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Abstract In this paper we focus on the analysis of peer reviews and reviewers behaviour

in a number of different review processes. More specifically, we report on the develop-

ment, definition and rationale of a theoretical model for peer review processes to support

the identification of appropriate metrics to assess the processes main characteristics in

order to render peer review more transparent and understandable. Together with known

metrics and techniques we introduce new ones to assess the overall quality (i.e. ,reliability,

fairness, validity) and efficiency of peer review processes e.g. the robustness of the process,

the degree of agreement/disagreement among reviewers, or positive/negative bias in the

reviewers’ decision making process. We also check the ability of peer review to assess the

impact of papers in subsequent years. We apply the proposed model and analysis frame-

work to a large reviews data set from ten different conferences in computer science for a

total of ca. 9,000 reviews on ca. 2,800 submitted contributions. We discuss the implications

of the results and their potential use toward improving the analysed peer review processes.

A number of interesting results were found, in particular: (1) a low correlation between

peer review outcome and impact in time of the accepted contributions; (2) the influence

of the assessment scale on the way how reviewers gave marks; (3) the effect and impact of

rating bias, i.e. reviewers who constantly give lower/higher marks w.r.t. all other

reviewers; (4) the effectiveness of statistical approaches to optimize some process

parameters (e.g. ,number of papers per reviewer) to improve the process overall quality

while maintaining the overall effort under control. Based on the lessons learned, we
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suggest ways to improve the overall quality of peer-review through procedures that can be

easily implemented in current editorial management systems.

Keywords Peer review � Quality metrics � Reliability � Fairness � Validity � Efficiency
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Introduction

Over the last few centuries, peer review has been considered a fundamental part of the

scientific research and dissemination process (Zuckerman and Merton 1971). The review

process is used to ascertain quality of scientific contributions and project proposals and to

provide credits assignment as well as career advancement to researchers. Indeed, nearly

every scientific journal bases its selection on peer review, and scientists spend a significant

amount of their work time in reviewing papers [in computer science (CS), for example, it is

common for senior researchers to review more than a hundred papers per year].

Surprisingly, especially given that peer review is used by scientists and it is such a

fundamental part of researchers’ daily life and career, there have been very few studies

aiming at obtaining scientific evidence that peer review is a good way (or even the optimal

way) to assess the truthfulness, quality, and potential impact of a scientific contribution or

project proposal. In most cases we just proceed on the intuition or belief that it works. Even

fewer are the scientific studies aiming at identifying how the review process can be made

more efficient in terms of the trade-off between the review effort by the community and the

validity of the review result.

In this paper we (i) search for scientific evidence that peer review ‘‘works’’ (or that it

doesn’t), and (ii) search for ways to improve the peer review process so that it can ‘‘work

better’’. We do this by defining a set of metrics that are indicative of the quality of peer

review processes: that is, aim at measuring how peer review ‘‘works’’. The purpose of such

metrics is to help us understand and improve the peer review process along the following

main dimensions: reliability, fairness, validity and efficiency. A reliable peer review process

is, in our view, a process that provides a good prediction of the entire committee consensus

opinion: i.e.,how far the practical choice of involving a reduced set of reviewers (typically

three) in the review of each contribution is from the ideal case where everybody in the review

committee evaluate the contribution. Fairness, in our approach, is related to the monitoring

of the contribution distribution process to the reviewers: the more fair the process is the less it

depends on the particular set of reviewers within the program committee (PC) to which it is

assigned. Validity is related to the final result: a review process is valid if the best contri-

butions are chosen. Efficiency is related to the time spent in preparing and assessing the

contributions and to the statistical accuracy of the review results: a process is efficient if the

best proposals are accurately chosen with minimal time spent both by authors in preparing

the contribution and by reviewers in performing the reviews.

In order to achieve our research objectives we designed and performed a large-scale

analysis of review data, and we tried to present and explain the results in a way that allows

readers to easily form an intuition for what they mean in practice.

We are certainly not the first to perform an analysis of review data. In the related work

section we review papers that are more closely related to our research and also refer to

surveys on this topic. With respect to the literature, however, our analysis on peer review

differs from others for the following main contributions:
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• we formally define—and measure—metrics for the validity of peer review, which we

believe mirror what people expect today from peer review, namely:

(i) that peer review identifies papers/proposals that are scientifically correct and that

are likely to have a scientific impact in the future, and/or

(ii) that peer review identifies papers/proposals that the scientific community is likely

to be interested in reading and considers worth research directions. We explicitly

do not consider in our current work another important aspect of peer review,

namely that of providing feedbacks to authors. Here, we are only concerned with

the selection process and with quantitative data.

• we analyze a large dataset including nearly 3,000 contributions and ca. 9,000 reviews

in the domain of CS.

• we investigate the efficiency of the review process, to identify how to improve the

effectiveness of the process while maintaining the same overall reviewing effort.

• we introduce intuitive ways of expressing the results of our analysis, providing

measures that are understandable and ‘‘actionable’’.

The majority of the data we have been able to collect come from the engineering field,

mostly from CS. As such, we cannot claim that the results have general validity—and the

same applies for every study in a single domain. In particular CS is rather different from

the domains in which research on peer review has been more active (such as Physics and

Medicine), as it is characterised by an high number of papers per researcher, most of which

are not oriented at trying to model or understand how the world or the human body

behaves, but rather try to propose new models, algorithms, or software. In CS it is rare the

case where the review points out that a paper is ‘‘wrong’’. The typical criticism is that a

paper is not that novel, that the problem attacked is not useful or applicable in practice or

that it lacks sufficient theoretical or empirical validation. Moreover, conference publica-

tions enjoy greater status in CS than in other disciplines (Chen and Konstan 2010; Freyne

et al. 2010). This being said, the results we obtained are, we believe, relevant and point to

the need for further scrutiny on peer review as well as alternative models of review. Here is

a short summary of our main findings:

• in all our available data, there is only a low correlation between the rankings of the

review process and the impact of the papers as measured by citations; this is also true in

the similar study of a posteriori review of the same contributions at a later time;

• the influence of the assessment scale on the way how reviewers gave marks;

• the disagreement among reviewers is a useful metric to check and monitor during

the review process. Having a high disagreement means, in some way, that the

judgment of the involved peers is not sufficient to state the value of the contribution

itself. This metric can be useful to improve the quality of the review process as it

can support the decision whether more reviewers are needed in order to improve the

process reliability.

• it has always been possible to identify groups of reviewers that consistently give higher

(or lower) marks than the others independently from the quality of the specific

contribution they have to assess. The information coming from such analysis and

possibly un-biasing procedures (like the one we proposed in this article) could be useful

to review processes chairs to improve the fairness of the review process;

• we have shown that it is possible to devise statistical approaches to tune review process

parameters to improve quality while keeping the overall effort under control.

Scientometrics (2013) 97:317–356 319

123



The paper is structured as follows. In ‘‘Related work’’ section we provide a brief

description of related work. ‘‘Approach to peer review analysis’’ section introduces our

generic framework to the analysis of peer review processes, in particular our proposed

metrics and model for peer review used in the subsequent analysis, while ‘‘Data set

description’’ section illustrates the data set we used for our analysis. In ‘‘Quality: pre-

liminary study’’ section we introduce a preliminary analysis on the quality of peer review

process, while in the subsequent ‘‘Quality: reliability, Quality: fairness, Quality: validity’’

sections we present in detail for each analyzed dimension—reliability, fairness and

validity—the proposed metrics, related results and lessons learned. In ‘‘Analysis of the

efficiency of the peer review process’’ section we investigate a new dimension: efficiency,

in order to suggest possible improvements in the review process. Conclusion and discus-

sion on the findings close the paper.

Related work

Peer review is probably one of the most debatable topic among scientists and has been

widely studied in the last years, although no one of these studies can be considered

comprehensive or conclusive. In fact, while peer review has been analyzed and studied by

several researchers, we notice that such analysis are not straight comparable, as they refer

to review processes coming from different disciplines and different journals. Indeed,

sometime even analysis done in the same field can lead to contradictory results (Jefferson

et al. 2002a). Even if peer review has been used as method of evaluation since Greek time

(Barnes 1981; Spier 2002; Zuckerman and Merton 1971), the first journals that were

selective in the choice of their manuscripts were the Journal des Savants and the Philo-

sophical Transaction of the Royal Society of London, both founded in 1665 (Spier 2002;

Zuckerman and Merton 1971). The first journal that introduced officially the peer review

process as we know it today has been the Medical Essays and Observations, first published

in 1731 (Spier 2002; Benos et al. 2007).

Recently, many scientists started to study the effectiveness and, more in general, the

qualities and properties of peer review. A significant number of papers report that peer

review is a process whose effectiveness ‘‘is a matter of faith rather than evidence’’ (Smith

2006), that is ‘‘untested’’ and ‘‘uncertain’’ (Jefferson et al. 2002a), and on which we know

very little because scientists are rarely given access to relevant data. Lock (1994) claims

that peer review can at most help detect major errors and that the criteria for judging a

paper is to look at how often its content is used and referred to several years after

publication. Other experimental studies put in doubt the ability of peer review to even spot

important errors in a paper (Godlee et al. 1998). In general, however, although crude and

understudied, peer review is still considered a process to which no reasonable alternatives

have been found (Kassirer and Campion 1994; Smith 2006).

The various studies on peer review differ in which metric they evaluate and in the kind

and amount of available data. Indeed, having precise objectives for the analysis is one of

the key and hardest challenges as it is often unclear and debatable to define what it means

for peer review to be effective (Jefferson et al. 2002b). In general we can divide the metrics

in two groups: those aiming at determining the effectiveness or validity or peer review, and

those aiming at measuring what authors consider to be ‘‘good’’ properties of peer review

but that per se do not imply that peer review ‘‘works’’.

Among the first group, studies aim at assessing the ability of peer review to detect errors

and the ability to predict the future impact, measured in terms of citation count. For what
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concerns the ability to detect errors, a study was conducted by Goodman et al. (1994) who

tried to measure the quality of the papers submitted to the Annals of Internal Medicine

between March 1992 and March 1993 before and after the peer review process. They did

not find any substantial difference in the manuscripts before and after publication. Indeed,

they state that peer review was able to detect only small flaws in the papers, such as figures,

statistics and description of the results. An interesting study was carried out by Godlee et al.

(1998): they introduced deliberate errors in papers already accepted by the British Medical

Journal (BMJ).1 Godlee et al. report that the mean number of major errors detected was two

out of a total of eight, while there were 16 % of reviewers who did not find any mistake, and

33 % of reviewers went for acceptance despite the introduced mistakes.

Citation count was used as a metric in peer review processes analysis mostly in studies

by Bornmann and Daniel. A first study reports on whether peer review committees are

effective in selecting people that have higher citation statistics, and finds that there is

indeed such a correlation (Bornmann and Daniel 2005b). Another interesting study con-

cerns preliminary review of papers by staff editors of journals, before sending the papers

through a peer review process. Besides emphasizing that the opinions of staff editors is

often uncertain and different from that of the reviewers, the study observes that ‘‘three-

quarters of the manuscripts that were rated negatively at the initial internal evaluation but

accepted for publication after the peer review had—when published—far above-average

citation counts’’ (Bornmann and Daniel 2010b).

Our work in terms of effectiveness or validity focuses on three metrics (citations, a

posteriori review, and ability to predict consensus opinion of the reviewers’ community,

e.g., through (dis)agreement analysis). None of the prior art uses these metrics to analyze

the result of peer review on scientific papers in the same way. Many works—such as the

interesting work by Bornmann and Daniel (2005b)—do consider one of them (citations) as

a validity metric, but do not consider the rankings that come out of the peer review process

and compare them with citations, which is one of the main aspect we consider in this paper.

Research aiming at measuring properties of peer review has been mostly focused on

identifying biases and understanding their impact in the review process. Indeed, reviewers’

objectivity is often considered a fundamental quality of a review process: ‘The ideal

reviewer,’ notes Ingelfinger (1974), ‘should be totally objective, in other words, super-

natural’. Among the large number of contributions that had concern in bias detection, there

are works that have found affiliation bias (meaning that researchers from prominent

institutions are favored in peer review) (Ceci and Peters 1982), bias in favor of US-based

researchers (Link 1998), or gender bias against female researchers (Wenneras and Wold

1997; Bornmann 2007; Ceci and Williams 2011). Another source of bias in peer review is

conflict of interest bias, particularly in health related domains (Davidoff et al. 2001). Yet

application of the multiple logistic regression models in Reinhart (2009) for the Swiss

National Science Foundation (SNSF)—funding organization for basic research in Swit-

zerland for the natural and social sciences—reveals that all potential sources of bias

(gender, age, nationality, and academic status of the applicant, requested amount of

funding, and institutional surrounding) are non-significant predictors.

Multiple logistic regression models of detecting the potential sources of bias in the peer

review process were also used in Bornmann and Daniel (2005b) for defining the most

frequently examined potential sources of bias, that could appear in selection of research

fellowship recipients, such as: the applicant’s gender, nationality, major field of study and

1 ‘‘With the authors consent, a paper already peer reviewed and accepted for publication by BMJ was
altered to introduce eight weaknesses in design, analysis, or interpretation’’ (Godlee et al. 1998).
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institutional affiliation. Generalized linear mixed model of the log-odds ratio was used

again to detect gender bias in SNSF (Bornmann et al. 2008a): here the authors pointed out

that—using the generalized linear mixed model to detect unequal odds ratios—indications

of potential sources of bias (such as gender, nationality, social status) can be examined not

only for grant peer review but also for journal peer review. The Kruskal–Wallis test, a

nonparametric version of one way Analysis Of Variance [ANOVA (Kruskal and Wallis

1952)] was used to detect the bias of the application order, namely the bias that is due to

the fact that application was considered as first (Bornmann and Daniel 2005a) and the

authors detected that there is an evidence that being first increases the probability of being

accepted. In the area of measuring properties of peer review, our work differs from the

prior art for the large scale of the analysis and for the identification of metrics and

approaches that can be more intuitively understood by the reader. In addition we compute

the rating bias (reviewers consistently giving higher or lower marks), which is a kind of

bias that appears rather often, that is easy to detect, and that can be corrected with quite

simple procedures (see ‘‘Quality: fairness’’ section). We also examine its effect on other

properties of peer review processes.

A common way to identify bias is also to compare single and double-blind review.

Single-blind review provides anonymity to the reviewers and is used to protect the

reviewers form the authors’ requital. Nowadays, single-blind review became the com-

monly used practice. Double-blind review, where identities of both authors and reviewers

are hidden is also used sometimes. The purpose of it is to help the reviewers to assess only

scientific achievements of the paper, not taking into consideration other factors and

therefore not to be somehow biased. For instance, ACM SIGMOD (a conference on data

management) organizes conferences where double-blind review is adopted. Analysis of the

merit of the double-blind review process are so far contradictory. In Madden and DeWitt

(2006), a set of statistics had been provided with the conclusion that double-blind

reviewing make no impact on ACM SIGMOD publications. But later opposite results

where published by Tung (2006), where he made two studies which indicate that double-

blind review in ACM SIGMOD do have impact on the performance of famous person

compared to VLDB (another popular conference series on database technology, but where

all conferences are not double-blind). Moreover, it is in general difficult to enforce the

double-blind review policy, as authors always introduce (deliberately or by mistake) ele-

ments that help reviewers to identify them (Katz et al. 2002).

Research on open peer review (where the reviewer’s name is known to the authors) is at

present very limited. Initial studies showed that open reviews were of higher quality, were

more courteous and reviewers spent typically more time to complete them (Walsh et al.

2000; Bornmann et al. 2012; van Rooyen et al. 1999). We did not come across any study

that compares open versus blind reviews in terms of bias estimation.

Now, scientists and editors are exploring alternative approaches to tackle some of the

pervasive problems with traditional peer review (Akst 2010). This include enabling authors

to carry reviews from one journal to another, posting reviewer comments alongside the

published paper, or running the traditional peer review process simultaneously with a

public review. The ACM SIGMOD conference has also been experimenting variations of

the classical peer review model where papers are evaluated in two phases, where the first

phase filters out papers that are unlikely to be accepted allowing to focus the reviewers’

effort on a more limited set of papers. In this paper we provide a model for multi-phase

review that can improve the peer review process in the sense of reducing the review effort

required to reach a decision on a set of submitted papers while keeping the same quality

of results (see ‘‘Analysis of the efficiency of the peer review process’’ section).
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As we have already mentioned, one of the main issue in peer review analysis is to have

access to the data. We experienced the same problems in collecting our data. However, our

work differs from the others we mentioned in this section for the scale of the analysis, in

terms of number of papers and reviews taken into consideration. In other works, authors

have been restricted to analyze only 1–2 conferences, grant applications processes or

fellowships. Just to name a few: Reinhart (2009) analyzed 496 applications for project-base

funding; Bornmann and Daniel (2005a) studied the selection process of 1,954 doctoral and

743 post-doctoral applications for fellowships; Bornmann et al. (2008b) analyzed 668

applications for funding; Godlee et al. (1998) involved in their experiments 420 reviewers

from the journal’s database; Goodman et al. (1994) analyzed 111 manuscripts accepted for

publication. A very recent work (Cabanac and Preuss 2013) has been published where the

authors have analysed 42 peer-reviews conference in Computer Science, but focusing only

on the order effects in the bids for paper reviews.

In the present analysis, we succeeded in collecting review data from 10 conferences, for

a total of 9,032 reviews, 2,797 submitted contributions and 2,295 reviewers.

Approach to peer review analysis

This section presents our proposed framework for the analysis of peer review data. We first

discuss the metrics we aim to measure from the available data and explain why we focus on

them. Then we introduce the model and notation to describe peer review processes that we

use in the later sections for our analysis.

Metrics for peer review

We propose two classes of metrics for peer review: (1) metrics to study if peer review

‘‘works’’ and (2) metrics to identify good properties of peer review.

The first class of metrics is really at the heart of the problem of finding scientific

evidence in support of peer review. Defining what we want out of peer review is considered

a challenging topic in itself (Smith 2006; Jefferson et al. 2002a) and it is often a matter of

opinions. Both from our experience and from the literature, e.g., Lock (1994), Godlee et al.

(1998), Kassirer and Campion (1994) Smith (2006), peer review is considered to have one

or more of the following goals:

1. Identify and select papers that are likely to have a relevance and impact in the future.

In the case of projects, select proposals that are more likely to have an impact on

science, business, or the society at large.

2. Identify papers that are likely to be of interest to the readers (for journals) or attendees

(for conferences).

3. Spot errors in the paper and give feedbacks to authors so that they can realize a better

paper.

In the following we do not focus on the third item, both because in our analysis we are

concerned with understanding the ability of peer review to identify and select good papers

and because this specific point have already been studied in the past (Goodman et al. 1994;

Godlee et al. 1998).

Trying to measure impact is one of the highly debated topics in scientific dissemination

and evaluation, also because it is one of the main factors considered in evaluating job

applications in the academia and research labs (so it has a significant and direct impact on
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people’s life). To identify commonly accepted metrics for this, we looked both at how

committees evaluate scientific impacts of candidates and at how 10-years award com-

mittees operate when they need to look back at papers published 10 years earlier. Selection

and evaluation committees consider number of publications (possibly weighted by impact

factor or other means) or, more recently, citation-based metrics (citation count, h-index,

g-index, etc.) (Krapivin et al. 2010). In some cases, selected publications of short-listed

applicants are reviewed by the committee members to further assess their quality. Our team

has been involved in supporting 10-years awards committees for major conferences in CS,

and the criteria there are not dissimilar: papers are screened by citation counts and then

looked at by the committee.

In our work we take the same stand in finding metrics for impact: we consider citation

count, and we consider an a-posteriori review of the papers (and even of extended version

of the papers that report on further detail and on further elaboration of the work). These are

the baselines over which we assess the validity of peer review and in the following sections

we describe in detail how we measure them and compare with peer review data.2

In essence, we try to see how the ranking coming out of peer review is close or far with

respect to those coming out of citation counts or additional reviews of the same work

(sometimes more detailed versions of the same work).

As for the second goal above (interestingness), the way we measure it is by looking at

the ability of a review process to predict the average opinion of the entire PC. In the

domain of information engineering and CS, PCs of conferences are often very large, and in

important conferences they typically range from 100 to 300 members, typical with an

hierarchical organisation (e.g., general chair, regional chairs, meta-reviewers, reviewers).

As such, the PC is a good approximation of the community of interest of the conference,

and therefore estimating the opinion of the PC is a reasonable approximation of the

interestingness of a paper for the target community.

Our approach to analyze review data is therefore driven by the needs of: (i) measuring

or estimating the above metrics and their correlation with peer review; (ii) understanding

and explaining the results, in addition to provide the numbers, also in a way that is intuitive

and that give readers a feel for how well peer review works.

In our analysis we also compute other metrics (for example, metrics of agreement

among reviewers (often called reliability in the literature) and robustness and this is

because they all contribute to our main goal of establishing the validity of peer review.

Peer review model

We present here a model for peer review that covers many types of submission and review

procedures, including conferences submissions project proposals, and PhD thesis proposals

assessment. The model focuses on bulk submissions where several proposals are sent by

a deadline and are evaluated by a committee. This is to fit the analysis needs for the data

we have which is mostly conference data. In this regard, we observe that in the area of

information engineering and CS, where most of the data comes from, conferences are the

primary outlet for publications and are often regarded as reputed or even more reputed than

journals (Chen and Konstan 2010; Freyne et al. 2010). Conference data also makes it

2 Notice that this pragmatic choice does not imply that the authors believe blindly in citation count as being
the only measure of impact. Indeed prior art has shown that it has some flaws (Krapivin et al. 2010) and
could be extended to other novel metrics like number of downloads (Li et al. 2012) or other alternatives
metrics (Bollen et al. 2005). However, we adopt it as it is a commonly accepted and accessible metric.
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possible to have information on rankings of papers by a committee, and as we will see this

enables certain kinds of analyses that are useful for understanding peer review processes.

In bulk submissions, peer review procedures usually proceed along the following steps.

Authors submit a set C ¼ fCzg; z ¼ 1; 2; . . .;N of contributions for evaluation by a group

E of experts (the peers, also called reviewers). Each contribution is assigned to a number of

reviewers. Its flow through the process may be supervised by senior reviewers (a set SR � E
of distinguished experts that analyze reviews and help chairs take a final decision on the

contribution). One typical setting for conferences is to have three reviewers and zero or one

senior reviewer per paper. In the general case, each contribution may be assigned to a

variable number of reviewers.

The review occurs in one or more phases. We denote with NP the total number of

phases. In each phase pk, contributions are assigned, marks are given, and contributions

that are allowed to proceed to the next phase are selected. The next phase may or may not

require authors to send a revised version of the contribution. At the end of each phase there

is a discussion over the reviews (possibly involving author feedback). Some processes

require the discussion to end in a ‘‘consensus’’ result for the final mark (this is typically the

case for example in PhD thesis proposals assessment, where the committee members must

come to a consensus result). In all cases, the discussion results in a decision on whether

each contribution is accepted or not. The entire process is supervised by a set CH � E
of chairs.

For example, a typical conference has a one-phase review, with discussion at the

end leading to acceptance or rejection of each paper. Some conferences, such as ACM

SIGMOD in the past, had a 2-phase review process where in the first phase each paper was

assigned to two reviewers and only papers that have at least one accept mark go to phase

two and are then assigned to a third reviewer. This is done to minimize the time spent in

reviewing (or, seen differently, to focus the effort on papers that are not clear rejects).

Regarding journal review processes, the editor-in-chief often acts as a first filter always in

order to minimize the review workload.

Given the above, we model a phase pk of a peer review process as follows:

Definition 1 A phase p ¼ ðC; E;M; p; c; r; q;AÞ of a peer review process consists of:

• a set C ¼ fCzg; z ¼ 1; 2; . . .;N of contributions submitted for evaluation;

• a set E of experts, which includes:

– a set CH � E of chairs that supervise the review process

– a set SR � E of distinguished experts (sometimes called senior reviewers) that

analyze reviews and help chairs take a final decision on the contribution

– a set R � E of experts that act as reviewers of the contributions

and s.t. CH [ SR [R ¼ E
• a setM of mark sets,M¼ fM1; . . .;Mqg; where q is number of criteria and for each

mark set a total order relation B always exists. Acceptance threshold, denoted by tj

may be defined for each mark set Mj, j = 1, 2,…,q.

• an assignment function p : C �! PðRÞ � PðSRÞ assigning each contribution to a

subset of the reviewers and a subset of the senior reviewers (an element of the

respective powersets P).

• a scoring function c : fc; rg7!M1 � � � � �Mq such that c 2 C and r [ p (c). This

function models the marks assigned by each reviewer.
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• a score aggregation function r : M1 � � � � �Mq �! R. This models the way in which

in some review processes one can derive an aggregate final mark based on the

individual marks.

• a ranking function q : C �! N:
• a subset A � C that denotes the accepted contributions.

In the next sections we will introduce a number of novel metrics based on the above

model and useful for our exploration and analysis of the different dimension of quality of

the peer review process.

Divergence

As the final result of the peer review process in conferences and candidate selection often

includes a ranking (sometimes publicly published; other times only the list of accepted

contributions is published), in our subsequent analysis, we often need to quantitatively

assess the difference—in terms of concrete effects—between two rankings coming from

different review processes or from a review process and a ranking determined from another

quality metric. Examples are the difference between the ranking (of the same contribu-

tions) coming from the peer review process and the one, a posteriori, coming from cita-

tions; or the ranking coming from a preliminary evaluation of e.g. an extended abstract and

the one from a subsequent and deeper evaluation, e.g. a full paper.

In the literature, the typical metric for measuring a difference between two rankings is

the Kendall s rank correlation coefficient (Kendall 1938). The Kendall s coefficient is also

used as a test statistic in a statistical hypothesis test to establish whether two rankings may

be regarded as statistically dependent. This metric, however, computes the difference in the

exact position of the elements between two ranks, while in the review process the main

issue is not to be in 3rd or 10th position, whether to be accepted versus to be rejected.

To better capture this specific property and to give readers a more intuitive way to grasp

the distance, we also use a measure called divergence to compute the distance between

rankings. We next give the formal definition of divergence following Krapivin et al.

(2010), that was adapted to our scenario.

Definition 2 (Divergence) Let C be a set of submitted contributions, n ¼ jCj the number

of submissions, qi and qa, respectively, the ideal ranking and the actual ranking, and t the

number of accepted contributions according to the actual ranking. We call divergence of

the two rankings Divqi;qa
ðt; n; CÞ the number of elements ranked in the top t by qi that are

not among the top t in qa.

The normalized divergence NDivqi ;qa
ðt; n; CÞ is equal to

Divqi ;qa ðt;n;CÞ
t

; and varies between

0 and 1.

Through this metric it is possible to assess how much the set of the contributions after

one ranking procedure diverges (is different) from the set of contributions after another

ranking procedure. Figure 1 schematically depicts three different divergence curves

resulting from the fact that (i) the two rankings are correlated; (ii) they are independent

(the analytical results for this case is the straight line in the figure);3 (iii) they are inversely

correlated.

3 When the second ranking is random, the formula for the divergence can be expressed analytically as

NDivqi ;qa
ðt; n; CÞ ¼

Pt
i¼0 ptði; nÞwi; where ptði; nÞ ¼ Ct

i C
n�t
t�i

Cn
t

and wi ¼ t�i
t
:
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In the rest of the paper we will use this metric to assess the effect of variations in the

peer review process. In particular, the effect of unbiasing algorithms (‘‘Quality: fairness’’

section) and the overall validity of the peer review process (‘‘Quality: validity’’ section).

Data set description

In this work we have analyzed data gathered from ten conferences that took place from

2003 to 2010, whose topics were related to the CS domain (Table 1). Among these, there

are five conferences (C1, C3, C8–C10) which took place in the period from 2003 to 2006,

therefore they are ‘‘old’’ enough for checking the impact of the accepted papers during the

years (‘‘Quality: validity’’ section).

As the data we used for the analysis are confidential we cannot disclose the name of the

conferences. So we use an ID to identify the conference and we only report approximate

numbers in Table 1 to guarantee the anonymity of the original data.

Table 1 Description of the conference data

Conf. ID No. of papers Rating scale No. of RPP No. of PPR Ac. rate (%)
1 2 3 4 5 6

C1 900 1; 2; . . .; 10 3–4 1–4 21

C2 250 1; 2; . . .; 7 3–4 1,2,9,10 16

C3 700 0; 0:5; . . .; 5 3 [3 27

C4 200 0; 0:5; . . .; 5 3 1–2 26

C5 200 �3;�2; . . .; 3 3–4 1,2,7 31

C6 150 1; 2; . . .; 5 3–4 1,2,[5 33

C7 120 �3;�2; . . .; 3 3–4 6–8 22

C8 150 1; 2; . . .; 7 3 4,5 45

C9 40 1; 2; . . .; 4 2–4 2,4,5,7 51

C10 100 1; 2; . . .; 7 2–3 5–6 55

0 

1 

NDiv(t)

1 n t

Fig. 1 Examples of different divergence curves. The index t in the X axis represents the top t contributions
that are considered by the divergence. The y-axis shows how many items among the top t in the first ranking
are also among the top t in the second ranking. The divergence values (y-axis) are normalized by t
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In Table 1 for each conference we show (i) the conference ID; (ii) the approximate

number of papers submitted to the conference; (iii) the scale used by reviewers to assign

marks to papers; (iv) the typical number of reviews per paper (RPP) and (v) of papers per

reviewer (PPR) and (vi) the acceptance rate of each conference. The RPP and PPR reported

in Table 1 are the most frequent values for each conference (specifically, those occurring

for more than 10 % of the times for that conference). It is in fact quite normal that in one

conference a paper is reviewed on average by three reviewers, but sometime, in particular

for some disputed papers, there could be more than three reviewers. So we see from the

table that while the typical number of RPP is constantly—in our data set—around 3–4, the

number of papers assigned to reviewer (PPR) is more variable and some reviewers get an

higher number of papers to review. All together our dataset consists of 9,032 reviews,

2,797 submitted contributions and 2,295 reviewers.

Quality: preliminary study

Before starting the detailed description of our quality analysis, we first describe here a

simple statistical analysis of our data set in order to put our results in the appropriate

context. Moreover, we start to use the methodology to investigate the differences among

different rankings described in ‘‘Divergence’’ section and apply it to a robustness analysis

of the peer review process.

Mark distribution analysis

A very simple analysis is to look at the distributions of the marks (following the experi-

mental scientist’s motto: ‘‘always look at your data’’). Analyzing the distribution of marks

in review processes with different mark scales, we notice that the way reviewers give

marks can be influenced by the scale itself. In Fig. 2 we plot distribution of marks from

processes from three conferences where marks range:4

(1) from 1 to 10 (no half-marks);

(2) from 1 to 7 (no half-marks);

(3) from 0 to 5 with half-marks.

In case (1) the distribution is slightly positively skewed and this finding is also con-

firmed in the recent study in Cabanac and Preuss (2013).

In case (2) reviewers tend not to give the central mark (4 in this case), but to give lower

or higher marks (in this specific case the most frequent mark is 2). It seems that the use of

the scale (2) ‘‘supports’’ the reviewer to take a decision, avoiding the central mark which

corresponds to a neutral mark. Indeed in a (1,7) scale it is easy to identify mark 4 as

borderline, and this is somehow reflected in the observed distribution.

In case (3) we notice that reviewers tend not to give half marks, indeed the curve has

many oscillations with minima corresponding to such half marks; while if we consider case

(1)—essentially the same scale, i.e a doubled scale with integer marks from zero to ten

instead of half marks—the mark distribution appears concentrated around the middle of the

ratings scale.

As a general remark, we were surprised by how much the mark distribution changes

depending on the specific scale chosen.

4 In Fig. 2 the different scales have been normalized in the x-axis.
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Robustness analysis

A mark variation sensitivity analysis is useful in order to assess if a slight modification of

the value of marks could bring a change in the final decision about the acceptance or

rejection of a contribution. The rationale behind this analysis is that we would like the

review process to be robust to minor variations in one of the marks. When reviewers need

to select within, let’s say, a 1–10 score range of criteria, often they are in doubt and perhaps

sometimes carelessly decide between, for example, a seven or an eight (not to mention the

problem of different reviewers having different scoring standards, see ‘‘Quality: fairness’’

section).

With a robustness analysis we try to assess how much a slight difference in the mark

value can affect the final (positive or negative) assessment of a contribution. To this end,

we apply a stochastically positive/negative perturbation d to each mark. This perturbation

must be a multiple of a mark granularity g of the process (e.g., g = ±0.5), d =

i *g, where i = 1, 2, 3. The value of d is therefore chosen according to the specific rating

scale of the conference.We then rank the contributions with respect to these new marks

and repeat the simulation a number of runs to collect proper statistical data (i.e. mean value

and standard deviation) for every simulated case.

Intuitively, what we do with the mark variation is a naive way to transform a mark into a

random variable with a certain variance, reflecting the indecision of a reviewer over a

mark. Actually, we would like to know how this variation could change the fate of the

papers (the papers are ranked according to their marks), i.e. how many papers that are

above (below) the threshold, e.g., acceptance threshold, will appear below (above) the

threshold after the variation.

Here we assume that the main criteria of the PC for accepting/rejecting a paper is

acceptance rate and not paper quality only. Hence, we assume that the number of accepted

papers must remain the same, regardless of paper marks.

To this end, we have developed an algorithm that computes the percentage of the papers

which have changed their fate within a specific window after a small variation of the marks.

The size of the window can be arbitrary chosen depending on the number of contributions

for the specific conference. We are also interested in studying how the status (accepted/

rejected) of the papers changes with respect to different ‘‘acceptance’’ thresholds, thus we

used sliding windows centered on a variable ‘‘acceptance’’ threshold in order to compute

Fig. 2 Examples of normalized mark distributions in conferences with different scales
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the percentage of papers within the window that change their fate (a schema of the

procedure is represented in Fig. 3). We assume that a paper changes its fate after pertur-

bation if the comparison of the original paper ranking and the perturbed ranking shows

that:

1. the paper has moved from one side of threshold to another side within the window, e.g.

the two smaller rounded arrows in Fig. 3;

2. the paper has moved from one side of the threshold within the window to another side

of the threshold outside the window, e.g. the two larger rounded arrows in Fig. 3.

We used the above procedure to compute the percentage of papers that change their fate

for the two largest conferences in our dataset (C1 and C3) for a fixed sliding window of

100-papers. We have investigated the robustness of the two review processes considering a

range of thresholds (i.e. centers of the sliding windows that represents different number of

accepted contributions) in increments of 50 accepted papers. The results of this compu-

tation are shown in Fig. 4. We chose g = 1 and g = 0.5 for C1 and C3 correspondingly to

the respective rating scales.

The analysis shows that the percentage of papers that changed their fate due to a

perturbation of the marks is lower in the beginning and in the end of the ranking list. This

reflects the obvious fact that papers at the top and at the bottom of the ranking have very

clear marks (e.g., close to 10 at the top and close to 1 at the bottom if the range is between

1 and 10): in this case the applied perturbations have a reduced effect on their fate.

Nevertheless, in both conferences and in these ranges (top and bottom) the percentage of

affected paper for even the smaller perturbation is around 15–20 %. In the middle part of

the ranking, already the minimal perturbation of d = g can lead to a 30–35 % change in

the fate of papers in a wide range of acceptance thresholds.

We believe that calculation of these kind of robustness curves may help PCs to make a

more informed decision about the acceptance threshold, as they can estimate the influence

of perturbation of different thresholds on the final ranking results. For instance, in the case

of the analyzed conferences we found that even the smallest perturbation d = g can change

the fate of ca. 33 % of papers for C1 with the nominal acceptance rate of 21 %—ca. 180

accepted papers—and of ca. 38 % for C3 with the nominal acceptance rate of 27 %—

ca. 210 accepted papers.5

If the review process chairs would have known these results (and these type of calcu-

lations could easily be a feature of current conference management systems) they could

have decided to conduct additional reviews to make a better distinction between papers

around the selected thresholds.

Fig. 3 Schema for the
robustness analysis for a fixed
window of papers and
corresponding threshold. The
rounded arrows indicate the
types of relevant cases for a
paper within the window to
change its fate due to a
perturbation on its marks

5 See Table 1 for the nominal acceptance rate for all conferences.
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Preliminary analysis: lessons learned

From the above analysis we can derive some useful insights and recommendations:

• Monitoring mark distribution is a simple analysis but very useful in order to understand

‘‘how’’ reviewers use the scale and if there are nonfunctional uses of the scale itself. It

could also be convenient for the program chairs to design and adapt the scale for

specific purposes.

• The mark distribution analysis can be coupled with a robustness analysis of the whole

process in order to investigate how stable the process is w.r.t perturbations in the marks.

Such analysis can provide review chairs indication if and for which papers conduct

additional reviews to make a better decision on papers close to the acceptance/rejection

threshold.

Quality: reliability

Human decisions are classified as reliable when different persons come to the same or

similar conclusions (Ebel 1951; Reinhart 2009). In traditional analysis of opinion reli-

ability, the degree of agreement between people opinions is determined. In this section we

first perform a classical analysis in this dimension, then we introduce and investigate some

new metrics (namely, disagreement and band agreement) to assist us in the investigation of

the reliability from different points of view.

The rationale behind these analyses and related metrics is that in a review process we

expect some kind of agreement between reviewers. While it is natural that reviewers have

different opinions on a given contribution, however, if the marks given by reviewers are

comparable to marks given at random, then the results of the review process are also

random, which defeats the purpose. The reasons for having reviewers (and specifically for

having the typical number of 3 reviewers per contribution) is to evaluate based on con-

sensus or majority opinion.

In the literature various methods are commonly used for the statistical measure of

reliability: e.g. the Kappa coefficient proposed by Cohen (1960), its extension the weighted

Kappa proposed in Fleiss (1971) and the Intraclass Correlation Coefficient (ICC)

Fig. 4 Robustness curves for conferences C1 (left) and C3 (right) with fixed sliding window = 100
observations. Granularity is g = 1 for C1 and g = 0.5 for C3. The x-axis shows the (variable) number of
accepted paper used in the computation
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(Bornmann and Daniel 2010a; Reinhart 2009; Cicchetti et al. 2008; Montgomery et al.

2002). In our work we have chosen to use ICC as its usefulness and applicability in the social

sciences has been demonstrated in many applications (Ebel 1951). Intraclass Correlation

Coefficient was first introduced by Fisher (1925). ICC returns the value 1 for complete

agreement while the value 0 corresponds to the agreement level for a random process. The

technique for computing ICC is based on the framework of the analysis of variance (ANOVA)

and the estimation of a number of variance components.

There exist various forms of the ICC depending on the particular target process: one-

way random effects model, two-way random effects model with or without interaction,

two-way mixed model with or without interaction, and average score ICCs for one-way

and two-way models. A detailed discussion on the distinction between the different

coefficients could be found in McGraw and Wong (1996), Shrout and Fleiss (1979), Bartko

(1966, 1974), Donner (1986). In our study we have used the average score ICC for one-

way model (McGraw and Wong 1996) for assessing the inter-rater reliability in our 10

conferences (see Table 2). The average score ICC is in fact used in the case when the

decision about the object in consideration is based only on the average mark (as in our

case). The one-way model is used when the identity of the rater is not important: in our

case we are interested only in the mark correlations not in reviewer feature correlations

(e.g. identity, past behavior etc.).

In order to interpret the results collected in Table 2, we can recall that in the field of

biostatistic analysis reliability measures below 0.4 are rated as poor, between 0.4 and 0.59

as fair and above 0.6 as high (Cicchetti and Sparrow 1981). The same classification has

been used to access the reliability of reviewers recommendations for grant applications in

biology and medicine in Reinhart (2009).

According to the above classification, in our case we have six conferences with ICC [ 0.6,

i.e. with significant correlation, 3 conferences with a fair correlation (0.4\ICC\0.59) and

one conference with poor correlation among raters (ICC\0.4). In Table 2 we also report two

other statistical parameters useful to evaluate the statistical significance of the results,

namely: the 95 % confidence intervals (CI) for the computed ICC and the related probability

values (i.e. p-value). According to the computed p-values reported in Table 2, all computed

correlations are statistically significant (p \ 0.05) regarding the following null hypothesis

H0: ICC = 0 (H1: ICC [ 0). In other words, the obtained ICC coefficients are not equal to

zero (agreement of a random process) with a probability of 95 %.

Table 2 Intraclass correlation coefficient, 95 % CI and related p-value for reviewers’ ratings scores, sorted
in decreasing order of ICC value

Conference ID ICC 95 % CI p-value Reliability level

C6 0.76 (0.68; 0.82) 9.02E-27 High

C9 0.72 (0.46; 0.85) 8.54E-05 High

C7 0.63 (0.5; 0.73) 2.94E-11 High

C5 0.61 (0.49; 0.7) 2.43E-13 High

C1 0.61 (0.56; 0.65) 2.22E-63 High

C8 0.60 (0.46; 0.7) 3.07E-10 High

C2 0.57 (0.47; 0.66) 5.81E-15 Fair

C4 0.52 (0.39; 0.62) 3.03E-10 Fair

C10 0.45 (0.16; 0.63) 0.00254 Fair

C3 0.39 (0.3; 0.46) 1.12E-14 Poor
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However, as the classification of the intervals for ICC were defined in an arbitrary way,

there is no clear evidence of the correctness of their applicability in our case. Therefore, in

the following sections we have investigated additional metrics measuring the agreement

among reviewers in order to better understand the difference in the various reviewing

processes in our dataset.

Disagreement

In this section we look at the problem of measuring agreement among reviewers from a

different perspective, i.e. measuring the disagreement among them as a refinement of inter-

rater agreement coefficients specific for conference peer review processes. We underline

here that disagreement per se is not necessarily a bad thing: novel and non-obvious ideas

are often controversial (Grudin 2010; Birman and Schneider 2009), and different reviewers

may give different importance to separate contributions in the paper. The problem of

disagreement surfaces when papers are rejected merely because of averaging the scores of

different reviewers.

Here, we compute first how much the marks of a reviewer i differ from the marks of the

other rz - 1 reviewers for a specific criterion j and for a specific contribution z (Definition

3). Then we compute the disagreement of a reviewer i for a specific contribution z for all

the criteria (Definition 4) and average disagreement for each contribution through all its

reviewers (Definition 5) and, finally, over all the contributions (Definition 6).

Definition 3 (Disagreement of a reviewer on a criterion and on a contribution) Let j be a

criterion and M
j
iz

be the mark set by the reviewer i for the criterion j assigned to a

contribution z. Then, a disagreement /j
iz

among rz reviewers on a contribution z is the

euclidean distance between the mark given by the reviewer i, and the average lj
iz

of those

given by the other rz - 1 reviewers:

/j
iz
¼ jMj

iz
� lj

iz
j

with:

lj
iz
¼ 1

rz � 1
�

X

k¼f1;::::;rzgfizg
M

j
kz
: ð1Þ

Definition 4 (Disagreement of a reviewer on a contribution) Let q be the number of

criteria in a review phase, then the disagreement of a reviewer i on a contribution z is:

ciz
¼ 1

q
�
Xq

j¼1

/j
iz

ð2Þ

Definition 5 (Disagreement of a review phase on a contribution) Let rz be the number of

reviewers in a review phase on a contribution z, then the disagreement of a review phase

on a contribution is:

Cz ¼
1

rz

�
Xrz

i¼1

ciz
: ð3Þ
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Definition 6 (Disagreement of a review phase) Let n be the number of papers in a review

phase, then the disagreement over all the papers is:

W ¼ 1

n
�
Xn

z¼1

Cz: ð4Þ

In the second column of Table 3 we present the normalized computed average dis-

agreement of a review phase (Definition 6) for all 10 conferences. We have normalized the

disagreement value in order to allow direct comparisons among different conferences. To

assist in the interpretation of the results, we also report in the same table, the average

disagreement we have obtained in two simulations:6

1. Reshuffle experiment (third column): where we have randomly exchanged the actual

marks given by the reviewers;

2. Random experiment (fourth column): where we have generated a new random

(uniform) distribution of marks in the available range of marks unrelated with the

actual marks distribution in our data set.

The reshuffle experiment mimics the case in which one reviewer is marking a certain

number of contributions, but her/his marks are randomly given to other unrelated contri-

butions, while her/his reviewed contributions get the marks of other randomly selected

reviewers. So we are sampling from the actual mark distribution function, i.e. the one of

the analyzed review process, but we randomize the association between marks and

contributions.

Table 3 Normalized average disagreement for all conferences sorted by decreasing order of the differences
between computed and reshuffled disagreements (column 5). Each experiment consisted of 10 independent
runs of the simulations. Average standard error is ca. 0.05 in all simulations

Conf. ID Computed Reshuffled Random Difference between
computed and reshuffled
disagreement (%)

Difference between
computed and random
disagreement (%)

1 2 3 4 5 6

C9 0.30 0.43 0.54 30.2 44.4

C6 0.26 0.37 0.52 29.7 50.0

C7 0.25 0.34 0.48 26.5 47.9

C5 0.26 0.35 0.45 25.7 42.2

C2 0.30 0.40 0.49 25.0 38.8

C8 0.34 0.44 0.51 22.7 33.3

C1 0.28 0.36 0.43 22.2 34.9

C10 0.26 0.32 0.48 18.8 45.8

C4 0.22 0.26 0.52 15.4 51.1

C3 0.26 0.29 0.44 10.3 40.9

6 Also in these numerical experiments we repeated the simulations a number of runs (typically 10) to collect
proper statistical data (i.e. mean value and standard deviation) for each experiment.
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We would have expected these reshuffling disagreements to be much higher than the

one computed with properly assigned marks since, again, we would have expected higher

correlations between the opinions of a team of experts. For conferences C3, C4 and C10

the differences between original and reshuffled disagreements (fifth column in Table 3) are

only 10.3, 15.4 and 18.8 % correspondingly, while for other conferences they vary from 23

to 30 %). On the other hand, the computed average disagreement is constantly lower than

the random one, from 33 to 51 % (the sixth column in Table 3). This is expected since we

would hope that a group of experts in a domain would tend to agree better than a com-

pletely random process. These results are consistent with the previous analysis where C3,

C10 and C4 had the lowest ICC.

Moreover, we applied the Welch’s test (Welch 1947) to verify if the differences

between the computed disagreement value and the one based on reshuffled marks were

statistically significant. As detailed in the following, the test shows that the differences are

indeed significant. Welch’s test was applied to compare the mean values (Definition 6) for

two pairs of samples formed by disagreement on contribution (Definition 5). The first pair

of samples was:

1. values of disagreement on a contribution (Definition 5) calculated for original marks;

2. values of the same metric calculated for reshuffled marks.

The second pair of samples used also the disagreement on contribution but compared

original and random marks. The tests showed that for all the conferences the mean of the

sample based on original marks is lower than the means of the samples based on reshuffled

and random marks with confidence level a = 0.05 [corresponding p-values varied from

essentially 0 (2.2 9 10-16)–0.009], i.e. the differences are statistically significant.

Band agreement

In order to further explore the reliability dimension, we introduced a new measure that we

coined band agreement. Our goal here is to study the agreement in the decisions of

reviewers about very good and very bad papers.

The approach is based on clustering review marks in ‘‘bands’’ and measuring the

probability of giving a mark from a particular band in the condition that a mark from

another band has already been given.7

To this end, all marks have been divided into non overlapping bands (see Table 4):

(i) strong reject; (ii) weak reject; (iii) borderline; (iv) weak accept; (v) strong accept. Then,

we have computed the overall probability of a paper to belong to each group.

We have analyzed the behavior of reviewers in three different conferences (C1–C3)

with a high number of papers with marks from each ‘‘band’’ (Table 4) and different levels

of ICC:

• C1 without threshold for marks for acceptance and with ‘‘high’’ ICC agreement;

• C2 without threshold for marks for acceptance and with ‘‘fair’’ ICC agreement;

• C3 with threshold for marks for acceptance and with ‘‘low’’ ICC agreement.

The results are shown respectively in Figs. 5, 6 and 7.

We note that for C1 and C2 (without threshold) when a reviewer gives a strong reject

mark (i.e. from the strong reject band; dashed line in all figures) then the probability that

7 Please note that in our reviews dataset the reviewers did not have access to other’s reviewers marks, so
they could not have been influenced by previous reviews.

Scientometrics (2013) 97:317–356 335

123



other reviewers will give a mark from the weak or strong reject ‘‘band’’ is higher: these

probabilities are significantly bigger than the overall probability that is shown in all figures

with a black solid line. The same can be said about the ‘‘strong accept’’ band. So, in both

cases we can say that reviewers seem to agree on very good and very bad papers.

For C3 (review process with a threshold mark for acceptance) the situation is different:

overall probability is skewed in the direction of ‘‘weak accept’’ band. Here, we can suggest

that when there is a mark threshold reviewers tend not to give very low marks since they

know that even a mark from a ‘‘borderline’’ band and under the threshold will eventually

‘‘kill’’ a contribution (they tend to be polite!). A more detailed analysis shows that if

somebody gives a mark from the ‘‘strong reject’’ band, this increases the probability of

giving marks not only from strong and weak reject bands (by 14 and 63 % correspond-

ingly) but also from borderline band (by 11 %). In the ‘‘strong accept’’ set the probability

of others giving a ‘‘weak accept’’ mark is 20 % higher than the overall probability, but the

probability of giving marks from other bands are almost the same as the overall proba-

bilities. Therefore, we can say that we have marks skewed towards the ‘‘weak accept’’ and

reviewers still agree on very bad contributions while disagree on very good.

Table 4 Partition of marks into ‘‘bands’’ according to the conference rating scale (column 1) and
approximate number of papers with at least one mark from a particular band (column 2)

1 2

C1 C2 C3 C1 C2 C3

Band ‘‘strong reject’’ 1–2 1 0–1 190 50 90

Band ‘‘weak reject’’ 3–4 2–3 1.5–2 550 200 280

Band ‘‘borderline’’ 5–6 4 2.5–3 600 80 460

Band ‘‘weak accept’’ 7–8 5–6 3.5–4 550 150 500

Band ‘‘strong accept’’ 9–10 7 4.5–5 130 20 220

Fig. 5 Band agreement for C1 (‘‘high’’ ICC agreement)
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Reliability: lessons learned

Through the measure of agreement/disagreement/band agreement among reviewers we

derive the following findings:

• the measurement of the disagreement among reviewers is a useful metric to check and

monitor the degree of process randomness. In particular, the disagreement is more

useful than merely a statistical analysis of the degree of agreement since in this case we

lack a clear reference process to compare with. Moreover, having a high disagreement

value means, in some way, that the judgment of the involved peers is not sufficient to

state the value of the contribution itself. So the monitoring of the disagreement metric

could be useful to improve the quality of the review process as could help to decide,

based on the disagreement value, if the used number of reviewers per contribution is

enough to assess the contribution or if more reviewers are needed in order to ensure an

higher quality process.

• from the Band agreement analysis we see that reviewers tend to agree on very good and

very bad papers, except when the mark scale has a threshold. Moreover, band

agreement results are consistent with the previous findings on the degree of agreement

between reviewers.

Fig. 6 Band agreement for C2 (‘‘fair’’ ICC agreement)

Fig. 7 Band agreement for C3 (‘‘low’’ ICC agreement)

Scientometrics (2013) 97:317–356 337

123



Quality: fairness

A review process is fair if and only if the contribution is judged solely on the basis of its

scientific merit. Other data such as submission date (Cabanac and Preuss 2013), personal

information, specific attributes of authors, such as their age, gender, nationality, academic

post or number of previous publications and related impact should not influence the

assessment.

There are numerous studies on the different kinds of biases of the peer review processes

(see ‘‘Related work’’ section) Different sources of bias such as affiliation, topic, country,

gender, clique bias have been also analyzed by using multiple logistic regression models in

Hosmer and Lemeshow (2000). Unfortunately, in the collection of our datasets we were not

provided with specific author information such as age, nationality, gender and other. In the

framework of our present study, we therefore focused on the analysis of the rating bias,

namely when reviewers are positively (negatively) biased i.e., they consistently give higher

(lower) marks than their colleagues who are reviewing the same proposal. We briefly note

that the procedure described below can be easily extended to other types of bias if the data

(missing in our data set) would be available.

The way to compute the rating bias value is very similar to that described for the

disagreement metric (see Eq. 3) i.e.:

/j
i ¼ M

j
i � lj

i: ð5Þ
This time the sign of the equation is important in order to discover positive or negative

biases. Indeed, if the value of /i
j is constantly positive, this means the reviewer tends to give

always higher marks with respect to other reviewers on the same set of contributions; while if

the value of /i
j is constantly negative then the reviewer tends to give always more negative

marks than the other reviewers (always on the same set of contributions). Another type of

rating bias is the threshold bias, which occurs when a reviewer gives marks that are always

very close to the threshold for a given criteria (e.g. 3 in an evaluation scale form 1 to 5). This

is computed by simply calculating the variance of the given mark for the specific criteria.

As for the disagreement metrics, there are several scopes to which we can apply the

above bias metric. For example, we can measure the bias for a single reviewer and for a

particular criterion, the bias over a review phase, and the bias over all the criteria.

Once biases are identified, a number of actions can be taken by the review chairs. One

could be to compensate for the specific paper under review with additional reviews.

Another action could be to apply automatic or semi-automatic unbiasing algorithms. A

simple algorithm could be to modify the marks by adding or removing the bias values so

that on average the overall bias of the most biased reviewers is reduced. In particular, if we

take all reviewers r that have a bias greater than b and that have done a number of reviews

higher than nr, and subtract b from all marks of r (or from the top-k biased reviewers), we

can obtain a new debiased ranking. By comparing the obtained debiased ranking with the

original ranking (for instance using the divergence metric—see ‘‘Divergence’’ section—

that gives us the percentage of difference in rankings before and after unbiasing at

acceptance threshold) we can assess the overall impact of the unbiasing procedure on the

particular review process.

Applying the proposed rating bias metric, we were able to identify groups of potentially

behavioral biased reviewers on actual review data in all 10 conferences in our dataset.

These are all reviewers with an accepting or rejecting behavior with bias greater than b, a

threshold value that depends on the rating scale granularity. So we could say that in our
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dataset acceptance is a function of paper quality but also of chance of reviewer drawn.

Table 5 reports for each analyzed conference:

1. the conference ID

2. the considered bias threshold b

3. the minimal number of reviews done by each reviewer (depending on the specific

review process statistics)

4. the percentage of reviewers with accepting biased behavior

5. the percentage of reviewers with rejecting biased behavior

6. the divergence at acceptance threshold, which is used to measure the percentage of

different papers between original and unbiased ranking.

The last column of Table 5 reports the percentage of papers affected by the proposed

simple unbiased algorithm. The table shows that even with the simple metric we are

proposing, it is relatively easy to detect rating biases. Moreover, following the simple

unbiasing algorithm outlined above, it is also possible to measure quantitatively the effect

of the bias on the review process. Depending on the specific conference, the accepting/

rejecting bias impacts from 7 to 14 % of the overall contributions.

Fairness: lessons learned

From the above analysis we can derive some interesting points of interest and

recommendations:

• the percentage of bias (e.g., accepting or rejecting behavior) is an important parameter

to monitor by the review chairs and it is relatively easy to detect it through the use of

simple metrics. If chairs will detect high number of biased reviewers they can decide to

take some actions.

• it is also possible to devise simple and automatic unbiasing procedures; they do not

need to be applied as black boxes, but together with the analysis of the divergence

between the actual ranking and the unbiased one. Divergence provides quantitative data

about the effect of unbiasing on the final review process: it indicates the percentage of

papers in the accepted set whose fate is changed after applying the unbiasing

Table 5 Percentage of review-
ers with accepting/rejecting
behavior (column 4–5) and per-
centage of affected papers
for 10 different review processes
(column 1) sorted by decreasing
order of divergence values
(column 6)

Conference
ID

b nr Reviewers
with
accepting
behavior (%)

Reviewers
with
rejecting
behavior (%)

Divergence
at acceptance
threshold (%)

C5 1 3 4 3 14

C9 0.5 3 11 7 14

C2 1 3 7 7 12.5

C8 1 3 17 16 11

C1 1 3 5 4 10

C3 0.5 3 8 5 9

C4 0.5 2 3 3 9

C7 1 4 6 3 8

C6 0.5 3 1 2 7

C10 1 3 5 13 7
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procedure. This information can be used by the program chairs to better characterize

and monitor the evaluation process: for example they can decide to unbias the score of

particular reviewers.

Our future work in the dimension of fairness-related metrics includes studying of other

types of biases related to affiliation, topic, country, gender, clique bias, different level of

expertise and other aspects rather than limiting the analysis to accepting or rejecting biases.

The challenge here is to collect and have access to the appropriate specific metadata.

Quality: validity

Validity is related to the final result of the review process, i.e., the final ranking of the

reviewed contributions. A review process is valid if it is able to select the best contribu-

tions. It may be claimed that this is the most important characteristic of the review process.

However, not much research has been done on this topic, mainly because it is difficult to

choose a measure for best-object detection. A well-known index such as citation count is a

controversial measure of both quality and scientific impact of scholarly contributions

(Bornmann et al. 2008b). Nevertheless, Lokker et al. (2008) succeeded in demonstrating

for clinical papers that publications regarded—shortly after their appearance—as important

by experts in the appropriate research field were cited much more frequently in subsequent

years than publications that were less highly regarded. They used multiple regression

model, checked the significance of 20 factors for 1,261 papers out of 105 most important

clinical journals.

In our case, citation count was the main available measure, since other impact metrics

(like the novel metric of number of downloads) are at present not available in a

straightforward manner. By using citation count for the analysis of the conference peer

review process, we tried to answer the question: how accurately did the selection process

predict the longer-term impact of a contribution in the selected domain, i.e. CS?

Moreover, for one case, namely conference C3, we could perform a similar question but

considering a two-phase review process. In fact, in C3 the reviewers were first asked to

evaluate some extended abstracts; only a fixed number of proposed abstracts passes. Then,

the selected authors provided the full contributions and this time the reviewers evaluated

the full papers. So for this case we could explore—for the same accepted contributions—

how accurately did the first review phase predicted the ranking outcome of the second

review (full papers) phase.

In our analysis we applied both the divergence measure and the Kendall s-test—intro-

duced in ‘‘Divergence’’ section—to compare the ranking output of the review process (using

the obtained final marks of each contributions) and the ranking based on the a-posteriori

estimated citation counts for each contribution. Therefore, we restricted the analysis to the

set of accepted contributions A instead of the complete set of submitted contributions C; as

only for the accepted set we can have both reviewer’s marks and citations. Moreover, we

confined our analysis to the subset of relatively ‘‘old’’ conferences, namely before 2006, so

we were able to compute citations received in the subsequent years using Google Scholar as

the source for the estimate of the citation count.8

8 Although Google Scholar has been criticized in the literature (e.g. Jacso 2010) mainly for the noise
(spurious documents and citations) that it includes, it is however one of the few publicly available source of
citations as well as with a high degree of coverage.
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In Fig. 8a we report the divergence between the ranking of the conference C1 and the

a-posteriori ranking based on citation counts. From Fig. 8a we can notice that the two

rankings have a low correlation. Specifically, we can notice that the computed divergence

curve is near to the diagonal, which—we recall—is the limiting case when two rankings

are completely uncorrelated. We found similar divergence curves for all other ‘‘old’’

conferences in our dataset.

While in Fig. 8a we report the divergence value for the whole set of accepted papers, in

Fig. 9a we report the divergence between the two rankings for only the first 50 % of

accepted papers in C1. Also for these ‘‘top’’ papers, we can see again that the correlation

remains low.

The results of the Kendall s test—comparing citation and original peer review rankings

for all ‘‘old’’ conferences9—are collected in Table 6. Furthermore, we present a Kendall

s test analysis applied to conference C3, where in place of citations we have used the

second-phase review ranking of the accepted extended abstract to compare the rankings for

the same contributions in the two phases.

Also for the s test, we carried out the analysis for different sets of accepted papers for

large conferences, such as C1 and C3. Namely, first for the whole set, and then for reduced

sets of papers: 50, 33 and 10 % of the top accepted papers. We recall here that a value of

Kendall s = 0 corresponds to independent rankings, s = 1 to correlated rankings and

s = -1 to inversely correlated rankings.

As we can see in Table 6 for only two out of five conferences (C8, C10) there is some

correlation between original and citation-based ranking, while for the other three investi-

gated conferences the correlation is close to zero even for the ‘‘top’’ (50, 33 and 10 %)

accepted papers. It is also interesting to note that the correlation between the first and second

phase review (conference C3) is also close to zero in all cases. All results presented in

Table 6 are statistically significant within a 95 % CI against the null hypothesis (H0 : s = 0).

We have also conducted Kendall s test for citation-based and unbiased ranking

(i.e, ranking obtained applying the unbiasing procedure described in ‘‘Quality: fairness’’

section) In some cases (C9) and in some reduced sets of ‘‘top’’ accepted papers (C1 and

Fig. 8 Normalized divergence between original and citations-based rankings for conference C1 for all
accepted papers: a on the left, peer-review ranking versus citation-based ranking; b on the right, peer-
review-unbiased ranking versus citation-based ranking

9 Old conferences are the ones which took place in the period from 2003 to 2006, therefore ‘‘old’’ enough
for checking the number of citations received during the subsequent years.
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C3) the correlation slightly improves. This is also visually confirmed in the divergence

curves computed for C1 and presented in Fig. 8b for all accepted papers and in Fig. 9b for

the top 50 % accepted papers. For the two conferences with better correlation before

unbiasing (C10, C8), Kendall s coefficient became lower after unbiasing but remained

statistically significant. From these preliminary results, we cannot say whether or not the

unbiasing procedure improves predictive validity of peer review process.

While examining the above analyses, one could argue that the aim of peer review

process is not the selection of high-impact papers, but is simply to filter junk papers and

Fig. 9 Normalized divergence between original and citations based rankings for conference C1 for the
top 50 % accepted papers: a on the left, peer-review ranking versus citation-based ranking; b on the right,
peer-review-unbiased ranking versus citation-based ranking

Table 6 Results of Kendall s-test for five conferences

Conf. ID Top paper (%) Citations-based versus
original ranking

Citations-based versus
unbiased ranking

Kendall s Kendall s

C1 100 0.078 0.074

50 0.097 0.066

33 0.127 0.134

10 0.067 0.152

C8 100 0.392 0.346

C9 100 -0.026 0.178

C10 100 0.310 0.269

Second review versus first review Second review versus unbiased first review

C3 100 0.054 0.078

50 -0.057 -0.064

33 0.053 0.034

10 0.087 0.134

Different set of papers were used for the analysis of large conferences C1 and C3: 100, 50, 33 and 10 % of
top accepted papers
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accept only the ones above a certain quality threshold.10 However in our view, it is

important that the program chairs of a conference or a journal should decide their target

parameter. The above analyses provide the procedures to check a-posteriori the validity of

the review process w.r.t. a selected target measurable parameter.

To ensure the validity of the peer review process the chairs may also decide to control

the accuracy of the papers’ ideal mark estimation. This approach is described in the

following subsection.

Evaluation of the accuracy of a review

We focus now on the measure of the accuracy of papers marks obtained from the

reviewers. By definition the ‘‘accuracy’’ of a measurement system is the degree of

closeness of measurements of a quantity to its actual (true) value (see for instance the True

Score Theory about measurement). Our working hypothesis is that the ‘‘true’’ mark is the

one we would get in the ideal case we would be able to collect reviews (and related marks)

from all the experts in the community (see our definition of the peer review model in ‘‘Peer

review model’’ section).

We follow a standard statistical approach based on the assumption that for a large

number of reviewers the mark (x) of a given paper is a random variable with Gaussian

distribution N(l, r). The sample mean l̂ðnÞ ¼ 1
n

Pn
i¼1 xi for each contribution is the esti-

mation of the mathematical expectation value l of the mark of the paper, and it converges

to this value when the number of reviewers (n) tend to infinity. r2 represents the variance

of the marks Gaussian distribution. We consider l as the ‘‘true’’ mark for the contribution,

i.e. the value that we want to estimate using a specific peer review process.

The goal of a real peer review process is to choose the number of reviewers n so that the

error of estimation would be less than e with probability (1 - a):

P l� l̂ðnÞj j\ef g ¼ 1� a: ð6Þ

i.e. l falls into confidence interval l̂ðnÞ � e; l̂ðnÞ þ eð Þ with confidence level (1 - a). If

r is known, then confidence interval for unknown mathematical expectation l with con-

fidence level (1 - a) can be computed analytically as:

l̂ðnÞ � ua
2
� r
ffiffiffi
n
p \l\l̂ðnÞ þ ua

2
� r
ffiffiffi
n
p ð7Þ

where ua
2

is the quantile of the standardized normal distribution defined by the confidence

probability (1 - a), and e ¼ ua
2

rffiffi
n
p is the accuracy (limiting error) point estimate of the

mathematical expectation value l. An analysis of Eq. 7 shows that:

1. larger n correlates with smaller confidence intervals, hence—as one would expect—

the estimation is more accurate the higher the number of reviews;

2. increasing the probability confidence (1 - a) increases also the confidence interval

length;

3. if we fix the accuracy e and the confidence probability (1 - a) then from the formula

e ¼ ua
2

rffiffi
n
p we can obtain the required (optimal) amount of sampling (i.e. nmin), that will

provide the desired accuracy.

10 This is the rationale behind some journals like PLoS ONE among others.
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Unfortunately, in real cases r is not known and cannot be estimated a priori. However,

we can use known point estimate of the true variance r using as an approximation the

population standard deviation sn obtained either a posteriori (e.g. by crunching final data

from the current or even past editions of a given conference) or dynamically using current

marks for a single contribution. This approximation will not lead to analytically correct

results (r is supposed to be known in the above method), but it allows to get an approx-

imated estimate of the accuracy behavior depending on n.

We carried out a number of analyses with actual data from the largest conference C1

in our dataset. Figure 10 shows the results obtained using the computed (a posteriori)

average value for the overall marks sample standard deviation sn = 1.51 (absolute value,

i.e. not normalized).

In this specific case, in order to have an accuracy around ±1 absolute marks with

confidence level of 0.9 around the ‘‘true’’’ mark we would need around six RPP. However,

the figure clearly shows that improving the accuracy is going to be hard since the accuracy

curves level off (decrease very slowly) as the number of reviewers increases.

Another useful approach is to acknowledge that r is unknown, and use statistical

approaches for obtaining the confidence interval of an unknown mathematical expecta-

tion l from a random variable X with unknown normal distribution N(l, r). Specifically

we can write (following Brink 2008):

l̂ðnÞ � ta
2;n�1 �

sn
ffiffiffi
n
p \l\l̂ðnÞ þ ta

2;n�1 �
sn
ffiffiffi
n
p ; ð8Þ

where ta
2;n�1 is the quantile of the Student’s distribution defined by the confidence proba-

bility (1 - a) and by the number of degrees of freedom n - 1; l̂ðnÞ and sn are the unbiased

point estimates of the normal distribution parameters; e ¼ ta
2
;n�1

snffiffi
n
p is the accuracy (limiting

error) point estimate of the mathematical expectation value l.

Given a specific sample of actual marks, Eq. 8 can be used to compute the confidence

interval for l while it cannot be used to find directly the required amount of sampling.

However, we suggest that it can be used to estimate (either in real-time or a posteriori)

Fig. 10 Accuracy versus amount of sampling (i.e. n number of reviewers) for the most common values for
the confidence probability. i.e. (1 - a) = 0.9, 0.95, 0.99, 0.999 and using the computed approximation for
the population standard deviation sn = 1.51 in C1
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whether the number of reviewers for a given paper is/was enough to determine l with a

defined accuracy, or if more reviews are/were needed. We note here, that similar but

informal procedures are currently used in many review processes: for instance in the case

when there is a relevant disagreement in the opinions among experts for a specific con-

tribution, the review chairs can decide to include other reviewers in the evaluation. Our

statistical approach provides a sound mathematical base for such procedures and adds an

additional quantitative dimension—with a detailed estimate of accuracy of the process for

a given confidence level—that could be implemented directly in state-of-the-art electronic

editorial systems (Fig. 11).

As an example, in Fig. 12 we show how the suggested statistical approach could be used

to estimate the accuracy ‘‘on-the-fly’’ during a review process for a particular contribution

and adding more reviewers as a function of the desired target confidence level. The data for

the specific example are based on a contribution from conference C1 with six reviews and

corresponding marks [namely equal to (5, 8, 7, 5, 4, 4)] for the criterion used for the final

ranking. In the analysis we sorted marks by review date and computed the accuracy of the

estimation (depending on the confidence probability) for first k reviews for k in the range

(3–6), as if we would dynamically add new reviewers (Fig. 12).

The accuracy curves show the increase of accuracy in the process as a function of the

confidence level (x-axis) and of the number of reviews added (individual curves). For

instance, for a confidence level of 0.90 the accuracy in the estimate of the mark values

improves from ca. ±2.5 absolute marks with three reviews to ±1.2 when all six reviews

are considered.

Confidence level depending on the number of reviewers per paper

We also investigated, how the probability of having an average mark—given by a par-

ticular number of reviewers in a confidence interval with predefined accuracy �e—changes

depending on the number of reviewers. For this purposes we used the same model and the

same assumptions that were described at the beginning of the previous section ‘‘Evaluation

of the accuracy of a review’’. We use again standard statistical approaches for obtaining the

confidence interval of an unknown mathematical expectation l when r is known (l and r

Fig. 11 Accuracy of estimation versus confidence probability depending on the considered number of
marks n
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are the parameters of mark distribution N(l, r)). In particular, from Eqs. 6 and 7 we can

obtain:

1� a ¼ 1�2 �F
e
ffiffiffi
n
p

r

� �

ð9Þ

where the function F() represents the cumulative density function of standardized normal

distribution.

As we wanted to obtain a result for all conferences and not for a single conference or

contribution, we calculated the normalized11 average standard deviation (average within

the papers marks) for each available conference (see Table 7) and than used their values to

compute an estimate of the unknown r.

Figure 13 shows the results from Eq. 9, obtained using three computed (a posteriori)

average values of the sample standard deviation: minimum, maximum and average value.

From these results we can conclude that 3 reviewers per paper—i.e. the number generally

Table 7 Standard deviation
for all the conferences

Conf. ID sn

C1 0.16

C2 0.19

C3 0.14

C4 0.12

C5 0.17

C6 0.11

C7 0.16

C8 0.20

C9 0.19

C10 0.17

Average SD 0.16

Fig. 12 Accuracy of estimation versus confidence probability depending on the considered number of
marks n

11 The marks before the computation were normalized to the scale [0,1].
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used in peer review in conferences—give highly confident results ((1 - a) [ 0.9) only for

conferences with high agreement among reviewers (little standard deviation of the marks).

In all other cases the accuracy of paper’s marks estimation should be kept under control:

for the conferences with low agreement, using only three reviewers produces results with a

confidence level around 0.6, i.e. 40 % of the times the mark estimation can be wrong. The

method that we described in the previous section ‘‘Evaluation of the accuracy of a review’’

could have been used here to improve the accuracy during the review process.

Validity: lessons learned

From the exploration of the validity dimension we can derive the following findings and

recommendations:

• The divergence metric is a practical metric to compare the actual ranking of the

conference against various target rankings.

• The application of the divergence metric has uncovered (for the available data sets) that

there is low correlation between the ranking of contributions obtained in the analyzed

review process and the actual impact (citation counts) of the same contributions in the

community. This result is confirmed by the Kendall s-tests.

• We do not have enough evidence based on the available datasets that the unbiasing

procedure proposed in ‘‘Quality: fairness’’ section improves the validity of peer review

process when citations are used as target measurable parameter.

• The statistical procedures proposed in ‘‘Evaluation of the accuracy of a review’’ section

can be used by program chairs to control the accuracy of review both on-the-fly or a

posteriori and can be easily implemented in current editorial management systems.

Analysis of the efficiency of the peer review process

In our view, the efficiency of a peer review process is linked to the effort spent in deter-

mining which contributions are accepted, and in particular to the trade-off between effort

Fig. 13 Confidence level versus number of RPP with error of the mark e ¼ 0:1
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and quality of the review process. It considers both the effort in writing contributions and

in reviewing them. We add also the authors’ effort because it can be affected by multiple

phase reviewing process when, for example, in the first phase only short contribution with

main ideas need to be prepared (e.g., extended abstract).

The basic working assumption of this section is that the quality-effort trade-off exists

and that, in general, if a paper or proposal is long, and is reviewed very carefully by a large

number of reviewers (all the reviewers and the chairs are considered to be experts), the

selection is more informed than the case in which, say, one page proposal is briefly looked

at by a couple of reviewers. Time is a precious resource, so the challenge is how to reduce

the time spent while maintaining a ‘‘good’’ selection process that indeed selects the ‘‘best’’

contributions. A separate issue that we do not address (also as it is hard to measure) is the

fact that a process is affected by the quality of the reviewers and the amount of discussion

or the presence of a face to face discussion. For now we limit just to metrics that we can

derive from raw review data (essentially marks data).

In the following we identify metrics that can help us understand if the review process is

efficient. The reviewing effort of a review phase is the total number of reviews NR mul-

tiplied by the average time tr (e.g., measured in person-hours) spent per review in that

phase. Correspondingly, the contribution preparation effort is the number of submissions

NC multiplied by the average time spent in preparing each submission tw. Reviews and

submissions can span across NP phases. For simplicity, in the above definitions and in this

section we use the average reviewing or writing time instead of considering the time spent

by each reviewer or author and the fact that different phases may require different

reviewing or writing efforts per contribution. We also assume that the set of experts is the

same for all phases. The extension of the reasoning done here to remove these assumptions

is straightforward.

In the ideal case—from a quality perspective—all reviewers are equally experts and

read all contributions for as long as they need to take a decision; and contributions are as

long as they need to be for the reviewers to fully grasp their value. With respect to the

review time and contribution length, we assume in particular that as the review time and

contribution length grow, the reviewer is able to narrow down the uncertainty/error on the

review marks he or she wants to give. In other words, it will increase the confidence that

the correct mark for the contribution is within a given interval.

Our hypothesis here is that beyond a certain review time threshold trx and contribution

length threshold lx the mark uncertainty remains constant. Reading a 10 pages paper for 4 h

or 4 days will not likely make a difference (if we are in doubt between giving a six and a

seven we will probably still be in doubt), but one minute versus four hours will.12

Essentially, in all real cases (conference, journal or project’s proposal evaluation) the

actual review process is far away from the above ideal case. It is therefore of interest to

have some analysis and quantitative data and metrics to measure how far we are from the

ideal case.

Informally, making the review process efficient requires reducing the effort and, at the

same time, minimizing the quality degradation. In the following subsections we analyzed

the process of stopping the reviews when the fate of a paper is clear and proposed an

heuristic procedure to choose the ‘‘optimal’’ number of papers per reviewer.

12 We recall again that in our work we focus only on the quantitative aspect of peer review (i.e. marks) and
not on the other important dimension of providing constructive feedbacks to authors.
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Optimizing the number of reviews

A first line of investigation is around optimizing the number of reviews for submissions

whose fate is clear. Assume that the review process is structured in as many phases as the

maximum number of reviewers per paper (say, we plan to have at most five reviews for a

paper, so at most five phases). In other words we are investigating the consequences of a

sequential assignment of the reviewers. The analysis we want to make is to understand

which is the earliest phase at which we can stop reviewing a given paper, because we have

a sufficiently good approximation of the fate of the paper, which is the one we would get

with all reviews (five in our running example). In particular, given the number T of

submissions we can accept (as long as they get marks above a minimal acceptance

threshold), we want to estimate the earliest point (i.e. the minimum number of reviews) so

that we can state whether a paper will or will not be in the top T. As an example, if a paper

has two strong reject reviews and it is impossible for it to end up in the acceptance range,

we can stop the review process for this paper just after two reviews. Stopping reviews for

guaranteed acceptance is more complex as it also depends on the marks of other papers

(being above a threshold is not enough as it is a competitive process). However, it is always

possible to verify if there is a possible combination of marks for the missing reviews that

can change the ranking to the point that the paper can end up below the acceptance

threshold.

In Fig. 14 we show the results of such deterministic approach for a simulated case

where the number of reviewers is |R| = 5, for each criteria Mj the reviewer can assign a

mark between f1; . . .; 10g with no half-marks and with a fixed acceptance threshold

Ta = 7.0. The dark areas at the bottom of the diagram indicate the cases where the fate

(rejection) of the contribution is already finalized and no further review will change it. The

shaded areas at the upper part indicate the symmetric cases where the acceptance of the

contribution is sure (in this case this is based on the existence of a minimal acceptance

threshold).

In addition to the deterministic analysis mentioned above, which is conservative, we can

also perform a statistical analysis relying on the fact that reviewers’ marks exhibit some

correlation (see our analysis in ‘‘Quality: reliability’’ section). In general, after each phase,

we can estimate the probability of each paper ending up in the accept or reject bin, and to

do so we can also leverage our previous band disagreement measures (see ‘‘Quality:

reliability’’ section) to help estimate the confidence associated to the estimate. The results

of such approach are also depicted in Fig. 14 as dashed areas with the corresponding

probability estimate in the figure caption.

Notice that implementing the above process requires either a multi-phase review or to

give to reviewers a priority on what they should review. This in order to increase the

chances that the reviews that would have to be reviewed later may not be needed because

the fate of the contribution has already been determined. A more formal analysis of such

process is part of our current research work.

Effort-invariant approaches

A second approach to the efficiency dimension, is around effort-invariant choices, that is,

varying review process parameters to improve quality while keeping the effort constant.

Here we investigate the efficiency of the review process from the view of an efficient

(‘‘optimal’’ number of PPR) review distribution among reviewers.
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Our working hypothesis is that in all evaluation processes there are different groups of

contributions to evaluate, typically: immature, average, good and eventually excellent

papers. We presume that if a reviewer evaluates contributions only from one group, their

evaluation scale will tend to expand, i.e. contributions from the same group could end up

with very diverse marks. If a reviewer would have access to contributions belonging to

different groups, the scale could be more realistic and probably more correct. Conse-

quently, we would like to estimate how to distribute the papers among reviewers in a way

such that each reviewer will have at least one paper from each group. The idea is to use

statistical information about the distribution of the average marks for individual contri-

butions (either an expected one or an historical one where available) in order to identify

typical clusters of contributions for a given review process. Then, to use statistical

approaches to compute the needed number of PPR in order to maximize the probability—

with a specified confidence level—to have in the set of reviews at least one paper from

each cluster.

In order to show a possible implementation of this idea, we first studied a posteriori the

distribution of the average marks for individual papers and for one criterion (for example

for the most significant one among the marks of the conference). Figure 15 shows the

average marks distribution for one of the analyzed conference, namely C3. This infor-

mation is used to evaluate the general behavior of the sample as we use it as an estimation

of the mean values density function.

On the basis of this type of distribution, we then determine appropriate boundaries for

papers clusters. As initial parameters in our statistical approach we have:

1. estimate of average mark distribution;

Fig. 14 Deterministic and statistical acceptance and rejection analysis for a contribution. Dark areas at the
bottom: 100 % rejected. Shaded areas at the top 100 % accepted. Dashed areas at the top/bottom: 95 %
probability accepted/rejected
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2. user’s selection for cluster boundaries;

3. user’s selection of desired confidence level (1 - a).

In the following analysis for conference C3, we choose three clusters—immature,

average and good/excellent papers—with the following range [0, 2.7]; [2.7, 3.7]; [3.7, 5]

correspondingly. The confidence level represents the probability that at least one paper

from the group with minimal probability (pmin) will be assigned to a reviewer (i.e. a is the

probability that in the set of papers for each reviewer there will not be the paper from the

minimal probability group). Then if we enforce that a reviewer reviews with the proba-

bility (1 - a) at least one paper from this group, the papers from the other groups will

appear with higher probabilities.

If n is the desired value for the number of PPR, then—assuming that we have a large

number of observations—we can estimate n as: a = (1 - pmin)n hence

n ¼ log1�pmin
ðaÞ: ð10Þ

If the number of observations (N) is not very large (i.e. the group probability changes

significantly if we pull one paper out) then we can approximate the solution with the

expansion:

a ¼ 1� pminð Þ 1� pmin

N

N � 1

� �

� � � 1� pmin

N

N � nþ 1

� �

ð11Þ

In this case, we cannot obtain an analytical expression for n, but we can estimate it

using the following computation procedure:

1. Set initial parameters: average mark distribution, cluster boundaries, confidence level

(1 - a).

2. Calculate the cluster distribution p1; p2; . . .; pkf g; where k is the number of paper

clusters, pi ¼ Ni

N
; i ¼ 1; . . .; k;N—total number of papers, Ni—number of papers in

the ith group.

3. Find minimal pi; i ¼ 1; . . .; k. Define it as pmin.

4. Obtain n from Eq. 11.

Fig. 15 Distribution of average marks for individual papers for C3. On the x-axis we plot the average marks
and on the y-axis the measured density in percentage
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This approach can be used to estimate the quality of the peer review process dynamically

(collecting and analyzing marks distribution from reviews as they are coming in during the

evaluation process) or a posteriori (to check within which confidence level the initial

assumption—each reviewer have had at least one paper from each cluster—has been met).

Results from an a posteriori analysis are reported in Fig. 16 with real data from two

conferences: C1 and C3. Review chairs could have seen from the graphs that reviewers

with a small number of papers have had a small probability of reviewing the papers from

all the groups. In particular for these conferences, if the reviewers have received on

average only four papers to review the probability of reviewing a paper from the

‘‘immature’’ cluster13 ranges from 45 to 51 % for conference C3 and from 47 to 38 % for

conference C1. In order to have a confidence level around 80–90 % that each reviewer has

seen a contribution from every cluster, each reviewer should have been assigned around

9–12 contributions for conference C3 and 10–14 for conference C1.

Efficiency: lessons learned

Our preliminary investigations along the efficiency dimension led us to the following

results:

• definition of a framework and a number of metrics for investigating how to analyze the

efficiency of peer review processes.

• definition of both a deterministic and statistical procedures to support the chairs of a

review process to optimize (reduce) the number of reviews for the papers with clear fate.

• definition and application of an heuristic procedure for calculating ‘‘optimal’’ number

of PPR in order to ensure that each reviewer has a good chance (within a defined

confidence interval set by the chairs) to access contributions of all qualities (immature,

average, good/excellent) in order to be more consistent in their evaluation scale.

It would be interesting to apply our proposed efficiency metrics also to analyze and

optimize the effort spent by both authors and reviewers during their work, but unfortu-

nately the data about time spent in writing or reviewing are not easily available.

13 Both in C1 and C3 the cluster with minimal probability was the ‘‘immature’’ cluster.

Fig. 16 Number of PPR for different values of 1 - a (0.99 B 1 - a B 0.01)
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Conclusion

In this paper we have presented and discussed the results of the analysis of peer review data

from 10 conferences whose topics were related to the CS field for a total of ca. 9,000

reviews on ca. 2,800 contributions. We have conducted the analysis along four different

dimensions: reliability, fairness, validity and efficiency. Together with the traditional

metrics and analysis found in literature, we have also performed additional analysis

studying the infuence of the mark scale on the rating process, the robustness of the peer

review process and introduced different measures to compare rankings, disagreement/

agreement among reviewers, rating bias, and accuracy of the papers marks obtained from

reviewers.

In regard to reliability of peer review processes, we found evidence in our data set that

there is an overall agreement among the reviewers according to Intraclass Correlation

Coefficient analyses. However, disagreement among reviewers exists as well and it is

relatively high, although different from random processes. Moreover, according to our

proposed band agreement analysis, we found quantitative evidence that reviewers tend to

agree more on very bad or very good papers. Thus, we can claim that the analyzed peer

review processes can be considered reliable mainly for very bad or very good papers since

the analyzed processes tend to produce there much higher agreement than random or semi-

random processes.

In regard to fairness of peer review processes, we have analyzed a specific source of

bias, namely rating bias, to find out if there are reviewers that constantly give higher

(positive bias) or lower (negative bias) marks than their colleagues while reviewing the

same proposal. We found out that in every conference in our dataset, it is possible to

identify a set of reviewers with a positive/negative bias, that is reviewers with, respec-

tively, accepting/rejecting bias and that this behavior impacts from 7 to 14 % of the overall

submitted contributions in our dataset. However, once the bias has been detected, program

chairs may take some actions to compensate it, as giving the paper to additional reviewers,

or adding/removing the bias values to obtain a new unbiased final ranking for the con-

tributions. Therefore, though in our data set rating bias is always present in the marks given

by reviews, there are ways to identify it and, luckily, there are also ways to deal with it to

compensate its impact.

From the analyses of the validity of peer review processes, we have found no evidence

of correlation between the rankings outcome of the investigated review processes and the

impact of the selected contributions measured by citations; the low correlation is also

confirmed in a similar study of a posteriori review of the same contributions at a later time.

Although it might be that the selected target parameter (i.e., citations) or the citation source

(i.e., Google Scholar) for evaluating the validity of the review process could not be the

ideal ones, our proposed analysis provides a straightforward procedure to check a-poste-

riori a review process validity with respect to any specific (and measurable) target

parameter selected by the review process chairs. Moreover, chairs can also decide to

monitor the accuracy of the mark of a paper in terms of the size of estimation error within a

probabilistic confidence level. Our analysis shows that the standard number of reviewers

per paper (typically 3) is often not enough to reach a satisfactory accuracy (see ‘‘Evaluation

of the accuracy of a review’’, ‘‘Confidence level depending on the number of reviewers per

paper’’ sections). To achieve a small error of estimation or, in other words, more accurate

results with high confidence level, a dynamic control over mark estimation approach could

be used. A possible approach could be to add reviewers until a predefined accuracy level is

achieved.
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Finally, we presented some investigations on the efficiency of peer review processes and

reported some preliminary results related to the possibility to devise statistical approaches

to tune review process parameters to improve quality while keeping the overall effort under

control.

We had two main goals in our work: (i) search for scientific evidence that peer review

works (or that it doesn’t), and (ii) search for ways to improve the peer review process so that it

can work better. With respect to the first goal, the analyzed datasets did not provide us with a

definite answer. In the analyzed dataset (10 conference in CS) we have found that: there is a

significant degree of randomness in the analyzed review processes, more marked than we

expected; the disagreement among reviewers is high and there is a low correlation between

the rankings of the review process and the impact of the selected papers as measured by the

most used indicator of impact, i.e. citations. This is also true in the similar study of a posteriori

review of the same contributions at a later time. If these trends would be confirmed for more

and diverse (i.e. from different domains) review processes then we could affirm that current

peer review processes do not work very effectively.

On the second goal we can be more specific: the proposed analysis model and frame-

work can be used as the basis to develop a support system in state-of-the-art editorial

management systems to support review process chairs both during the review and as a

posteriori check on the overall quality of the process. Using the various methods proposed

in this paper (e.g. robustness analysis, disagreement analysis, band agreement analysis,

bias analysis, un-biasing procedures, a-posteriori validity analysis with respect to specific

target parameter(s), a-posteriori or on-the-fly marks accuracy evaluation, as well as sta-

tistical approaches to tune review process parameters) the chairs of a peer review process

could arrive at a deeper understanding of their specific selection process and pursue a

number of appropriate ways to improve it.

We do not claim that our results are general and final, but we think that they indicate an

applicable quantitative methodology to tackle the analysis of peer review and provide

important suggestions to improve current peer review process.

In the future we want to extend the analysis to more conferences and journals peer

review processes also from fields different from CS and analyze from a more theoretical

approach ways to improve the efficiency of current peer review processes. Finally, we will

continue to aim at providing all stakeholders in peer review processes with an intuitive

understanding of what the various metrics imply, in an effort to explain the numbers, so

that all involved stakeholders will more easily assess ‘‘how well’’ peer review works.
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