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Abstract In this paper the question of returns to scale in scientific production is analysed

using non-parametric techniques of multidimensional efficiency measurement. Based on

survey data for German research groups from three scientific fields, it is shown that the

multidimensional production possibility sets are weakly non-convex and locally strictly

non-convex. This suggests that the production functions for the groups in the sample are

characterised by increasing returns to scale in some regions and at least constant returns to

scale otherwise. This has two implications for the organisation of scientific research: first,

the size of at least some groups in our sample is suboptimal and they would benefit from

growth. Second, greater specialisation in certain tasks in science (e.g. transfer-oriented

groups vs. research-oriented groups) would increase the output of the overall system.
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Introduction

It is widely believed that efficient regular production systems (e.g. firms or economies) are

characterised by the division of labour. Indeed, this principle is easily communicated when
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looking at the alternative: a subsistence economy, where each person produces the goods

they need without trading. Although the absence of trade reduces transaction costs, these

gains are certainly outweighed by the losses from not reaping the benefits of specialisation;

in particular, learning effects and accumulation.

Although this principle seems natural for the production of regular goods and services,

there is little agreement whether this insight can be simply transferred to the production of

‘‘scientific goods’’. There are many arguments to support the scepticism. Some of them are

philosophical (for example, the postulated ‘‘unity of research and teaching’’ by Wilhelm

von Humboldt, one of the most important university reformers at the beginning of the

nineteenth century in Germany), while some are at least implicitly based on efficiency

arguments. For example, it is sometimes assumed that economies of scope exist (Johnes

1997; Cohn et al. 1989) which would render specialisation inefficient.

Many authors have since then analysed the question of increasing returns to scale

(IRS) and scope in science (among many others Lloyd et al. 1993; Johnes 1997; de Groot

et al. 1991; Dundar and Lewis 1995). Although the results with respect to economies of

scope are mixed, the majority of analyses, at least at the level of universities, demon-

strate the existence of IRS. However, these analyses suffer from two limitations. First,

most of these studies use aggregated university-level data. Second, the methodologies

employed build on the estimation of parametrically-specified cost-functions, which

imply not only potentially restrictive functional form assumptions, but also assume away

the possibility that some research units may be inefficient. This may lead to estimation

biases.

So far only a few papers have analysed the production returns at lower levels of

aggregation. One example is the paper by Bonaccorsi and Daraio (2005), who use local

regression techniques and do not find clear-cut evidence of IRS. Brandt and Schubert

(2013) use parametric regression techniques and find increasing returns on the university

level and decreasing to constant returns on the level of the research group with respect to

publication output. This analysis is particularly interesting because it tries to disentangle

the production returns on a micro and a macro level of analysis. However, their approach is

limited not only by the parametric specification, but also by the assumption that scientific

output is unidimensional taking publications as an adequate proxy.

The latter two problems can be avoided by the use of non-parametric envelopment

estimators. Further, we will show that creative use of these estimators can identify returns

to scale characteristics of the production function. Therefore, in this paper, we integrate the

neoclassical or parametric understanding of scale economies into a non-parametric

framework of efficiency estimation. We analyse whether IRS exist or not.

If IRS are present, two implications for efficient organisation follow. First, (at least

some) research groups would benefit from an increase in size. Second, the specialisation of

research groups in certain tasks becomes desirable, because a division of labour leads to

increased output of the overall system.

The remainder of this article is organised as follows: in ‘‘The nature of scientific

production’’ section we review the literature on returns to scale in science. We then show

under which conditions specialisation is an optimal strategy. ‘‘Methodology’’ section

describes our methodology. ‘‘Results’’ section presents the estimation results concerning

the returns to scale of scientific production functions. ‘‘Conclusions and limitations’’

section concludes.
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The nature of scientific production

Returns to scale in scientific production

The literature on returns to scale is largely based on aggregated university level data, where

most authors find (at least for some outputs) IRS. This means that groups with IRS can

produce disproportionately more if their inputs are increased.

For example, Worthington and Higgs (2011) find ray economies of scale up to 120 % of

the mean in a multi-input, multi-output setting. Comparable results are found by de Groot

et al. (1991), Sav (2004), Laband and Lentz (2003), Johnes et al. (2008), as well as Koshal

and Koshal (1995). Glass et al. (1995a, b) observe ray economies, but also find product-

specific economies of scale for undergraduate teaching. Johnes (1999) and Izadi et al.

(2002) do not detect ray economies of scale but product-specific economies of scale for

undergraduate teaching, postgraduate teaching and research. This is in line with Brandt’s

and Schubert’s (2013) result that IRS exist at the level of the university.

However, the latter also analysed the returns to scale at the level of the research group

and find no evidence of IRS. Indeed the results on the micro level are less clear, probably

also due to the divergence in methods and datasets, where analyses are necessarily based

on survey data or case studies.

van Tunzelman et al. (2003), who reviewed the existing literature on the level of

research groups for size effects on research group productivity, conclude as follows:

Evidence across different studies indicates that there appears to be a critical mass threshold

for group size, at least in some scientific fields, which hovers around six to eight people.

This ‘critical mass’ threshold may differ among major subject fields, as individual studies

show, but no comprehensive picture has emerged so far. A study by Carayol and Matt

(2004), focusing on 80 laboratories of the Louis Pasteur University, comes to similar

conclusions. With regard to the relationship between research group size and the size of the

respective department, empirical findings indicate that research groups of sufficient size are

able to function well regardless of the size of the department or the university they are

affiliated with (van Tunzelman et al. 2003). This latter result, in our terms, indicates the

absence of agglomeration effects, while there may be IRS for very low levels of input that

turn into decreasing returns to scale (DRS), if inputs increase. The latter argument would,

for example, result from an s-curved cost function. This is congruent with Johnston (1994)

to some extent, who, on the level of universities, finds economies of scale for low output

levels and diseconomies of scale for high output levels. The results are mixed, at this level

in particular. Adams and Griliches (2000) find constant returns to scale (CRS), which

implies that size does not matter at all. The same conclusion is drawn by Narin and

Hamilton (1996) and by Bonaccorsi and Daraio (2005) for Italian CNR units.

However, all of the analyses were based either on a cost function or a production

function approach. This has the advantage that relatively simple regression techniques can

be employed, but the disadvantage that these techniques suffer from parametric assump-

tions (with the exception of Bonaccorsi and Daraio (2005), who use local regression

techniques) and eliminate any potential inefficiency that the groups might exhibit (with the

exception of Johnes (1999) and Izadi et al. (2002), who use parametric frontier estimation).

Both assumptions can lead to severe estimation bias if they are not true. We therefore

reinvestigate the topic of IRS at the research group level using more flexible non-para-

metric frontier estimators, which allow the research groups to display inefficiency in their

use of resources.
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As argued, the importance of IRS in scientific production derives from two aspects.

First, and relatively obviously, groups with IRS can produce disproportionately more if

their inputs are increased. More precisely, if all inputs are increased by a factor k[ 1, then

the outputs increase by a factor d[ k (cf. Brandt and Schubert 2013 for details). Thus,

such groups would benefit from growth. More subtly, if IRS exist among research groups

(and total inputs over all groups are fixed), the aggregate outputs of all research groups

would increase if they specialised in certain outputs, implying, for example, that there are

graduate teaching- or publication- or transfer-oriented research groups. Without going into

too much technical detail, we will explain this latter point using an illustrative example.

Specialisation in science

Many authors highlight that scientific production is a process in which manifold inputs

(e.g. capital equipment, trained scientists, etc.) are transformed into various outputs (e.g.

publications, patents, knowledge transfer, etc.) (Rousseau and Rousseau 1997; Nagpaul

and Roy 2003; Warning 2004; Johnes 2006). This is corroborated for example in Jansen

et al. (2007), Schmoch et al. (2010) and Schubert (2009), who show that distinct profiles of

production are present in scientific production. In particular, these authors find that

research groups fall into characteristic clusters which focus on publication, graduate

teaching or transfer activities, which closely resemble the three missions of universities.

Thus, from a descriptive point of view, scientific research groups tend to specialise in

certain activities.

From a normative point of view, of course, the question is whether specialisation is a

desirable feature in the sense that it makes the best possible use of the available resources.

It turns out that the question of optimality is closely linked to the characteristics of the

returns to scale.

To enhance the understanding of this question of specialisation, we present a very

simple illustrative framework consisting of just two scientific units which have one input

and can use it to produce either of two outputs. Each output is produced according to the

same production function. The units are identical in their technology and input equipment.

The question asked is the following: Should the first unit, UNIT 1, produce Output 1 but

not Output 2 (and UNIT 2 vice versa), or should each unit produce a bit of both, i.e. should

they specialise or not?

Looking at Fig. 2, the answer to the question of the optimality of specialisation crucially

depends on the shape of the production function. Here, it is assumed that the production

functions display IRS (they are bowed towards the y-axis). In this case, increasing the input

by a constant factor increases the output by an amount strictly higher than that factor (see

also ‘‘Non-parametric efficiency estimators’’ section). For example, if it is assumed that

UNIT 1 and UNIT 2 decide to spend 50 % of their input on producing Output 1 and 50 %

on producing Output 2, then the aggregate production of Output 1 and 2 are YUS
11 þ YUS

12 and

YUS
21 þ YUS

22 . If, instead, UNIT 1 specialises in Output 1 and UNIT 2 in Output 2, then the

aggregate production would beYS
11 for Output 1 and YS

22 for Output 2. Since the production

functions are convex, we have YUS
11 þ YUS

12 \YS
11 and YUS

21 þ YUS
22 \YS

22. Therefore, special-

isation would increase aggregate output. Obviously, if the production functions were

concave, then specialisation would be uniformly detrimental calling for a ‘‘generalist’’

strategy. If the production functions were linear, then the specialisation strategy would not

have any effect.
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This illustrative model is obviously quite simplified. But it should be clear that the

results are fairly robust with respect to several generalisations. First, if the production

technologies used by each unit are not identical, then this affects only the question of who

should specialise in which dimension (but not whether they should specialise at all).

Second, it is unimportant if only two or a multitude of units exists. Third, it is unimportant

if we have two or more outputs. Fourth, it does not matter if the units have identical input

endowment.1

To summarise, units should specialise in those outputs where their production functions

exhibit IRS. With CRS, any specialisation strategy is equally efficient, while decreasing

returns argue against specialisation. In ‘‘Results’’ section we will show that the production

functions are characterised either by increasing returns or CRS. Before we do so, we

outline the theory about returns to scale in a neoclassical and non-parametric under-

standing, where the focus will be on the neoclassical one because of the results of this

subsection.

The hypotheses

The guiding question of this paper is whether the scientific production of research groups is

characterised by IRS in the neoclassical sense. This is the case when the production

possibility set is non-convex.2 Because it was concluded in ‘‘Specialisation in science’’

section that scientific units should pursue a specialisation strategy if there are IRS in at

least some regions and at least CRS everywhere else, a sufficient condition is that the

production possibility set is strictly non-convex at some points and weakly non-convex

anywhere else. We thus hypothesise that:

H0 (decreasing or constant returns to scale everywhere) The production set is weakly

convex everywhere.

H1 (increasing returns somewhere and constant returns everywhere else) The production

set is strictly non-convex at least at some points and weakly non-convex everywhere else.

Methodology

If H1 is true, IRS exist. We test this hypothesis using non-parametric efficiency estimators.

These are explained below.

Non-parametric efficiency estimators

The frontier model is explained in the following using the case with one input and one

output. This is for expositional reasons only, since the general frontier model can handle

technology frontiers with arbitrary dimensionality. One of the most prominent estimators is

the data envelopment estimator (DEA), which was originally proposed by Charnes et al.

1 Note, however, if more than the maximum a certain unit can produce of Output 1, were required by
society, then one unit would specialise and the other would also produce at least some of Output 1, i.e. the
second unit would not specialise (unless it produces none of Output 2). In a certain sense, we should still
speak of a specialisation strategy in this case, because at least one unit is required to specialise and the other
does so to the feasible extent, while still meeting societal demands.
2 Convexity of a set means that the linear combination of any two points on the boundary are again part of
the set. Increasing returns functions do not possess this property as can be easily verified based on Fig. 1.
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(1978). The major limitation of this estimator is that it can only deal with situations where

the production function is either characterised by CRS. A production function that is either

CRS or DRS can also be said to exhibit non-increasing returns to scale (NIRS). If the

production function exhibits IRS as in Fig. 1, the DEA estimator is biased. Then the free

disposal hull estimator (FDH) must be used. The latter estimator is less efficient but

unbiased irrespective of the returns to scale. This property allows us to use it to test our

hypotheses H0 versus H1.

We now introduce the DEA estimator alongside the general frontier model. We leave

out mathematical formulations as much as possible. DEA is the most commonly used

estimator in non-parametric efficiency estimation. The idea behind efficiency analysis is

that a so-called decision-making unit (firms, persons, regions, or research groups)

commands a certain set of inputs to produce certain outputs. The efficiency model

assumes that, given a certain amount of input, there is a technological limit to the

production of outputs, i.e. a unit cannot produce more than this output. The union of all

these maximum points that correspond to a specific input amount is called the theoretical

frontier. Units falling short of this theoretical frontier are inefficient. Inefficiency is

usually quantified by radial measures. If the theoretical frontier was always observed,

the estimation of inefficiency would be a trivial task. However, this is usually not the

case. Instead, only a given number of units are observed for which we have sample

values of inputs and outputs. Using these data points, DEA is one way of estimating the

theoretical frontier from the observed data.

In particular, DEA constructs the estimated frontier as the smallest convex hull

‘‘enveloping’’ all the data points in a sample. In fact, there are several variants which will

be explained later on but, for expositional reasons, we start with the so-called VRS DEA

frontier (bold line). Consider the one-input one-output case depicted in the Fig. 2, where

Output 1

InputI

Y s
11

Y us
11

1

Output 1

InputI

Y s
12

Y us
12

2

Output 2

InputI

Y s
21

Y us
21

UNIT 1 1

Output 2

InputI

Y s
22

Y us
22

UNIT 2 2

Fig. 1 Specialisation benefits and curvature of the production function
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the true frontier is given as y ¼
ffiffiffi

x
p

. x is taken to be non-random, and inefficiency is

generated by yobs ¼ y � exp � uj jð Þ with u�Nð0; 1Þ. The small circles mark observed

sample coordinates for the units. The smallest convex hull that envelops all the data points

is the DEA frontier. Obviously, the DEA frontier does not coincide with the theoretical

frontier, but if more and more units are observed, the DEA frontier will converge to it

(Kneip et al. 1998). Using this estimated frontier, it is easy to define a measure of inef-

ficiency. With regard to input, this is simply the used input divided by the input needed to

provide this output level. Looking at the figure given below, and focusing on the inefficient

point D, this is given by the ratio of the length of line segment AD divided by the length of

the line segment AC, whereas the true but unobserved inefficiency measure is ADj j= ACj j.
Three things are important to note. First, this input-inefficiency measure may take

values of 1 and above. Second, a value of 1 indicates that the unit is efficient, because then

the unit is on the frontier. Any value [1 indicates inefficiency. Thus low values are

desirable. Third, note that DEA also works for the multiple-input, multiple-output case.

The interpretation of the measures remains the same.

Indeed there is not only one DEA estimator but several variants. The estimator repre-

sented by the bold line in Fig. 2 is called the VRS estimator. The VRS estimator is the

most general estimator. The most restricted estimator is the CRS estimator, which is just a

straight line passing through the origin and most outward observation. In Fig. 2 it is

indicated by the dotted line. It is also clear that it largely overestimates the true frontier if

this exhibits IRS as in our case.

The NDRS estimator (dash-dotted line) is like the VRS estimator but additionally

includes the origin. Effectively this makes it a compromise between the VRS and the CRS

estimators. It is identical to the latter up to the first observation on the frontier defining the

CRS frontier and beyond that is identical to the VRS frontier.

0 20 40 60 80 100
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y
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True Frontier

VRS-Frontier

NIRS-Frontier

CRS-Frontier

Fig. 2 Efficiency and productivity estimation in frontier models
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Testing for IRS using frontier estimators

All DEA estimators are too restricted to deal with IRS production functions, because the

production possibility set must be convex for DEA to be applicable. The more general

estimator which can also handle non-convex production possibility sets is the FDH esti-

mator. Now, under H0, both the FDH and the NIRS-DEA estimator are consistent, while

only the FDH estimator is consistent under H1. This implies that, under H0, the two

estimators should not differ markedly, while, if H1 were true, they would. Thus our

hypothesis from ‘‘The hypotheses’’ section implies:

H0a Both the FDH estimator and the NIRS-DEA estimator are consistent.

H1a Only the FDH estimator is consistent.

If H1a is corroborated, then the production function displays IRS at least somewhere.

However, this does not mean that it has IRS everywhere. For example, it may also be

characterised by DRS in other regions. This would be the case, if the production function

had IRS for low output levels and DRS for high output levels as claimed, for example, by

Johnston (1994). Under these circumstances, the finding that there are regions with IRS

would imply practically nothing with respect to the optimal size of the research groups or

their specialisation. We thus have to rule out that there are regions with DRS. If this was

true as well, then the production function would either be characterised by IRS or at least

CRS.

Therefore, in the parlance of frontier estimation, we have to additionally show that the

production possibility is weakly non-convex (CRS) in the regions where it is not strictly

non-convex (IRS), i.e. the efficient boundary is described by CRSs, in which case spe-

cialisation is at least not detrimental:

H0b Both the CRS–DEA estimator and the NIRS–DEA estimator are consistent.

H1b Only the NIRS–DEA estimator is consistent.

In summary, based on H0a–H1b, we can distinguish four cases. First, when H0a is

rejected and H0b is not rejected, then the production possibility set is strictly non-convex at

least somewhere, but there is no evidence that it is strictly convex in other places. Con-

sequently, specialisation will increase overall output. Second, when neither H0a nor H0b

are rejected, there is no evidence to refute the hypothesis that the efficient boundary

exhibits CRS everywhere. Both the degree of specialisation and group size are irrelevant.

Third, when H0a is not rejected but H0b is, then there is evidence that the production

possibility set is strictly convex at least somewhere and exhibits CRS elsewhere. In this

case, specialisation strategies lower overall output. Fourth, if H0a and H0b are rejected,

there is evidence that production possibility sets have regions where they are strictly

concave and others where they are strictly convex. In this case, general recommendations

cannot be derived with respect to size and specialisation.

The data

In this analysis we use original data from a large online survey (data from 2007) conducted

as part of a research project funded by the German Research Association (DFG). The

sample consists of 473 research units from the disciplinary fields of astrophysics, nano-

technology, biotechnology, and economics. This corresponds to a return rate of *25 %, as

1908 research units received a questionnaire. This selection of fields guaranteed the

400 Scientometrics (2014) 99:393–408
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inclusion of basic research fields from the natural sciences (astrophysics), applied disci-

plines from the natural sciences (biotechnology and nanotechnology), and a field which has

both applied and basic research characteristics from the social sciences (economics).

Astrophysics makes up about 7 % of the sample, nanotechnology about 42 %, biotech-

nology 22 % and economics 29 %, which correspond roughly to the shares in the popu-

lation. The main objective of the survey was to determine the effects of different university

governance models on research efficiency. Because the low sample share of astrophysics

units does not allow reliable estimation, we excluded this group from our analysis.

The survey includes information on the inputs and outputs of a research group, as well

as its organisational or governance setting. This paper focuses on the input and output data.

Against the background of the multidimensionality of outputs, we collected a variety of

different activity indicators, which we regarded as scientific outputs. In total, we collected

the following 11 measures: SCI publications per scientist, citations per publication, con-

ference articles per scientist, fraction of international co-publications, professorial job

offers per scientist, expert reports for companies per scientist, cooperation with companies

per scientist, membership in advisory boards per scientist, number of doctoral theses per

scientist, number of state doctoral theses per scientist, editorships per scientist.3

Definition of the production possibility set

As argued by Jansen et al. (2007), Schmoch et al. (2010), Schmoch and Schubert (2009),

and Schubert (2009) scientific outputs should at least consider the dimensions of knowl-

edge generation, graduate teaching, and knowledge transfer.

We assume that each of these dimensions can be appropriately represented by a single

indicator. Specifically, the following indicators were chosen: number of SCI (bio and

nanotech) or SCOPUS (economics) publications (knowledge generation), number of

completed doctoral theses (graduate teaching), and number of advisory services for

companies plus cooperation with companies (knowledge transfer). It was also assumed that

the only relevant input is the number of scientists. Thus our production possibility set is

four dimensional (1 input and 3 outputs).

The major tenet of non-parametric efficiency estimation is that these estimators can

easily deal with multidimensionality, because the assumed production possibility set is not

restricted with respect to the included inputs and outputs. However, for us there are at least

two relevant problems concerning the class of estimators.

Firstly, because non-parametric estimators make few assumptions, which could help

identification, they suffer from the curse of dimensionality. This means that convergence

becomes very slow as the dimensionality of the production possibility set increases. Thus,

if we include multiple outputs, we also lower the precision of estimation drastically. To

deal with this, apart from an analysis where all the outputs (see next section) are considered

simultaneously, we also run the analyses for each dimension separately. This also provides

a more detailed picture of the production possibility set.

Secondly, non-parametric efficiency estimators are very sensitive to measurement error,

outliers, and model specification. Since the general classification of outputs into knowledge

generation, graduate teaching, and knowledge transfer (see ‘‘Specialisation in science’’

section) provides only some insights into a sensible choice of indicators, but is far from

being a clear-cut definition, we used two alternative sets of indicators.

3 The bibliometric data were taken from the ISI Web of Knowledge for biotechnology and nano-technology
and from Scopus for economics due to its better coverage.
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This alternative includes the number of citations of the SCOPUS/SCI/SSCI publica-

tions, the number of completed habilitation theses, and the number of memberships in

scientific advisory boards, where knowledge transfer more commonly refers to policy

making than to industry.

Even though the first set is a better choice, at least in the author’s opinion, if the results

stemming from the second are not too different, then the results can be deemed quite

robust.

In order to enhance the readability of this paper, we discuss the exact testing procedures

in the Appendix. The methodologies build on complex bootstrap algorithms and have been

partly developed and described in Simar and Wilson (2001, 2002). We now turn to the

results.

Results

Some summary statistics for the core variables are presented in Table 1.

The estimation results are presented in Table 2. We see that H0a is rejected and H0b is

not rejected for every discipline. This conclusion also holds with the alternative opera-

tionalisation of the input–output set. Thus, we can be more confident that our results are not

only due to the specific model specification and should also hold in a wider context.

According to Table 3, this means that the production possibility set is strictly non-

convex somewhere and weakly non-convex elsewhere; or in the language of economics,

the efficient boundary exhibits IRS somewhere and at least CRS elsewhere. Therefore,

specialisation will increase overall output. It also means that larger research groups can

make better use of their resources.

When separating this analysis by dimension (Tables 4, 5), and taking a closer look at

our primary definition, we find a comparable structure, especially in the case of transfer

(H0a is rejected, but H0b is not). This also holds for graduate teaching, except for the case

of biotechnology, where H0a is not rejected. In knowledge generation, H0a is rejected only

for biotechnology but not for the other disciplines. The latter finding is in line with the

results obtained in Brandt and Schubert (2013), who showed that, in the case of knowledge

generation as measured by publications, IRS cannot be detected on the group level.

Looking at the interesting cases where H0a is not rejected (remember that this implies

there is no evidence for regions along the efficient boundary which exhibit IRS), Table 4

indicates that there is also no evidence for DRS. This means that, although specialisation

will not increase output, it will at least not decrease it.

However, using the second definition to test for robustness, we also see some differ-

ences in Table 4. For example, in the case of economics, we can no longer detect IRS, even

though we found them in the full model. This may be partly due to the fact that Table 2

presents a joint test on all the output dimensions, while Table 4 shows three separated tests

and therefore has lower power. Further, the chosen indicators on graduate teaching and

knowledge transfer are probably not a very good choice, because they are comparatively

rare events. Looking at the other two research fields as well, we find that, although IRS are

found for the other disciplines, the dimensions along which they occur are not always the

same as in the tests based on the primary definitions.

Yet, and this should be stressed, the general result that there are locally IRS but no

evidence for locally decreasing returns remains the same. So, again, we observe the

robustness of this general result.
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Summarising the results from Tables 4 and 5, we find cases where the efficient

boundary exhibits IRS at least somewhere and CRS elsewhere, which calls for speciali-

sation. We also have cases where the efficient boundary is characterised by CRS every-

where, which implies that specialisation is at least not detrimental. Thus, for the analysed

research fields, we find strong evidence for the existence of locally IRS, while we cannot

Table 2 Test results of the shape of the production set (full output list)

H0a against H1a H0b against H1b

Primary definition

Nanotechnology -0.6740** -0.3962

Economics -0.6224** -0.0016

Biotechnology -2.1727** -1.6516

Secondary definition (robustness)

Nanotechnology -1.3013** -0.2307

Economics -0.8314** -0.0423

Biotechnology -0.0140* -1.2252

* Significant at 5 % level; ** significant at 1 % level

Table 3 Case definition and recommendations

Case H0a rejected, but
H0b is not rejected

H0a is not
rejected and
H0b is not
rejected

H0a is not
rejected but H0b
is rejected

H0a is rejected and H0b
is rejected

Shape of the
production
possibility set

Strictly non-convex
somewhere and
weakly non-convex
elsewhere

Both weakly
non-convex
and weakly
convex

Strictly convex
somewhere and
weakly convex
elsewhere

Regions where it is
strictly convex and
others where it is
strictly non-convex

Recommendation Specialisation
beneficial, larger
groups preferable

Specialisation
and size
irrelevant

Specialisation
detrimental,
smaller groups
preferable

No generally valid
recommendation
possible

Table 4 Results of the shape of the production set for H0a compared with H1a (by output dimension)

Knowledge generation Graduate teaching Knowledge transfer

Primary definition

Nanotechnology -0.5264 -0.5760** -0.4413**

Economics -0.1776 -0.3665** -0.4499**

Biotechnology -2.9974** -1.4367 -4.6979**

Secondary definition (robustness)

Nanotechnology -1.0108** -0.0000 -0.3262

Economics -0.0332 -0.0000 -0.0341

Biotechnology -2.1200 -0.1563 -5.4461**

* Significant at 5 % level; ** significant at 1 % level
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detect locally DRS. Taken together, this calls for the increased specialisation of scientific

research groups.

Conclusions and limitations

This paper deals with the optimality of specialisation in science. The empirical method-

ology used is much more robust than in older research in this field because no parametric

production function was ‘‘forced upon’’ the data. Instead, flexible non-parametric esti-

mation techniques were used. To make this approach feasible, it was necessary to integrate

the parametric notion of returns to scale and that of non-parametric efficiency analysis. By

doing so, it could be shown that the economic intuition which calls for a division of labour

can be transferred from the traditional production of goods and services to scientific goods

as well. Specialisation in science will increase aggregate output. We also found that larger

research groups will make more efficient use of their resources. In terms of policy rec-

ommendations, this paper suggests that specialisation should be increased and that

resources should be concentrated in larger research groups. This could be achieved, for

example, by creating appropriate incentives in the resource allocation system (e.g. indi-

cator-based funding schemes).

Two qualifiers are necessary with respect to the major implications. First, this result

only holds for graduate teaching and transfer. It does not carry over to knowledge gen-

eration, which is in line with what has been found in earlier studies (cf. Brandt and

Schubert 2013). Thus the general claim of the increased efficiency of larger units only

holds for a subset of the activities. Second, the observation that there are IRS might be due

to reverse causality for the following reason: typically better units are more able to attract

new funding and, inherently, more efficient firms might be more likely to grow. Thus,

unobserved heterogeneity could be the driver of this result, rather than actual IRS. While

this is definitely a limitation of this study, it should be a problem of small samples where

there are groups which are efficient and small. This will be true for example, when the

groups are still young, implying that they have not yet grown strongly. Since there are few

relatively young units in the sample, it seems reasonable to assume that reverse causality

issues have limited impact. Nonetheless, it would only be possible to fully control for this

effect if panel data are used to capture the full dynamics. Since the dataset used here is a

purely cross-sectional one, this remains an issue for future research.

Table 5 Results of the shape of the production set for H0b compared with H1b (by output dimension)

Knowledge generation Graduate teaching Knowledge transfer

Primary definition

Nanotechnology -0.0565 -0.3471 -0.1286

Economics -0.0000 -0.0000 -0.0000

Biotechnology -0.9079 -1.2775 -0.1491

Secondary definition (robustness)

Nanotechnology -0.0009 -0.0181 -0.0203

Economics -0.0000 -0.0072 -0.0283

Biotechnology -1.8933 0.8123 -0.0000

* Significant at 5 % level; ** significant at 1 % level
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Appendix: the testing procedure

The testing procedure for H0b against H1b was developed by Simar and Wilson (2001,

2002). However, for the case of H0a against H1a, a new test has to be proposed. But once

the procedure defined by Simar and Wilson (2001, 2002) for the case of restrictions in the

DEA model has been explained, it can readily be seen that an immediate extension is

possible for the case where the alternative includes a production possibility set that is

(possibly) non-convex.

Because, under H0b, both the NIRS-DEA and the CRS-DEA estimator are consistent,

they should be approximately the same on average, and the test statistic

TCRS ¼ 1

N

X

N

i¼1

dDNIRS
i � dDCRS

i

� �

� 0;

where dDVRS
i and dDCRS

i are the respective efficiency estimates (estimated Shepard’s dis-

tance function) should tend to zero as the sample size increases.

In order to assert that TCRS differs significantly from zero, it is necessary to determine

its distribution under H0b. One way of doing this is based on the homogeneous bootstrap of

Simar and Wilson (1998), where the homogeneity assumes that the distribution of the

inefficiency does not depend on the input–output levels. In any case, this assumption can

be dropped using subsampling bootstrap, which was done in Schubert and Simar (2009).

Since differences are usually small, we omit this topic and focus on the homogeneity.

The testing procedure works as follows:

1. For each DMU compute dDNIRS
i and dDCRS

i . Compute TCRS.

2. Use a kernel estimator to obtain an estimate of the density df CRS of dDCRS
i .4

3. Draw random deviates c�i from df CRS .

4. Calculate a pseudo-sample as follows c�i xi=DCRS
i ; yi

� �

, where xi=DCRS
i is the input-

oriented projection on the efficient frontier when H0b is true.5

5. From this pseudo-sample, calculate dDNIRS�
i and dDCRS�

i . Also compute TCRS�.
6. Repeat steps 3–5 B times.

7. From the resulting simulated distribution of TCRS� calculate the approximate p value of

the test-statistic TCRS as follows: pval �
PB

j¼1 1 T�CRS
j �TCRS

h i.

B.

It is readily seen that the test procedure does not make any assumptions about the shape

of the production possibility set when the null-hypothesis is not true. Therefore it is

straightforward to obtain a test for H0a against H1a. Simply replace the test statistic by

4 This will be done in the usual way proposed by Simar and Wilson (1998) to calculate confidence intervals
for efficiency measures in the DEA-model. The exact procedure is complicated but is implemented in the
FEAR-package for R by P. W. Wilson. The function is called dea.resample.
5 Projecting the observed point onto the efficient frontier when H0b is true ensures that TCRS� is sampled as
if H0b were true.
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TVRS ¼ N�1
PN

i¼1 ðdDFDH
i � dDVRS

i Þ� 0, calculate df VRS in step 2 instead, form the pseudo-

sample by c�i xi=DVRS
i ; yi

� �

, and calculate the p value as pval �
PB

j¼1 1 T�VRS
j � TVRS

h i.

B.

Everything else remains unchanged.
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