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� Akadémiai Kiadó, Budapest, Hungary 2013

Abstract Certain key questions in Scientometrics can only be answered by following a

statistical approach. This paper illustrates this point for the following question: how similar

are citation distributions with a fixed, common citation window for every science in a static

context, and how similar are they when the citation process of a given cohort of papers is

modeled in a dynamic context?
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Introduction

Consider the following basic question in Scientometrics: are citation distributions for

different sciences very similar or rather different? This question is important for at least

two reasons. Firstly, a deep understanding of the citation impact phenomenon requires

explanatory models in which thousands of researchers decide in a decentralized manner

which of their colleagues’ previous works should be cited. Consider the following three

possibilities: (i) all distributions are essentially different; (ii) the distributions for the

natural sciences are different from the distributions for the social sciences, and (iii) all

distributions are broadly similar. Whichever of these turns out to be the case may dras-

tically affect the type—or even the number—of explanatory models we need. Secondly, we

know that publication and citation practices are very different across scientific fields. This

makes the direct comparison of citation counts of articles belonging to different fields

extraordinarily difficult. However, the closer citation distributions are to each other, the
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easier it might be to find sensible normalization procedures to compare citation counts

across fields, and to aggregate a set of heterogeneous sub-fields into larger categories.1

We should distinguish between two scenarios. In the first one, citation windows are

fixed and equal for all sciences. In this static case, there is systematic evidence showing

that, to a first approximation, citation distributions are strikingly similar at different

aggregation levels. Moreover, confirming all previous, casual but valuable evidence, we do

know that citation distributions are highly skewed (Price 1965; Seglen 1992; Schubert and

Braun 1986; Glänzel 2007; Albarrán and Ruiz-Castillo 2011; Albarrán et al. 2011). Such

similarity has recently lead some authors towards a universality claim according to which,

except for a scale factor, citation distributions are equally distributed (Radicchi et al. 2008;

Radicchi and Castellano 2012a, b). There is evidence that the claim does not hold at the

lower or the upper tail of citation distributions. Nevertheless, it appears that there is

‘‘enough’’ similarity among citation distributions to make meaningful comparisons of

citation counts across different fields, and to justify simple but practical normalization

procedures for aggregating heterogeneous sub-fields or disciplines into larger scientific

categories (Glänzel 2011; Radicchi and Castellano 2012a; Crespo et al. 2012).

The second scenario focus on the dynamic citation process of a given set of papers

published in the same period. There are two types of interesting questions to study. Firstly,

one may simply ask: how long does it take for citation distributions in different sciences to

adopt their characteristic skewed shape? (Glänzel 2007). Secondly, one may build an

explanatory model for the probability that each article will receive one more citation as a

function of a number of factors including past citations, the characteristics of the article, its

author(s), and the field to which the article belongs. In a multivariate context, this question

remains essentially unexplored.

These are old issues, pregnant with methodological, substantive, and policy consequences

that have been fruitfully discussed in Scientometrics for several decades using a variety of

approaches. The point of this paper is that both specialists in Scientometrics and scientists of

all persuasions will not accept a definite answer that is not firmly rooted in rigorous statistical

methods. This is, of course, why I suggest reviewing these questions for this monographic

issue of Scientometrics. In particular, given the wide differences in mean citation and field

size, to study the skewness of science it is convenient to use scale- and size-independent

techniques; ideally, to establish the universality claim we need a methodology that consists of

several well defined stages, and to study the probability that each article will receive one more

citation dynamic, multivariate models are strongly recommended.

The rest of the paper is organized into four sections. ‘‘The skewness of science’’ and

‘‘The universality claim’’ sections briefly reviews the skewness of science and the uni-

versality claim in the static case. ‘‘Dynamic considerations’’ section discusses the char-

acteristics of a dynamic model for the probability that an article gets one more citation,

while ‘‘Conclusions’’ section offers some brief concluding comments.

The skewness of science

To begin with, we would like to know whether—to a first approximation—citation dis-

tributions share or not a set of basic features. In particular, we would like to know whether

common characteristics are only present at a high aggregation level and disappear at the

1 For reasons of space, only methods that belong to the class of target or ‘‘cited side’’ normalization
procedures will be discussed in this paper.
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sub-field level or, on the contrary, whether they are present at the lowest aggregation level

and, in this case, whether they are preserved or not at higher aggregate levels.

To answer this question, sub-fields are identified with the 219 Web of Science subject-

categories distinguished by Thomson Scientific. Articles are assigned to sub-fields through

the journals in which they have been published. The problem is that many journals are

assigned to a single sub-field, but many others are assigned to multiple sub-fields. To

handle this difficulty, there are two alternatives: a fractional strategy, according to which

each publication is fractioned into as many equal pieces as necessary, with each piece

assigned to a corresponding sub-field, and a multiplicative strategy according to which

each paper is wholly counted as many times as necessary in the several sub-fields to which

it is assigned.

As indicated in the ‘‘Introduction’’ section, size- and scale-independent descriptive tools

permit us to focus on the shape of these 219 distributions. In particular, the characteristic

scores and scales approach, pioneered by Schubert and Braun (1986) in Scientometrics,

permits the partition of any distribution of articles into classes according to the citations

they receive. Let s1 denote the mean citation, and s2 the mean citation of articles above s1.

Consider the partition of citation distributions into three broad classes of articles that

(I) receive no or few citations below s1, (II) are fairly well cited, namely, with citations

between s1 and s2, and (III) are remarkably or outstandingly cited with citations above s2.

Using a large dataset consisting of about 3.7 million articles published in 1998–2002 with a

five-year citation window, Albarrán et al. (2011) partition every sub-field citation distri-

bution into these three classes, and then compute the percentage of total citations corre-

sponding to each class. For both the multiplicative and the fractional strategies, Table 1

provides information about the average percentage of articles (and standard deviation) in

classes I and III over the 219 distributions, as well as the percentage of total citations in

each class.

As expected, citation distributions are highly skewed in the sense that, on average, 69 %

of all articles receive citations below the mean and account for 21 % of all citations, while

articles with a remarkable or outstanding number of citations represent about 9 or 10 % of

the total, and account for approximately 45 % of all citations. We should emphasize that

the small standard deviations in Table 1 indicate that this description provides a good

characterization of citation distributions at the sub-field level. Since sub-field shapes are so

similar, any reasonable aggregation scheme should preserve its main features. This is

exactly what is found when sub-fields are aggregated into larger categories (For the

multiplicative and the fractional cases, see Albarrán et al. (2011) and Herranz and Ruiz-

Castillo (2012), respectively).2

It can be concluded that the celebrated title of Seglen’s (1992) seminal contribution

appropriately summarizes the massive available evidence about citation distributions at

several aggregation levels. This is a very important result, pointing towards a single

theoretical explanation of this aspect of the scientific communication process. Who could

have thought so, given the wide differences in professional culture, publication and citation

practices across scientific fields, let alone the myriad of motives researchers may have to

cite their colleagues’ previous work?

2 Of course, from the beginning of Scientometrics it is generally believed that citation distributions are
highly skewed (Price 1965; Seglen 1992). However, until the results previously summarized, the empirical
evidence, although valuable, was very scant and mostly unsystematic. See Albarrán et al. (2011) for a
discussion of the previous literature, including the limitations of the few systematic studies by Schubert and
Braun (1986), Glänzel (2007) and Albarrán and Ruiz-Castillo (2011).
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The universality claim

The similarity just discussed opens the way for the next question: independently of their

means and sizes, are citation distributions equally distributed? In practice, we rarely, if

ever, know for certain that an observed quantity is drawn from a given distribution. The

best we can typically do is to say that our observations are consistent with a model of the

world in which the quantity of interest—the number of citations received by an article, in

our case—follows a certain distribution. Unfortunately, there is no easy short cut to reach

conclusions of this sort. The standard process for estimating and testing which is the best

distribution that fits some data can be summarized in the following three steps. Firstly,

under the assumption that the data are drawn from a distribution of known functional form,

one must first find the best available estimates and standard errors of the parameters of the

distribution in question. Secondly, using an appropriate measure of the goodness of fit we

must decide whether the previous distributional assumption is even a reasonable hypothesis

to begin with. Thirdly, the fact that a distribution cannot be rejected does not guarantee that

it is the best of all possibilities. New tests have to be applied to know which of, say, two

alternative models is the better fit to the data (see Clauset et al. 2009, for a description of

the process in the power law case).

There are three major, systematic studies that have followed the first two steps in this

procedure (except for the estimation of the parameter standard errors). Firstly, Albarrán

et al. (2011) find that the existence of a power law cannot be rejected at the top of the upper

tail in 140, or 64 % of 219 sub-fields. On the one hand, it is really impressive that we

cannot reject the hypothesis of a power law in so many cases. However, this result shows

that the existence of a power law is a prevalent but not a universal phenomenon. It should

be mentioned that, when they cannot be rejected, power laws only represent a small

proportion of the upper tail of citation distributions but account for a considerable per-

centage of all citations: on average, power laws represent 2 % of all articles in a sub-field,

and account for about 13.5 % of all citations. Finally, even in the absence of confidence

intervals, the large dispersion of the power law parameters (see Panel B in Table 2 in

Albarrán et al. (2011)) is a clear indication that excellence is not equally structured in all

citation distributions for which a power law cannot be rejected.3 Secondly, using other

methods, Waltman and van Eck (2012) reach the same conclusion.

Thirdly, using a dataset of about three million papers, covering 172 subject-categories,

Radicchi and Castellano (2012a)—RC hereafter—conclude that the log normality of

Table 1 Characteristic scores and scales

Percentage of articles in classes

I III I III

Multiplicative strategy 68.6 (3.7) 10.0 (1.7) 21.1 (5.0) 44.9 (4.6)

Fractional strategy 68.3 (3.4) 10.2 (1.6) 21.5 (4.2) 44.7 (3.9)

Average values (and standard deviations) over 219 sub-fields in the partition of citation distributions into
three broad categories

3 In addition, consider the possibility of defining a high-impact indicator over the sub-set of articles with
citations above a high percentile of citation distributions, say the 80th percentile. The distribution of high-
impact values for the 219 sub-fields according to an indicator of this type is highly skewed to the right, and it
presents some important extreme observations (see Herranz and Ruiz-Castillo 2012).
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citation distributions cannot be rejected for a very limited number of subject-categories:

37 % of the sub-fields for papers published in 1980, 28 % in 1985, 20 % in 1990, 10 % in

1995, 5 % in 1999, and 4 % in 2004. From this and other evidence, RC conclude that

differences between citation distributions cannot only be due to a single scaling factor.

Therefore, using a linear transformation to normalize citation distribution does not seem

justified. However, the usual practice in Scientometrics (see inter alia Moed et al. 1985,

1995; Moed and van Raan 1988; Braun et al. 1985; Schubert et al. 1983, 1987a, b, 1988;

Schubert and Braun 1986, 1996; Vinkler 1986, 2003), advocated by these authors in other

contributions (Radicchi et al. 2008; Radicchi and Castellano 2012b), consists in dividing

the raw number of citations by a single discipline dependent scaling factor: the sub-field

mean citation.

In order to make further progress in the normalization issue, RC use a sort of ‘‘reverse

engineering’’ approach that starts by choosing a reference distribution: the cumulative

distribution of raw citation counts obtained by aggregating together their 172 Web of

Science categories in the multiplicative case. Then one searches for a transformation of the

raw data in every sub-field, so that each distribution of transformed citation counts coin-

cides with the reference distribution. Very interestingly, with few exceptions4 the trans-

formation for each sub-field s can be described by a non-linear relationship depending on

two parameters, the pre-factor, as, and the exponent of the mapping, as:

Transformed citation count of an article in sub-field s ¼ ðRaw citation count=asÞ1=ah:

ð1Þ

Three aspects of this research should be treated separately. Firstly, in general the trans-

formation effectively removes systematic differences in citation practices among sub-fields

in the top 10 % of highly cited papers (see Fig. 4 in Radicchi and Castellano (2012a), for

papers published in 1999). This is an extremely useful result that constitutes the best

available justification for a specific normalization procedure depending on only two

parameters. Secondly, RC claim that, in spite of the exceptions already mentioned, their

results support the claim that citation distributions are universal, in the sense that they are

all part of the same family of univariate distributions, namely, a log-location-scale family
of distributions that can be rewritten in terms of the same reference distribution for any

choice of a location and a scale parameter (Weinbull and log-normal distributions are well

known log-location-scale families). In our opinion, this claim should be qualified. RC’s

results provide estimates of the parameters of a log-location-scale distribution for 172 sub-

fields. We would like to see the standard errors of the estimated parameters, results on the

goodness of fit, and the testing against alternative models. Thirdly, in the absence of

conclusive statistical evidence about confidence intervals, RC claim not only that the

parameters are very stable across sub-fields and publication years, but that the strong

regularities in the size of the exponent of the mapping make the transformation almost

linear for the majority of sub-fields. Hence, the usual practice of rescaling raw citation

counts by the sub-field mean, despite not being strictly correct, can be considered a very

good approximation of the transformation making citation counts independent on the

scientific domain. In our opinion, more statistical work should be done before definitively

accepting these exciting conclusions.

4 In general, these exceptions are hybrid subject categories, like the ‘‘Multiplidisciplinary sciences’’, or not
so well defined sub-fields, like ‘‘Engineering, petroleum’’ or ‘‘Biodiversity conservation’’, whose papers are
also assigned, through the journals where they have been published, to other broader subject-categories.

Scientometrics (2013) 96:173–181 177

123



Dynamic considerations

So far, we have restricted the discussion to the static case in which citation windows are

fixed and equal for all sciences. However, the question of the similarity of citation dis-

tributions cannot be finished without reference to a situation in which citations and other

characteristics of a given a set of articles published in a certain period are observed during

a number of time periods. Two comments are in order.

Firstly, any sensible model for the probability that an article will receive one more

citation must include a variety of factors of two types. Some factors might be time

invariant, such as (i) what we may call the article’s a priori scientific influence; (ii) other

characteristics of the article, such as the number of authors, the degree of international co-

authorship, or the journal in which it has been published; (iii) characteristics of the

author(s), including their past citation impact, and other exogenous variables like their age

or gender, or (iv) the characteristics of the reward system in science where material

resources and recognition are allocated on the basis of past performance. However, other

influential factors may vary with time, such as (v) the sequence of citations received in

previous periods; (vi) characteristics of the field, such as its size or the percentage of

references that become citations in the periodical literature, or simply (vii) luck. Secondly,

the mere description of the question indicates that our multivariate data has a panel or

longitudinal structure. The inclusion of time invariant variables permit to improve our

understanding of the dynamic aspects of the problem controlling for fixed effects. On the

other hand, because panel data have both cross-sectional and time series dimensions, the

application of regression models to fit econometric models are more complex than those

for simple cross-sectional data sets. However, there are suitable methods for longitudinal

data developed in Statistics and Econometrics, such as panel data regression methods

(Arellano and Honoré 2001; Arellano and Bonhomme 2011), or mixed models that use

parametric fixed effects to represent the covariate effects, and an arbitrary smooth function

to model the time effect (Diggle et al. 2002; Molenberghs and Verbeke 2005).

Nothing is new in the above partial listing of potential explanatory variables. What is

new is the framework itself, which allows certain classical issues to be posed in a new

light. We would mention four examples. Firstly, consider the well-known Matthew effect
due to Merton (1968, 1988), according to which small differences in initial status amplify

over time to generate cumulative advantages—a process also known as ‘‘preferential

attachment’’ in network analysis. Many papers have discussed and have offered some

empirical evidence about the presence of a Matthew effect explaining some of the success

of highly cited papers. But very few have seriously controlled for confounding factors in a

multivariate framework, beginning with the scientific influence attributable to different

articles and/or the talent for citation impact attributable to different authors. For reasons of

space, I can only cite the remarkable contribution of Azoulay et al. (2012), which cleverly

designs a dataset for the estimation of the Matthew effect controlling for the characteristics

of both the authors and the articles involved. Specifically, they estimate the effect of a

scientist becoming a Howard Hughes medical investigator on citations to articles published

before the prize was awarded. They find evidence of a small post-appointment citation

boost confined to a short time window. However, the effect of the prize is significantly

larger when there is uncertainty about producer and product quality; for instance, the

consequence of a shift in status is much larger for younger producers, for those whose

positions in the status ordering are less well established at the time they receive the prize,

for papers published in lower quality journals, and for articles written in novel areas of

science.
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Secondly, using a panel data set on individual researchers from the University of

Leuven, comprising 10 years of publication data 1992–2001, Kelchtermans and Veugelers

(2012) study top research performance and its persistence over time. They study the factors

that influence the hazard for a researcher to achieve a first and subsequent top performance

level, taking into account time-varying and invariant covariates, and checking for the

influence of past (top) performance. The results confirm the skewness of research pro-

ductivity, as well as the persistency of top performance. On an important topic that has

been worrying researchers since Cole and Zuckerman (1984), the results consistently show

the importance of gender as a determining factor, with females being significantly less

likely to reach first top performance. However, once women break through to their first top

performance, no gender bias hinders them in future top performance. On the contrary,

women seem to persist in top performance more easily than men. Interestingly, all the

results are robust to corrections for unobservable individual heterogeneity, suggesting that

factors like ‘‘talent’’ remain an integral part of the story of top performance and its

persistence. Finally, the substantial part of the remaining residual left unexplained indi-

cates that luck cannot be excluded from the story either. The richness of the results shows

the dramatic advantages of working with multivariate statistical models.

Thirdly, Katz (2000) presents some interesting evidence on the (unconditional) rela-

tionship between the citations received by articles in a given field and the size of the field

in question measured by the total number of articles. Clearly, this important question

should be studied in a multivariate context where the effect of many relevant variables is

controlled for. Fourthly, last but not least, a model of this type will allow us to obtain

conclusions about the main topic discussed in this paper—how similar citation distribu-

tions are—taking into account the effect of many variables.

Conclusions

As Clauset et al. (2009) indicate, ‘‘Scientists have learned many things from observation of
the statistical distributions of experimental quantities such as the lifetimes of excited
atomic or particle states, populations of animals, plants, or bacteria, prices in the stock
market, or the arrival times of messages sent across the Internet.’’ Similarly, whether

citation distributions are very similar or rather different is a basic question in Sciento-
metrics that can only be answered in statistical terms. For a common, fixed citation win-

dow in the static case the empirical conclusions that can provisionally drawn are the

following two.

1. Citation distributions at the lowest level of aggregation are remarkably similar. This

has already opened the way towards simple but effective normalization procedures to

aggregate heterogeneous sub-fields into larger categories.

2. Whether it can be claimed that all (or most) citation distributions (i) belong to the same

family, and (ii) except for a scale parameter, all other parameters are statistically

equal, is still an open question. Four comments should be emphasized. Firstly, until

now systematic studies at the lowest aggregation level have taken as given the list of

Web of Science categories distinguished by Thomson Scientific—a classification

scheme in need of serious revision. Thus, part of the difficulties encountered by formal

procedures may disappear whenever a better classification scheme becomes available.

Secondly, even if the zero citation phenomenon at a comparable stage of the citation

process were to be the same in all sciences, when we take a fixed, common citation
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window for all of them we are bound to have very different percentages of articles

without citations: a small (large) percentage in quick (slow) sciences.5 In so far as the

citation process evolves at a different velocity in different fields, using variable

citation windows to ensure that the process has reached a similar stage in all fields

should improve field comparability at the lower tail of citation distributions. Thirdly,

as RC point out, the discreteness of citation numbers becomes more relevant at the

lower tail of citation distributions, making it harder for any normalization procedure to

work well in this segment. Fourthly, Crespo et al. (2012) study the evolution of

citation inequality attributable to differences in citation practices at different quantiles

of citation distributions. In the case of the 22 broad fields distinguished by Thomson

Scientific, they find that this type of citation inequality is particularly high until,

approximately, the 70th percentile, as well as for a few quantiles at the very upper tail

of citation distributions; otherwise, this citation inequality appears to be approximately

constant for a wide range of intermediate values. The conjecture is that citation

distributions are truly close to each other except for a scale factor only in such an

intermediate range of values—a fact that might be taken into account in further

research for a universal characterization of citation distributions.

The similarity between citation distributions already discussed seems to imply that all

we need is a single behavioral explanation of this aspect of the scientific communication

process. However, before this task is finally attacked, it would be convenient to know more

about the similarities—or differences—of the evolution of citation distributions for a given

set of articles as the citation window varies over time. Dynamic, multivariate models

constitute a promising statistical tool for approaching this topic.
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