggregate’’ network constructed from all publications, we study net-

works constructed from two subsets of the literature that very nearly divide it in half. These we

determine by splitting the subject classifications into one range that covers mathematics

subdisciplines popularly considered more ‘‘pure’’ and another more ‘‘applied’’. These clas-

sifications are taken from the AMS Mathematics Subject Classification (MSC) scheme, and

the ranges are defined at the 2-character prefix level by 03–58 and 60–94, respectively.2 The

resulting subnetworks receive much the same treatment as the aggregate. We expect dif-

ferences in behavior between the pure and applied subnetworks to yield insights into the range

and mechanisms of attribution and coauthorship graph structures.

Results

Rates of growth, publication, and collaboration

The active literature compiled by MR and community of authors who produced it have

both grown over our 25-year interval, though not monotonically. The time series for p and

2 See the MSC itself at http://www.ams.org/mathscinet/msc/msc2010.html for finer detail.
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n are depicted in Fig. 1.3 The growth of scientific literatures and communities has tradi-

tionally been modeled exponentially (Larsen and von Ins 2010; Persson et al. 2004; Price

1963). For the exponential model

x ¼ x0ert þ �

(with Gaussian errors), we obtained estimated growth factors r = 0.026 (publications) and

r = 0.040 (researchers), though these models do not fit the data well.4

It is notable that, though growth of the literature outpaced that of the community over

our interval, the rates of growth of the literature and of the community were very similar

over the 60-year interval studied in (Grossman 2002): Fitting the same model to the sizes

of the literature and of the community across adjacent decades obtains the very similar

growth rates of r = 0.0425 and 0.0433, while fitting to the data over 10-year windows

through our interval obtains r = 0.026 and 0.043. For the remainder of the analysis we

view these growths as independent parameters.5

The increasing ratio of researchers to publications, especially after 2000, suggests that

collaboration or publication habits—or both—in mathematics have been in flux. The trend

could be explained by a rise in the typical number of authors per publication or by a decline in

the typical number of publications per researcher. These are the degrees of the publication and

researcher nodes of G2, respectively. We refer to the degree of a publication node i 2 G2 (the

number of researchers who authored it) as its cooperativity ai, and the degree of a researcher

node j as its productivity qj (Glänzel 2002). Their averages a and q are related to p and n by

pa ¼ nq;

where both quantities are equal to the total number of attributions b = |E(G2)|. Two other

network distributions are often used to quantify collaboration and output: The degree kj of

Table 1 The MR network over
two intervals

MR network 1940–2000
(Grossman 2002;
Newman 2004)

1985–2009

Years 61 25

Papers p 1,598 1,599

Authors n 337 429

Avg. authors/paper a 1.45 1.75

Avg. papers/author q 6.9 6.5

Collab. pairs m 496 876

Avg. no. coauthors k 2.9 4.1

Prop. in largest comp. n1/n 0.62 0.75

Avg. separation d 7.56 7.31

Global clustering coeff. C 0.15 0.14

Avg. clustering coeff. c 0.34 0.61

3 Our data from 2009 is incomplete and so is omitted from the 1-year plots. We include it in 5-year plots
and analyses with the expectation that the impact of the missing data on the 5-year calculations will be
slight.
4 The numbers are accelerating more rapidly than an exponential growth model can account for, given that
the model assumes that limt!�1 x ¼ 0.
5 Because authors, unlike publications, recur over time, comparisons like these become problematic
between intervals of different duration.
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a researcher j 2 G1 is the number of collaborators of j and reflects j’s tendency to col-

laborate; and the number wjj0 of publications coauthored by a pair ðj; j0Þ 2 EðG1Þ of col-

laborators reflects their contributions. We call kj the connectivity of j (Glänzel 2002) and

wjj0 the collaboration weight of j and j0 (Newman 2001b; 2004).

Other analyses of professional literature reveal typical distributions of these statistics

(Barabási et al. 2002; Glänzel and Schubert 2005; Goyal et al. 2006; Moody 2004;

Newman 2001a; Tomassini and Luthi 2007). The average cooperativity ranges from just

above 1 (the theoretical minimum) to nearly 10 but typically falls below 5. Analyses of

networks over intervals ranging in length from 5 to 10 years tend to yield an average

researcher productivity between 3 and 5 and an average connectivity between 1 and 10.

Longitudinal studies have shown increases in each, though increases in typical productivity

have been more mild while increases in cooperativity and connectivity have been more

drastic. We can also look back on Grossman’s study of the MR data (Grossman 2002), in

which the author observes average cooperativity rise from 1.10 over the 1940s to 1.63 over

the 1990s, average productivity from 3.41 to 4.97, and average connectivity from 0.49 to

2.84.

The stratified histograms of Fig. 2(a–d) illustrate the growth and changing composition

of the network. The starkest reallocations occurred within the distributions of cooperativity

and connectivity. The substantial decline of solo (kj = 0) authors was more than com-

pensated for by the rise in single-collaborator researchers. The number of solo (ai = 0)

publications remained steady but was greatly diminished in proportion by more

A B

C D

Fig. 1 For the aggregate, pure, and applied networks at each year, a the total number of recorded
publications and b the total number of attributed authors. c, d The same calculations across a 5-year sliding
window
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cooperative publications. In both cases the proportional increase was greater for higher

values, producing ‘‘fatter-tailed’’ distributions. Mean cooperativity a increased by more

than half over the two decades from 1985–1989 to 2005–2009, while mean connectivity k

doubled. The indicators of publishing frequency—productivity across researchers and

collaboration weight across pairs of coauthors—rose only slightly over our interval, and

even began to decrease toward the end. The histograms suggest that this was due to an

influx of one-time authors after 2000, which a closer look at the changing proportions of

researchers by productivity confirms.

The rate of growth of k was approximately piecewise linear; this rate doubled from

1985–1994 to 1994–2009, changing pace around the same time that the growth rates of

P and N noticeably increased. We refer to the structural phenomenon responsible for this

shift as the mid-90s event. Later, as acceleration in the numbers n and m of researchers and

of coauthor pairs accelerated the author-to-publication ratio around 2000, the 5-year

averages of q and w abruptly began to decrease. We refer to this phenomenon as the early-

00s event. Both shifts were more pronounced in the applied research community, as were

the long-term trends: The applied research community was consistently better-connected in

terms of a and k, however, while the pure was consistently more prolific in terms of q and

w as can be seen in (Fig. 3).

The imbalance of growth between the research community and the published literature

is thus due to a more rapid increase in the typical publication’s authorship than in the

typical author’s output. One natural follow-up consideration is the extent to which prolific

researchers tend to be behind the more cooperative publications, or to be more collabo-

rative on average. The correlation, taken over attributions ði; jÞ 2 EðG2Þ, between coop-

erativity and productivity is negligible.6 However, the typical cooperativity of a

researcher’s papers depends positively on that researcher’s productivity, and the typical

productivity of a publication’s authors depends positively on the publication’s coopera-

tivity—to a point. Figure 4 depicts

aq �
P

qj¼q

P
ði;jÞ2EB

ai
P

qj¼q qj

versus q and qa �
P

ai¼a

P
ði;jÞ2EB

qj
P

ai¼a ai

versus a ð1Þ

across a 5-year sliding window.7 Both relationships are strongest for small values. While

the former holds for 5-year productivities up to q = 12, however, the latter breaks down

for cooperativities a [ 4. In addition to growing noisier, in more recent years this rela-

tionship reversed, so that highly cooperative publications (a [ 4) had lower average

coauthor productivity than moderately cooperative publications (2 B a B 4).8

We have uncovered some modest associations among several diagnostics of collabo-

ration and publishing rates, but it is unclear how interdependent these diagnostics are.

Consider the distribution of connectivities kj across the nodes of G1: How does the dis-

tribution differ from what we would expect, knowing only the distributions of coopera-

tivity and productivity in the bipartite G2? How does it differ from the expectations we

6 While always near zero, whether it is positive or negative depends on window size.
7 We may interpret the second expression (1) as the expected productivity of a researcher chosen (uni-
formly) at random from those attributed by a randomly-chosen publication having given cooperativity a, but
not as the expected productivity of a researcher chosen at random from the collection of researchers who
have been attributed by some publication of cooperativity a.
8 The first plot may be contrasted with Fig. 2 of (Glänzel 2002), which depicts a decline in productivity
associated with especially high cooperativity in the mathematics literature (obtained through the SCI), in
contrast to the two other scientific literatures in the same study.
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would form knowing only the size and density of G1? And how much of the structure of G1

can be attributed to its connectivity distribution? We adopt three popular random graph

models to help answer these questions.

The (uniform) random graph G(n, p) (Erd}os and Rényi 1960), or ER model after its

progenitors, is the distribution arising from assigning an edge between each pair ðj; j0Þ of a

fixed number n of nodes with uniform probability p. The graph has expected density p,

A B C D

Fig. 2 Across adjacent 5-year intervals: stratified histograms of a cooperativity a = 1, 2, 3, 4 across
publications, b productivity q = 1, 2, 3, 4 across authors, c connectivity k = 0, 1, 2, 3 across authors, and
d collaboration weight w = 1, 2, 3, 4 across pairs of coauthors in the aggregate MR network

A
B

C
D

Fig. 3 Across a sliding 5-year window, arithmetic means of Fig. 2 in the aggregate, pure, and applied
networks
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while G1 has density k=ðn� 1Þ, so to avoid confusion with |P| we will write

Gðn; k=ðn� 1ÞÞ. This model provides a baseline expectation for G1 based on size and

density alone. The degree sequence random graph G(K) (Newman et al. 2001), the NSW

model, is distributed uniformly over graphs of a fixed degree sequence

K ¼ ðk1� k2� � � �Þ. This model arises out of a random rewiring process among nodes that

preserves each node’s degree. Since K determines n and k, the NSW model is strictly

narrower than the ER, and provides expectations for other structural properties of G1 based

on the distribution of connectivity. Finally, an analogous rewiring process that preserves

the partition of nodes in a bipartite graph as well as their degrees produces a bipartite NSW

(bNSW) model. This model provides expectations for G2 but also, via projection, for G1

based only on the distributions of cooperativity and of productivity.

As an example, we can ask how much of the variation in how widely researchers

collaborate is due simply to the sheer number of researchers involved in single projects by

comparing the average connectivity of G1 to its expectation based on the bNSW model.

The latter is given by

kbNSW ¼
X

q

nq

n
q
X

a

pa

p
ða� 1Þ;

where the nq and pa denote the numbers of researchers and of publications with a given

productivity and cooperativity, respectively. The formula computes the sum of each

researcher’s connectivity q(a - 1) (under the asymptotic assumption that a researcher’s

collaborations do not overlap) weighted by its probability
nqp

npa
(under the underlying

assumption that collaborations are independently distributed).

Figure 5 depicts the ratio of k to kbNSW over time.9 While the bNSW model provided a

consistently close prediction to k, this prediction shifted from under- to overestimate over

our 25-year interval. This shift was steady with respect to the pure subnetwork but slowed

incrementally with respect to the applied, ceasing after 2000. The model incorporates

A B

Fig. 4 For three evenly-spaced 5-year intervals, a for values a ¼ 1; . . .; 12, the expected mean productivity
of the authors on a publication i with cooperatively ai = a, and b for values q ¼ 1; . . .; 12, the expected
mean cooperativity of the publications attributed to an author j with productivity qj = q

9 We compute the ratio, rather than the difference or another single-value comparison, to better account for
the changing size and density of the network. Optimally, one would compute a test statistic like the Z-score
(e.g. Maslov and Sneppen 2002), but this correctly requires first generating and then running the same
(expensive) statistics on a collection of random graphs.
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cooperativity and productivity so that differences between observations and its predictions

reflect cooperativity–productivity correlations and collaborative overlap. These observa-

tions indicate that researchers’ families of collaborators shrank, relative to the sheer

amount of coauthorship in which researchers engaged, and that this was less true of more

applied researchers. The trend could be due to repeat coauthorship among teams of col-

laborators or the shifting relationship between cooperativity and productivity, with the

pure–applied divide due to an imbalance in either. We have considered the latter option

above and will consider the former in our later discussion of clustering.

Multidisciplinarity

There is a broad recognition that research across or outside established disciplines is

becoming more prevalent within the sciences, and the AMS classification scheme offers

another lens through which to investigate this trend. Multidisciplinary, interdisciplinary,

and transdisciplinary research trends have been discussed extensively, though the concepts

themselves have proven difficult to define (Aboelela et al. 2007; Porter et al. 2006). In

those studies that have compared fields including mathematics, mathematics has tended to

be among the less cross-disciplinary (Morillo et al. 2003; Qin et al. 1997). Graph-theoretic

approaches to quantifying cross-disciplinarity in collaboration networks have been limited

(Wagner et al. 2011).

We track cross-disciplinary trends in the MR network in two ways: First, we use the

number si C 1 of subject classifications assigned to each publication i 2 P as a proxy for

the publication’s disciplinary breadth. We adopt for this diagnostic the term ‘‘multidis-

ciplinarity’’, the most modest of the above three (Aboelela et al. 2007; Wagner et al. 2011),

and we follow the distribution and average of multidisciplinarity over time. Second,

common authorship can be used to establish links among publications in the same way that

coauthorship establishes links among researchers: We define the graph G01 in this way to

produce the time series depicted in (Fig. 6).10 We ask how much of this connectivity

through the literature is between pure and applied publications (as determined by their

primary MSC) versus within the pure or applied literatures. To this end we let

Ppure;Papplied � G01 denote the subsets of nodes (publications) having primary MSC in

03–58 and in 60–94, respectively, and define

r ¼
EðG01Þ
�
�

�
�� Epure

�
�

�
�� Eapplied

�
�

�
�

EðG01Þ
�
�

�
� ;

where Epure and Eapplied are the subsets of EðG01Þ that link two pure and two applied

publications, respectively. A baseline is given by

rER ¼
2 Ppure

�
�

�
� Papplied

�
�

�
�

Ppure

�
�

�
�þ Papplied

�
�

�
�ð Ppure

�
�

�
�þ Papplied

�
�

�
�� 1Þ

; ð2Þ

which is the expected value of r in the absence of preference, given the number of

publications of each type.11

10 We construct G01 from the subset of the literature having primary MSC ranging from 03 to 94. The

analysis of this unipartite projection of G2 onto P rather than N was another open question from (Grossman
2002).
11 We investigated the relationship of multidisciplinarity to cooperativity across publications, analogously
to (1) though taken over publications rather than attributions, but found no substantive relationship.
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The MR literature grew increasingly multidisciplinary, and while the pure literature was

assigned consistently more classifications on average this trend was shared very closely by

both pure and applied literatures. Meanwhile, the proportion of common authorships that

bridge these literatures has been a steady fraction (about a third) of what one would expect

based on the rate of common authorships alone. Both measures of disciplinary interaction

weaken over the period 1994–2000 but afterward recover. This leads us to characterize the

mid-90s event by decreased, and the early-00s event by renewed, multidisciplinarity.

Connectedness

Absent other factors, as a network grows denser it grows better-connected by other indicators

as well. In this and the following two subsections we’ll consider distributions of three such

indicators: of the sizes of connected components, of internode distances, and of clustering.

We contrast each against the expectations that arise from appropriate random models. Here

we consider the connected components of G1: An induced subgraph C � G1 contains every

edge between its nodes that appears in G1, and C is a connected component if it is nonempty,

connected (every node can be reached via a path from every other), and maximal as such.

Label the components of G1 as C1;C2; . . . in such a way that C1j j � C2j j � � � �. As active

graphs are constructed over larger durations of time, recording more collaborations among

many of the same researchers, an increasing proportion of their nodes will constitute C1.

Previous research on collaboration networks indicates that this proportion grows into a

majority in mature disciplines after 3 or 4 years (Barabási et al. 2002; Goyal et al. 2006;

Grossman 2002; Newman 2001a; Perc 2010; Tomassini and Luthi 48).

The ER model exhibits a giant component when
P

j kj [ n, while the unipartite NSW

model has threshold
P

j k2 [ 2
P

j kj. In both models |C1| scales with n by a factor that

depends on the governing parameters12 while an upper bound on |C2| scales similarly with

log n (Erd}os and Rényi 1960; Molloy and Reed 1995, 1998; Spencer 2010). G1 satisfies

both thresholds over every 5-year window.

The proportional size of C1 across 5-year intervals rises from 37% over 1985–1989 to

65% over 2005–2009. These proportions span the aforecited range of empirical values,

which suggests that C1 has been approaching a practical upper limit. This observation

holds even after size, density, and connectivity are taken into account; C1 is growing in size

in proportion to the sizes expected from the ER and NSW models, as depicted in Fig. 7.

Fig. 5 Across a 5-year sliding

window, the ratio of k to its
expectation in the bNSW model

12 This factor derives from Newman et al. (2001) as 1�
P

k
nk

n
uk , where u is the solution to the equation

2mu =
P

knkkuk-1 (recall that m is the number of edges).
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The connectivity distribution puts constraints on this expectation, in the sense that the

expected sizes of C1 are smaller in the NSW model than in the ER model, but the MR

network showed diminishing progress over time in drawing as great a proportion of

researchers into a single component as the model achieves through randomness.

We also looked at the distribution of |Ci| over time (plots not included). The ratio |C2|/

log n maintains a remarkably consistent range of 8 to 10 except over early years of our

interval in the applied network. The size distributions of the non-largest components over

each interval very closely follow power laws, as anticipated from previous studies. The

exponent, determined using the power-law fitting method of (Clauset et al. 2009) under

several fixed starting values of k, likewise shows no consistent trend over time.

Distance

We have seen that the mathematics research community has grown increasingly connected,

by a variety of indicators including cooperativity, connectivity/density, and the size dis-

tribution of the connected components. In particular, the increased proportional size of the

largest component has outpaced expectations based on the size of the coauthorship graph

and its connectivity. This prompts us to ask whether G1, and in particular C1, grew ‘‘better-

connected’’ by other standards. Two of the commonest are the typical internode distance

and the amount of clustering, the definitional hallmarks of ‘‘small world’’ graphs (Latora

and Marchiori 2001; Watts and Strogatz 1998) and commonly observed features of real-

world social, including collaboration, networks (Newman 2001b). In this section we

consider the former. A path in G1 is a sequence ðj; j1; . . .; jdÞ of distinct nodes in G1 each

adjacent pair of which form an edge, and the distance between researchers j and j0 in G1 is

the minimum length d of a path from j to j0.

Network studies typically compute only the average distance d of a network, which

calculation omits pairs of nodes that are not connected by a path (Blondel et al. 2007;

Newman 2001c). These averages typically range amidst 4:6	 d	 9:7 (Newman 2001b).

The average distance in an ER graph is known to follow the asymptotic approximation

dER 

log n� c

log k
þ 1

2
;

where c is now the Euler–Mascheroni constant (Fronczak et al. 2004). Meanwhile, a

A B

Fig. 6 a Across a 5-year sliding window, the average number of subject classifications (including the
required one) assigned to a publication. b Across years, the proportion of edges in G01 that connect pure and

applied publications
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(unipartite) NSW graph with degree sequence ðk1� � � � � knÞ was shown in (Chung and

Lu 2002) to have average distance

dNSW 

log n

logð
P

ki
2=
P

kiÞ
:

In both cases the graphs are not necessarily connected. To assess the average distance in G1

in light of its density and of its degree sequence, we compute the ratio of d to these

expectations for the equivalent ER and NSW graphs over time.

Some studies have taken advantage of the harmonic average distance

d�1
�1 ¼

X

i;j

dij
�1= n

2

� �
 !�1

taken over all pairs of nodes, the reciprocal of the graph’s efficiency (Latora and Marchiori

2001) (see also Opsahl et al. 2010). This averaging scheme allocates greater weights to

smaller distances. Additionally, disconnected nodes contribute zero to the sum; the cal-

culation omits no pairs of nodes and thereby detects both distances within components and

the disconnectedness of the whole graph. The relative weights of these is not obvious. To

account for the influence of the components of G1, we normalize the harmonic average by

the value it would take in a graph consisting of components of the same sizes within each

of which every internode distance is 1. This baseline is

n
2

� �
=
P

c
nc

2

� �
¼ nðn� 1Þ=

P
cðncðnc � 1ÞÞ: ð3Þ

Finally, we consider the distribution of distances within C1. This offers insight into the

changing spread of the distribution, unbiased by low distances within smaller components.

The absence of disconnected pairs of researchers in C1 also permits a meaningful com-

parison between d and d�1
�1

.

Figure 8(a) depicts the raw average d over time. The arithmetic average shrank steadily

in each of the aggregate, pure, and applied networks, from around 11 over 1985–1989 to

around 9 over 2005–2009 in the aggregate. The harmonic average, depicted in

Fig. 9(a) (note the logarithmic vertical scale), decreased dramatically in contrast, from

about 74 to about 21. The adjacent boxplots (b) depict the median (divider) and

A B

Fig. 7 The proportion |C1|/n of authors in the largest connected component of the coauthorship graph,
normalized by its expected values a in equivalent ER random graphs and b in equivalent NSW graphs,
across a sliding 5-year window
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interquartile range (box) of each distribution.13 Within each box are the arithmetic and

harmonic averages.

Figure 8(c,d) show that internode distances in G1 shrank less than one might expect due

to rising density but kept pace with expectations based on the entire degree sequence. The

predictions themselves converged over time, with the empirical value sandwiched between

them. Figure 8(d) suggests that this is an artifact of the changing degree sequence; the

NSW model about matched G1 in the average internode distance, and in fact G1 gradually

grew tighter-knit than the model.14 Interestingly, the predictions themselves converged

over time, with the empirical value situated between them. This was almost entirely due to

shrinking distances in the ER model (the distance distributions of NSW models were

comparably steady in shape as well as in mean).

By normalizing the harmonic mean distance by components (Fig. 9b, again note the

logarithmic scale), we see that the fragmentation of the network accounts for an order of

magnitude’s worth of the average distance; notably, accounting for components brought

d�1
�1

nearly into agreement with d.

Overall, G1 grew better connected over our 25-year interval in terms of internode

distances than more basic connectivity indicators (density, degree sequence, and compo-

nent size distribution) account for. We attribute the sharp decline in d�1
�1

to the changing

distribution of component sizes, which as we saw had a huge impact on the calculation.

The different arithmetic but similar harmonic average distances in the pure and applied

subnetworks may then be interpreted as reflecting a more fragmented applied network.

Indeed, when this is accounted for by the normalization of d�1
�1

, the applied appears more

tightly-knit than the pure. This in turn may be explained by the prevalence of highly-

connected subcommunities in the applied network, often disconnected from the largest

component. This is suggested both by the smaller values of |C1| in the applied network

(Fig. 7) and by the smaller sizes of the smaller components (not shown), and is consistent

with the sensitivity of d�1
�1

to short distances.

Clustering

Short distances are half of the ‘‘small world’’ story; the other half is high clustering.

Clustering in graphs refers to the proliferation of triangles (pairwise linked triples): The

(local) clustering coefficient cj of a researcher j 2 G1 is defined to be the proportion of

pairs of j’s collaborators who are themselvels collaborators (Watts and Strogatz 1998). The

(global) clustering coefficient C of a graph itself is taken to be the proportion of triples

ðj0; j; j00Þ of any researcher j 2 G1 and two of their collaborators j0; j00 that form triangles, i.e.

for which ðj0; j00Þ 2 EðG1Þ (Barrat and Weigt 2000). In social networks triangles far exceed

expectations based on random graph models, and the sociological literature has explained

this clustering in a variety of ways (Davis 1979; Moody 2004).

We measure clustering over time in three ways: the connectivity-dependent average

clustering ck ¼
P

kj¼k cj=
P

kj¼k 1 for k C 2, the average clustering c ¼
P

kj � 2 cj=
P

kj � 2 1, and the global clustering C. In addition to the raw numbers we consider the

13 Whiskers are omitted. When bound to the median by some small multiple of the interquartile range, the
diameter in each case reduced the meaning of the whisker to precisely this bound; while whiskers allowed to
extend to 1 and to the diameter in each interval crowd out the boxes for vertical space in the plot.
14 Comparison to actual NSW models indicates that this is not an artifact of increased total size.
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quotients of C and c by the graph density (the expected level of clustering under the

unipartite NSW model) and the quotient of C by its expected value CbNSW under the bNSW

model, computed in Newman et al. (2001) as

CbNSW �
ðl2 � l1Þðm2 � m1Þ2

l1m1ð2m1 � 3m2 þ m3Þ
þ 1

 !�1

; ð4Þ

A B

D
C

Fig. 8 a Mean distance across a 5-year sliding window and b boxplots of distances within C1, with
arithmetic (circles) and harmonic (squares) means overlaid. Mean separation normalized c by ER and d by
NSW predictions

A B

Fig. 9 a Harmonic mean distance and b its normalization by (3) across a 5-year sliding window
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where lr ¼
P

j qj
r and mr ¼

P
i ai

r are the rth moments of the distributions of researcher

productivity and of publication cooperativity, respectively.15 Comparisons to ER will

indicate the level of clustering relative to the baseline given by graph density, or average

connectivity; comparisons to NSW will indicate what clustering that cannot be accounted

for by the cooperativity of publications alone.16

Global clustering in coauthorship graphs ranges widely, across 0.066 \ C \ 0.76 over

intervals of time close to ours (5 years), but higher clustering is far more common (Bar-

abási et al. 2002; Grossman 2002; Newman 2001a). Adopting our interpretation of the

nodes, clustering in bipartite projections like G1 occurs when three (or more) researchers

coauthor a publication and when each pair of a triple of researchers has coauthored

something without the other. The respective explanatory power of these process has

received limited attention (Guillaume and Latapy 2004; Opsahl 2011). In such cases, the

measured ratios of CbNSW to C were similar, 0.42 for the arXiv and 0.48 for MEDLINE

(Newman et al. 2001).

Figure 10(a,b) depict the global and average local clustering coefficients over time.

Clustering in G1 was lower than typical for collaboration networks, in the range

0.24 \ C \ 0.31, with the applied network exhibiting consistently higher levels than the

pure. Whereas C decreases until 1990–1994, after which it stabilizes, c had been steady

until this time and then began to rise. Since the local average is more sensitive to the high

local clustering cj of researchers with low connectivity kj, this coincidence may be

explained by the changing distribution of connectivity around the same time (see the

discussion of Fig. 2c) amidst a more or less steady rise in clustering across researchers.

Time series of ck across 2 B k B 12 (see the supplementary materials) show that the earlier

period (before the mid-90s event) was characterized by consistently rising clustering only

among low-connectivity researchers, while the later period saw a more rapid increase

across researchers of all connectivities.

Figures 10(c,d) and 11(a) show these clustering coefficients normalized by model

predictions. The density of G1 accounted for little of the long-term trends in clustering, as

the time series are only slightly distinguishable. Notice the higher ratio of C and c to

density in the aggregate. The lower density of the aggregate network than the pure or

applied separately, which also played into the higher levels of intra- than inter-disciplinary

links in G01, accounts for this. Cooperativity, on the other hand, accounted for between 28%

and 42% of the observed clustering in the aggregate, at first about as much as in previ-

ously-studied collaboration networks but less as time progressed.

Clustering trends in the two major networks relied on different phenomena. The

comparison of Fig. 10(b) with (d) suggests that increased local clustering in the pure

network was adequately explained by rising average connectivity, while the comparison of

Fig. 10(a) with Fig. 11(a) suggests that changes in global clustering in the applied network

was largely due to the proliferation of highly cooperative publications.

15 The bipartite model predicts different connectivity distributions than what we observe in G1, so degree-
dependent comparisons to this model would require somewhat deeper discussion.
16 It is possible for measured clustering to be lower than that predicted by the NSW model, as in Newman
et al. (2001) (company directors), should very little clustering be due to distinct pairwise collaborations and
many highly cooperative publications share a common pool of authors, which publications would in the
model be attributed to distinct teams of researchers.
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Trends across disciplines and over time

We have discerned several differences between the pure and applied subnetworks, and

between the evolutionary trends over the periods within our 25-year interval loosely

defined by the two major events. While we do not conduct a thorough analysis of these

differences, we take a preliminary look in terms of widely-used network diagnostics.

Differences in publishing culture and in external influences may have a strong impact on

the respective structures of the pure and applied networks (see ‘‘Discussion’’ section).

However, it is worth considering first the possible impact of the MR demarcation of the

literature itself. Whereas most of the collaboration conducted by more pure mathemati-

cians is likely to be with other mathematicians, applied mathematicians are more likely to

collaborate with non-mathematicians. This leads us expect (a) that pure mathematics and

its researchers are situated more centrally in the MR network, with applied mathematics

and its researchers more toward the periphery; and (b) that applied mathematicians form a

less cohesive network than pure. The expectation (b) is supported by the greater frag-

mentation of the applied network in terms of its smaller largest component, larger inter-

node distances within that component, and greater fragmentation among components,

observed in ‘‘Connectedness’’ and ‘‘Distance’’ sections.

The expectation (a) may be tested in terms of the pure versus applied research interests

of the researchers that appear more centrally in G1. In particular, we might expect that

researchers of greater betweenness, closeness, and eigenvalue centrality—properties

influenced by nodes’ positions within the entire network—should tend to have authored

more pure publications, in contrast to researchers of greater degree or weighted degree

A B

DC

Fig. 10 Across a 5-year sliding window: a global clustering coefficient C, b average local clustering
coefficient c, and the ratios (c) of C and (d) of c to 2m/n(n - 1)
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centrality—properties that are strictly local (Wasserman and Faust 1994). We therefore

consider, as x ranges from 1 to 1,000, the attributions among the x most central researchers

that are pure, as a proportion of those that are pure or applied (according to primary MSC).

We do this over three evenly-spaced 5-year windows for degree, weighted degree,

closeness, betweenness, and eigenvalue centrality.

The results for betweenness and eigenvalue centrality are depicted in Fig. 12; those for

degree, weighted degree, and closeness were similar in shape to those for betweenness.

Consistently over time and across centrality measures, researcher attributions began dis-

proportionately pure. In all but eigenvalue centrality, they declined rather steadily toward a

more balanced proportion by the time the top 100 or so researchers had been included.

While the similarity of closeness and betweenness centrality trends to those of (weighted)

degree is dissuasive of the idea that pure researchers occupy the ‘‘center’’ of the MR

network, the persistently disproportionately pure research focus of high-eigenvalue cen-

trality researchers suggests that, in terms of structural ‘‘influence’’ or ‘‘importance’’, pure

researchers are indeed central to the discipline as a whole.

We have until now discussed changing trends in network evolution as though the mid-

90s and early-00s events were common, coordinated phenomena being felt by a variety of

network diagnostics. While some of these trends are certainly related (trends in coopera-

tivity and connectivity, for example), there is an alternative hypothesis that multiple net-

work trends, not directly interrelated, have been approximately coincident. This is

suggested by the apparent changes in trend of multidisciplinarity s, which are more

numerous than and not coincident with the two events, as we have described them. We

undertake now to (1) see just how coincident were the fluctuations we observed; (2)

assuming that they were, glean the order in which they proceeded; and (3) glean how

sensitive the answers to both are to some of the most impactful researchers and

publications.

To get a handle on when each time series changed course, we use a type of change point

model (Khodadadi and Asgharian 2008; Page 1954). Specifically, to the ordered pairs

(t, D(Gt)) we fit the continuous, piecewise-linear model

DðGtÞ ¼ b0 þ b1t þ b2ðt � cÞdt [ c þ �t; 1984þ Dt	 t	 2009;

having normally distributed error �:17 There is some subjectivity in how the algorithm is

A B

Fig. 11 a The ratio of C to (4) across a 5-year sliding window and b average connectivity-dependent
clustering coefficient ck versus k

17 Our code in R uses the nls function to locate maximum-likelihood estimators, i.e. those that minimize

SSE ¼
P

t �t
2.

990 Scientometrics (2014) 99:973–998

123



initiated and in how the windows surrounding each change point are chosen, and moreover

it is not necessarily likely that the network evolves in a piecewise linear fashion. The

models fit the data reasonably well, however, and we take advantage of them only locally,

to situate abrupt shifts in the data relative to each other in time. That is, if the shift in

diagnostic D occurred before that of diagnostic D0, then we expect the estimated change

point ĉ from the fit to (D(Gt)) to be smaller than that from the fit to ðD0ðGtÞÞ. We exhibit

code and all change point fits to time series in the supplementary materials.

The time series we use for this analysis are listed in the legend and caption to Fig. 13.

These were chosen from among the time series discussed up to this point, with preference

given to those of very basic diagnostics (for instance, network size and average cooper-

ativity) and to those of other diagnostics (for instance, number of publications and global

clustering), divided by their expectations based on more basic ones (number of researchers

and bipartite NSW model, respectively). We performed a correlational analysis on the 15

time series chosen, the results of which we include in the supplementary materials. Based

on this analysis, we sorted the time series into three groups: a largest group that were

tightly correlated, a smaller group that were moderately correlated with each other and

with the larger group, and a smaller group that were tightly correlated with each other but

negatively correlated with the others. These groups are identified in Fig. 13 by the colors

red, green, and blue, respectively.

In order to test the sensitivity of these observations to highly influential researchers and

publications, we perform the same analysis on a ‘‘few-author’’ network constructed from

those publications i having cooperativity ai \ 7 and a ‘‘less prolific’’ network obtained by

removing (for each 5-year window) those researchers j having productivity qj C 48.18 To

account for the possible influence of window size, we repeat the process across a 3-year

sliding window. The results are essentially the same; see the supplementary materials for

details.

Figures 13 and 14 depicts ‘‘delay plots’’ that record, for each event and for each pairing

of the aggregate network with one of the aforedescribed alternatives, the estimates of the

A B

Fig. 12 Proportion of pure and applied attributions to a the xth highest betweenness and b the xth highest
eigenvector centrality researchers that are pure across 1 B x B 1,000 over three 5-year windows

18 The threshold for cooperativity is chosen to be the values for which publication counts decreased until
the mid-90s. The other two thresholds are chosen so that the proportion of researchers removed to obtain the
second and third alternatives most closely resembles the proportion of publications removed to obtain the
first.
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change point c close to the event on the time series of several network diagnostics

described in earlier sections. We make two main observations: First, change points for

measures of cross-disciplinarity and clustering vary more widely, both among each other

and between the aggregate and alternative networks, than those for measures of con-

nectedness, output, and cohesion. This likely has to do with the latter being mostly

averages across nodes, which would be less sensitive to the removal of top players than

global diagnostics. This possibility is supported by the observation that the normalized

average local clustering c (the upward-pointing open pink triangle) behaves more like the

latter group than like the former.19 Second, change points corresponding to the mid-90s

event vary more widely, in the same ways, than those corresponding to the early-00s event.

That is, the time series shifts around this time were more coincident. While these plots are

suggestive, the reader should bear in mind that they do not take into account the suitability

of the change point model (considered in the supplementary materials).

Discussion

We observe several consistent trends in the long-term evolution of the MR collaboration

network: Both the research community and the published literature grew at increasing

rates, and the community decidedly more so. These trends are largely explained by greater

cooperativity in publishing (papers having three or more authors) and greater connectivity

among researchers (those having three or more collaborators), including proportional

declines in solo publications and solo researchers. In particular, increasingly many of the

authors of the most cooperative publications publish little else (in mathematics). Mean-

while, the network has grown better-connected even than this increased connectivity

suggests: Internode distances grew steadily shorter than random graph models having the

same density, connectivity distribution, or size distribution of connected components

A B

Fig. 13 Delay plots for the first change point. In each plot the (horizontal) x-axis corresponds to the
aggregate network, while the (vertical) y-axis corresponds to a the few-author network and b the less prolific
network. Each point in each plot has x-coordinate the best-fit change point to the time series of a diagnostic
on the aggregate network and y-coordinate the same on the alternative network labeled on the vertical axis.
Some ordered pairs are not plotted because change points were not estimated. Each dotted line depicts the
relationship y = x

19 While we do not include it here, degree–degree correlations, measured as assortativity (Newman 2003),
varies similarly.
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predicted. Simultaneously, clustering steadily increased, both at the local level and at the

global level, and especially clearly once clustering due to cooperativity was taken into

account.

These trends and their discrepancies might be interpreted in several, compatible ways. It

may be that as researchers become better-connected more avenues emerge for collabora-

tive projects, resulting in a literature more dense with contributions per paper overall. This

hypothesis is supported indirectly by the steady increase in researcher clustering but

countered directly by a weak relationship between cooperativity and multidisciplinarity.

Alternatively, whereas the enlarged community includes many researchers who publish

very little, we may be detecting the involvement of researchers who are not career

mathematicians (or at any rate whose career research is not covered by MR) but who join

mathematics research teams only once or infrequently. These would include peers in other

fields and young researchers who progress on to other fields after a program in mathe-

matics. A reciprocal trend should therefore also be observable as an increase in infrequent

authorship by researchers in collaboration networks of other disciplines that collaborate

often with mathematics. It also suggests a third possible explanation: that the overall

scientific literature is itself becoming a more cohesive network, in the same way as the pure

and applied networks are growing more cohesive within mathematics. This should be

observable as a general trend across all collaboration networks toward increasing com-

munity size relative to the literature. This hypothesis also implies an upward trend in the

proportion of common-author ties between pure and applied publications (links in G01),

relative to all such ties—which we observe until the mid-90s event and after the early-00s

event. Only during the latter period did the research community show exceptional growth,

as visible in Fig. 1(b). These explanations may amount to the common phenomenon of

increased cohesion throughout scientific publishing being observed at different scales.

The partition of the literature into ‘‘pure’’ and ‘‘applied’’ based on primary subject

classification yields two literatures of very nearly equal size, which together comprise more

than 97% of the aggregate literature over any 5-year interval. The research communities,

while they overlap substantially, are also approximately balanced in number until the mid-

90s event and remain close. Other long-term trends in both subnetworks mimicked those in

the aggregate. Despite these similarities, the networks exhibited some interesting differ-

ences, most of which persisted over our 25-year interval and hence suggest essential

differences between the literatures. The surge in one-time authors and in one-time

A B

Fig. 14 Delay plots for the second change point
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collaborations were concentrated in the applied subnetwork, which also exhibited greater

connectivity, more short distances, and higher clustering. The pure subnetwork showed

greater productivity overall, in terms of individual researchers and of collaborating pairs.

Moreover, pure research was consistently more multidisciplinary, as measured by the

number of assigned subject classifications. This difference may reflect the scope of the

database; it should be expected if MathSciNet records a great deal of interdisciplinary

work among different branches of mathematics but only a subset of interdisciplinary work

among mathematics and other disciplines (much of which would be published in non-

mathematics journals). Alternatively, it may reflect greater frequency of collaboration

among mathematicians in different subfields than among mathematicians and other

researchers. An analysis of a more general scientific publishing database, with a com-

prehensive inter- and intra-disciplinary classification scheme, could lend support to one of

these options over the other.

Both subnetworks showed increased clustering and decreased distances over our

interval, suggesting an ongoing ‘‘small world’’ effect that also manifests in the aggregate.

Interestingly, while the pure network exhibits shorter distances, the applied exhibits higher

clustering. Neither, therefore, may be said to be the ‘‘superior’’ small world. It is tempting

to interpret this as an illustration of the trade-off between low distances and high

clustering.

However, each observation can be understood in terms of more basic phenomena. The

shortening of distances in both (and the aggregate) can be adequately accounted for by the

sheer increase in connectivity or density (see Fig. 8c), while much of the rise in clustering,

especially in the applied subnetwork, was due to the proliferation of several-author pub-

lications (see Fig. 11a). The shorter distances in the applied network are largely due to the

researchers who publish papers in large groups, and especially those who are removed

from the largest component (Fig. 9), and once cooperative publications are taken into

account only the pure network shows a steady rise in clustering (Fig. 11a).

It may also be that the pure and applied networks are situated differently within the MR

literature in such a way as to produce some of these differences as artifacts. We suggest, for

instance, that the pure network may feature more centrally in this data, which could

account for its higher productivity and greater cohesion (into a largest component),

whereas the applied occupies more of the periphery, where one-time authors surged in the

last decade. The proportion of pure versus applied research contributions among the most

central researchers is suggestive of this, especially that the researchers of greatest eigen-

value centrality have authored nearly uniformly pure research. More sophisticated struc-

tural measurements and models, or comparisons to other databases, would be needed to

more carefully answer this question.

Changing rates of growth in the network are noticeable but perhaps not suspicious. We

found that these fluctuations in growth (both in community and in output) are not just

quantitative; they occur simultaneously with dramatic changes in network structure and

may need to be understood in terms of many factors.

The two events, such as we have described them, tell dissimilar stories. The mid-90s

event was characterized by noticeable increases in the rates at which the research com-

munity and literature grew. This growth was coupled with a trend toward greater local

connectivity and clustering, especially among applied researchers. The event also saw brief

declines in cross-disciplinarity. Thought of as a single phenomenon, the event took place

over several years and was significantly influenced by the rise of highly cooperative

publications. Meanwhile, the early-00s event was characterized by decreased individual

and collaborative publishing rates, due in large part to an influx of few-time authors. A
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surge in several-author publications, to which many few-time authors contributed, wrought

a surge in clustering, again especially in the applied subnetwork. Though connectivity

continued to increase on average, following this event it was to a lesser extent than the

random bipartite model would predict, and by other diagnostics (largest component and

internode distances) the increasing cohesion of the network slowed. This was a more

coordinated event, in that shifts in time series were more coincident (see Fig. 13c,d), and

less sensitive to the contributions of specific publications or researchers.

The mid-90s event may have been due in part to several plausible factors. One was the

rise of e-communications and the World Wide Web: Among the Internet milestones that

have impacted academia are the introductions of the arXiv in 1991, which went online in

1993 (Ginsparg 2009), and of MathSciNet in 1996, which made the MR publishing

database available through a graphical web interface (Jackson 1997). Another was the

influx of mathematicians from the former Soviet Union into the MR database, whether by

moving to other institutions or by their research becoming accessible to MR (Borjas and

Doran 5). While the early-00s event was more precisely situated in time, and more clearly

the result of specific publishing trends, we don’t feel prepared to speculate on its likely

proximate causes or on whether its impact is likely to have been beneficial for mathe-

matical research on the whole.

Conclusions

While evolving and temporal models and diagnostics of time-resolved network data are

seeing widespread use, the changing structure of collaboration networks with respect to

traditional diagnostics and model predictions has not been widely studied for its own sake.

In particular, few evolving networks have been studied with an eye toward examining

abrupt changes in their evolution, and evolutionary and temporal models are generally

designed rather to reproduce steady behaviors than to account for such changes. We

examined the collaboration network of mathematicians as constructed from the MR

database over the period 1985–2009 with the aim of understanding what essential trends

describe the network’s evolution, how the network structure differs by discipline, and in

particular how network evolution deviates from long-term trends and what factors may

account for such behaviors.

Several trends were straightforward over this period, including increasingly rapid

growth in both the community and in its output and greater connectedness (over a fixed

period of time). The latter is indicated in several different ways: larger teams of coauthors,

greater total numbers of collaborators per researcher, greater proportions of researchers

connected through coauthorship, shorter distances through coauthorship between

researchers, and increased collaboration among a typical researcher’s collaborators.

Moreover, these trends were not explainable in terms of each other; graph models tailored

to mimic the network according to some of these trends, but to otherwise exhibit random

structure, do not account for others. It is fair to say by any standard that the network has

grown better-connected. (The literature also showed some signs of an increased multi-

disciplinary quality, but this deserves closer scrutiny.)

Two major subnetworks, loosely corresponding to more pure and to more applied

disciplines within mathematics, exhibit similar long-term trends and fluctuations to the

aggregate. They also exhibit significant and consistent structural differences with each

other. These may be explained in terms of how disciplines are situated within the larger

network, of how mathematicians in different specialties engage with other researchers, or
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of different research cultures within mathematics. Several questions could be asked and

answered graph-theoretically to tease these and other explanations apart.

Steady trends in the evolution of the MR network divide our 25-year interval into three

segments, separated at two moments we call events: one in the mid-1990s, the other in the

early 2000s. Both events heralded growth and greater connectivity in each of the networks

we studied (aggregate, pure, and applied), but on closer inspection they show important

differences. We speculated that several real-world phenomena may have factored into

these events. Closer study of the MR database could provide greater insights, and evidence

from other sources could better inform and discriminate among these hypotheses.
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Morillo, F., Bordons, M., & Gómez, I. (2003). Interdisciplinarity in science: A tentative typology of
disciplines and research areas. Journal of the American Society for Information Science and Tech-
nology, 54(13), 1237–1249. doi:10.1002/asi.10326.

Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental
results. Physical Review E, 64, 016131. doi:10.1103/PhysRevE.64.016131, http://pre.aps.org/abstract/
PRE/v64/i1/e016131.

Newman, M. E. J. (2001b). Evolution of the social network of scientific collaborations: II. Shortest paths,
weighted networks, and centrality. Physical Review E, 64, 016132. doi:10.1103/PhysRevE.64.016132,
http://pre.aps.org/abstract/PRE/v64/i1/e016132.

Newman, M. E. J. (2001c). The structure of scientific collaboration networks. Proceedings of the National
Academy of Sciences of the USA, 98(2), 404–409. doi:10.1073/pnas.021544898.

Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E, 67(2), 026,126. doi:10.1103/
PhysRevE.67.026126.

Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the
National Academy of Sciences of the USA, 101(1), 5200–5205. doi:10.1073/pnas.0307545100.

Newman, M. E. J. (2004). Who is the best connected scientist? A study of scientific coauthorship networks.
In Complex networks, Lecture Notes in Physics (Vol. 650, pp. 337–370). Berlin: Springer.

Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions
and their applications. Physical Review E, 64, 026,118. doi:10.1103/PhysRevE.64.026118.

Opsahl, T. (2011). Triadic closure in two-mode networks: redefining the global and local clustering coef-
ficients. Social Network. doi:10.1016/j.socnet.2011.07.001.

Scientometrics (2014) 99:973–998 997

123

http://EconPapers.repec.org/RePEc:ucp:jpolec:v:114:y:2006:i:2:p:403-432
http://EconPapers.repec.org/RePEc:ucp:jpolec:v:114:y:2006:i:2:p:403-432
http://dx.doi.org/10.1137/110855715
http://dx.doi.org/10.1016/j.ipl.2004.03.007
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://www.ams.org/notices/199703/comm-mr.pdf
http://www.ams.org/notices/199703/comm-mr.pdf
http://biostats.bepress.com/cobra/ps/art44
http://dx.doi.org/10.1007/s11192-010-0202-z
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909426/
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1126/science.1065103
http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.soc.27.1.415
http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1017/S0963548398003526
http://dx.doi.org/10.1017/S0963548398003526
http://dx.doi.org/10.2307/3593085
http://dx.doi.org/10.1002/asi.10326
http://dx.doi.org/10.1103/PhysRevE.64.016131
http://pre.aps.org/abstract/PRE/v64/i1/e016131
http://pre.aps.org/abstract/PRE/v64/i1/e016131
http://dx.doi.org/10.1103/PhysRevE.64.016132
http://pre.aps.org/abstract/PRE/v64/i1/e016132
http://dx.doi.org/10.1073/pnas.021544898
http://dx.doi.org/10.1103/PhysRevE.67.026126
http://dx.doi.org/10.1103/PhysRevE.67.026126
http://dx.doi.org/10.1073/pnas.0307545100
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1016/j.socnet.2011.07.001


Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing
degree and shortest paths. Social Network, 32(3), 245–251. doi:10.1016/j.socnet.2010.03.006.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115. http://www.jstor.org/
stable/2333009.

Perc, M. (2010). Growth and structure of Slovenia’s scientific collaboration network. Journal of Infor-
metrics, 4(4), 475–482. doi:10.1016/j.joi.2010.04.003.

Persson, O., Glänzel, W., & Danell, R. (2004). Inflationary bibliometric values: The role of scientific
collaboration and the need for relative indicators in evaluative studies, Katholieke Universiteit Leuven.
http://ideas.repec.org/p/ner/leuven/urnhdl123456789-101421.html.

Porter, A. L., Roessner, J. D., Cohen, A. S., & Perreault, M. (2006). Interdisciplinary research: Meaning,
metrics and nurture. Reservoir Evaluation, 15(3), 187–195. http://ideas.repec.org/a/oup/rseval/
v15y2006i3p187-195.html.

Price, D. J. d. S. (1963). Little Science, Big Science... and Beyond. New York: Columbia University. http://
www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0231049560.

Qin, J., Lancaster, F. W., & Allen, B. (1997). Types and levels of collaboration in interdisciplinary research
in the Sciences. Journal of the American Society for Information Science, 48(10), 893–916. http://
www.eric.ed.gov/ERICWebPortal/detail?accno=EJ564231.

Soffer, S. N., & Vázquez, A. (2005). Network clustering coefficient without degree-correlation biases.
Physical Review E, 71(5), 057,101. doi:10.1103/PhysRevE.71.057101.

Spencer, J. (2010). The giant component: the golden anniversary. Notices of the American Mathematical
Society, 57(6), 720–724.

Tomassini, M., & Luthi, L. (2007). Empirical analysis of the evolution of a scientific collaboration network.
Physica A 385(2), 750–764. doi:10.1016/j.physa.2007.07.028, http://www.sciencedirect.com/science/
article/B6TVG-4P8GWXG-7/2/5836255114267d1a22b1d1fa47215fc9.

Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., Rafols, I., & Börner, K.
(2011). Approaches to understanding and measuring interdisciplinary scientific research (idr): a review
of the literature. Journal of Informatrics 5(1), 14–26. doi:10.1016/j.joi.2010.06.004, http://www.
sciencedirect.com/science/article/B83WV-51834VM-1/2/f35bf17a30a67b6b63b76ad36631e721.

Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications (Vol. 8). Cam-
bridge: Cambridge University Press. http://scholar.google.com/scholar.bib?q=info:gET6m8icitMJ:
scholar.google.com/&output=citation&hl=en&as_sdt=0,5&as_vis=1&ct=citation&cd=0.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘‘small-world’’ networks. Nature, 393(6684),
440–442. http://www.ncbi.nlm.nih.gov/pubmed/9623998.

998 Scientometrics (2014) 99:973–998

123

http://dx.doi.org/10.1016/j.socnet.2010.03.006
http://www.jstor.org/stable/2333009
http://www.jstor.org/stable/2333009
http://dx.doi.org/10.1016/j.joi.2010.04.003
http://ideas.repec.org/p/ner/leuven/urnhdl123456789-101421.html
http://ideas.repec.org/a/oup/rseval/v15y2006i3p187-195.html
http://ideas.repec.org/a/oup/rseval/v15y2006i3p187-195.html
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0231049560
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0231049560
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ564231
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ564231
http://dx.doi.org/10.1103/PhysRevE.71.057101
http://dx.doi.org/10.1016/j.physa.2007.07.028
http://www.sciencedirect.com/science/article/B6TVG-4P8GWXG-7/2/5836255114267d1a22b1d1fa47215fc9
http://www.sciencedirect.com/science/article/B6TVG-4P8GWXG-7/2/5836255114267d1a22b1d1fa47215fc9
http://dx.doi.org/10.1016/j.joi.2010.06.004
http://www.sciencedirect.com/science/article/B83WV-51834VM-1/2/f35bf17a30a67b6b63b76ad36631e721
http://www.sciencedirect.com/science/article/B83WV-51834VM-1/2/f35bf17a30a67b6b63b76ad36631e721
http://scholar.google.com/scholar.bib?q=info:gET6m8icitMJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&as_vis=1&ct=citation&cd=0
http://scholar.google.com/scholar.bib?q=info:gET6m8icitMJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&as_vis=1&ct=citation&cd=0
http://www.ncbi.nlm.nih.gov/pubmed/9623998

	Evolutionary events in a mathematical sciences research collaboration network
	Abstract
	Introduction
	Design
	Motivating questions
	Data
	Models and methods

	Results
	Rates of growth, publication, and collaboration
	Multidisciplinarity
	Connectedness
	Distance
	Clustering
	Trends across disciplines and over time

	Discussion
	Conclusions
	Acknowledgements
	References


