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Abstract Bioinformatics is a fast-growing, diverse research field that has recently gained

much public attention. Even though there are several attempts to understand the field of

bioinformatics by bibliometric analysis, the proposed approach in this paper is the first attempt

at applying text mining techniques to a large set of full-text articles to detect the knowledge

structure of the field. To this end, we use PubMed Central full-text articles for bibliometric

analysis instead of relying on citation data provided in Web of Science. In particular, we

develop text mining routines to build a custom-made citation database as a result of mining full-

text. We present several interesting findings in this study. First, the majority of the papers

published in the field of bioinformatics are not cited by others (63 % of papers received less

than two citations). Second, there is a linear, consistent increase in the number of publications.

Particularly year 2003 is the turning point in terms of publication growth. Third, most

researches of bioinformatics are driven by USA-based institutes followed by European insti-

tutes. Fourth, the results of topic modeling and word co-occurrence analysis reveal that major

topics focus more on biological aspects than on computational aspects of bioinformatics.

However, the top 10 ranked articles identified by PageRank are more related to computational

aspects. Fifth, visualization of author co-citation analysis indicates that researchers in

molecular biology or genomics play a key role in connecting sub-disciplines of bioinformatics.
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Introduction

For the recent past decades, bioinformatics, sparked by the Human Genome Initiative in

1989, has grown into the cross-disciplinary field and proliferated into new areas of life
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sciences (Brusic 2007). The field has been characterized as an emerging discipline driven

by the needs of biologists to make use of the vast amounts of data that are constantly being

accumulated in genomic, proteomics and functional genomics research (Luscombe et al.

2009). Since the field of bioinformatics has been actively expanded, it has become ever

more vital to understand its current structure. The knowledge structure of and the trends in

the bioinformatics field have been studied with several different approaches (Patra and

Mishra 2006; Bansard et al. 2007; Glänzel et al. 2009). A majority of studies employed

bibliometric analyses which is primarily used in information science. This method utilizes

quantitative analysis and statistics to describe patterns of scholarly communication within a

given field or body of literature (Osareh 1996).

Conventionally, the body of literature used in previous bibliometric analyses has been

defined by either: (1) selecting a narrow body of literature, or (2) by searching numerous

journals on a narrowly defined topic. These approaches may not accurately reflect the

complete body of bioinformatics literature due to the evolving, multi-disciplinary nature of

the field. Frequently new sub-domains appear and research is often published in non-

bioinformatics journals. In this paper, we explore a new approach to detect the knowledge

structure of bioinformatics by mining full-text articles.

The main goal of this paper is to identify the scholarly landscape of bioinformatics by

analyzing full-text PubMed Central articles. To our best knowledge, none of the previous

studies fully utilized text mining techniques to full-text articles for bibliometric analysis.

Unlike previous studies, we analyze the core literatures from PubMed Central with various

text mining techniques such as topic modeling, word co-occurrence, and named entity

recognition. Even though some of studies applied text mining techniques to bibliographic

data of bioinformatics (Bansard et al. 2007; Perez-Iratxeta et al. 2007), their primary

focuses were not on studying the structure of and trends in bioinformatics. In addition,

apart from previous studies, we create a bioinformatics-specific citation database from

PubMed Central data collections and conduct citation analysis based on this custom-made

database. Previous studies rely heavily on citation data provided by the Thomson Reuters’

Web of Science database for mapping the bioinformatics field. However, several concerns

of studying citation impact by Web of Science arise. First, it is limited to citations from the

list of journals provided in Web of Science. Butler (2006) found that the fields of chem-

istry, biology, physics, and medicine have only about 69.3–84.6 % of the publications

found in Web of Science. Second, it has poor aggregation of minor variations of the same

title and author. Belew (2005) found that only 60 % of Web of Science was listed as

unique entries in about 4,000 publications used in the experiments, which indicates a

significant duplicate rate.

These findings may indicate that Web of Science can’t be the only source for biblio-

metric analysis, and it is time to look into alternatives. These concerns led us to explore

mining full-text articles for citation analysis. In this study, we conducted various text

analysis as well as bibliometric analysis based on mining results. These analyses include

word co-occurrence analysis, detection of country and institute with a Named Entity

Recognition (NER) technique, topic modeling, publication productivity analysis, Page-

Rank-based ranking of articles on the citation network, and visualization of the author co-

citation network.

The main contributions of this paper are two-fold: First, this study maps out the current

knowledge structure of the field to diagnose the maturity of the bioinformatics field and the

possible direction of the field by mining the PubMed Central full-text. Second, we

employed various advanced text mining techniques to analyze bibliographic data in

addition to citation analysis.
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Related work

There are several studies that applied bibliometric analysis to the field of bioinformatics.

Glänzel et al. (2009) analyzed the core literature in bioinformatics with bibliometric

analysis such as co-author citation analysis, national publication activity, citation impact

etc. Huang et al. (2012) examined the citation patterns in bioinformatics journals by

normalizing the journal impact factor provided in Journal Citation Report (JCR). Bansard

et al. (2007) compared the bioinformatics and medical informatics literature to identify

trends that are shared among both research fields to derive benefits from potential col-

laborative initiatives for their future. The field of bioinformatics was also studied by the

relationship between active members of conferences such as conference organizers,

keynote speakers, etc. for scholarly events and the representative of scholars’ prominence

(Jeong et al. 2009). Perez-Iratxeta et al. (2007) performed a meta-analysis of abstracts

published in MedLine and abstracts of NIH-funded project grants to determine the growth

and spread of computational approaches across the various subfields of biomedicine

during the past 30 years. Chen et al. (2010) introduced a multiple-perspective co-citation

analysis technique to explore the structure and dynamics of co-citation networks. They

combined network visualization, spectral clustering, automatic cluster labeling, and text

summarization to analyze co-citation data. A major difference between their approach

and the presented study is that we apply text mining techniques to a large size of full-text

articles and automate citation analysis. Janssens et al. (2007) conducted a study to ana-

lyze the domain based on text mining and bibliometrics aided techniques, and aimed at

improving classification of literature through the combination of linguistic and biblio-

metric tools. Ibáñez et al. (2009) developed a supervised learning technique to predict the

possibility of a journal having a tool capable of predicting the citation count of an article

within the first few years after publication would pave the way for new assessment

systems. Manoharan et al. (2011) conduct bibliometric analysis of the bioinformatics field

based on Thompson’s Web of Science database for a period from 2000 to 2010, aiming at

evaluate the publication frequency, country, individual productivity and collaborative in

this field.

Methodology

Data collection

Journal selection

Since bioinformatics is a highly interdisciplinary field, journals that contribute to bioin-

formatics tend to be cross-disciplinary. We select 47 bioinformatics journals that are found

in PubMed Central (Table 1). The selection criteria were originally provided by Huang

et al. (2011). We adopted most of the journals in their study and referred a few more

sources.

Out of 47 journals, Web of Science indexes 34 journals (72 % coverage). We down-

loaded all available articles published in those 47 journals from PubMed Central from 2000

to early 2010. The total number of fulltext articles downloaded is 20,869. We wrote an

XML parser in Java to spot elements of interest such as title, abstract, and references.

Those extracted elements were stored in a relational citation database for analysis.
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Procedure

In this section, we describe the overall procedure of the proposed approach to detecting

the knowledge structure of bioinformatics. First, we parse PubMed Central full-text

articles to collect information elements needed for our study. Second, we build rela-

tional databases (a citation database and a text database) to store those elements. In the

citation database, we create three tables such as a reference, a citation relation, and an

author tables to store citation related information. In the text database, we create a full-

text and an abstract tables. After the database is built, we conduct citation and text

analysis. For text analysis, we employ text mining techniques such as word co-occur-

rence, MeSH term frequency, topic modeling, and detection of named entities. For

citation analysis, we use PageRank to identify important articles and conduct biblio-

metric analysis for author productivity, national impact, etc. In addition, we conduct

author co-citation analysis based on first author-based co-citation counts. Figure 1

illustrates the overall procedure of our approach. The details of each procedure are

provided in the subsequent sections.

Table 1 The list of bioinformatics journals

1. Advanced Bioinformatics 25. Journal of Proteomics

2. Algorithms for Molecular Biology 26. Journal of Computer-Aided Molecular
Design

3. Biochemistry 27. Journal of Computational Neuroscience

4. BioData Mining 28. Journal of Molecular Biology

5. Bioinformatics 29. Journal of Molecular Modeling

6. Bioinformation 30. Journal of Theoretical Biology

7. BMC Bioinformatics 31. Mammalian Genome

8. BMC Genomics 32. Molecular & Cellular Proteomics

9. BMC Systems Biology 33. Molecular Systems Biology

10. Briefings in Functional Genomics & Proteomics 34. Neuroinformatics

11. BMC Research Notes 35. Pharmacogenetics and Genomics

12. Bulletin of Mathematical Biology 36. Physiological Genomics

13. Cancer Informatics 37. PLoS Computational Biology

14. Comparative and Functional Genomics 38. PLoS Biology

15. EURASIP Journal on Bioinformatics and Systems
Biology

39. PLoS Genetics

16. The EMBO Journal 40. Protein Science

17. Evolutionary Bioinformatics 41. Proteomics

18. Genome Biology 42. Source Code for Biology and Medicine

19. Genome Medicine 43. Statistical Methods in Medical Research

20. Genomics 44. Theoretical Biology and Medical
Modeling

21. Genome Integration 45. Trends in Biochemical Sciences

22. Journal of Biotechnology 46. Trends in Biotechnology

23. Journal of Biomedical Semantics 47. Trends in Genetics

24. Journal of Proteome Research
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Word co-occurrence analysis and MeSH term frequency

To identify important concepts or themes discussed in bioinformatics, we adopt two

techniques: (1) word co-occurrence and (2) MeSH term frequency. The underlying

assumption and the compelling reason for adopting word co-occurrence are that words co-

occurring more frequently tend to be related and show semantic connectivity of concepts.

We count word co-occurrence for every pair of words in the collected datasets after

filtering out a number of stop-words to come up with a total of n meaningful terms from

full-text articles. We also make use of occurrences of meta-data such as MeSH to capture

most frequently mentioned MeSH terms in the given datasets.

The most widely used measure of co-occurrence is mutual information (MI), a measure

of the adjacent co-occurrence of words by Church and Hanks (1990). We adopt the log-

likelihood ratio (LLR), a refinement of Pearson’s Chi-square test, proposed in Dunning

(1993). According to Dunning, LLR is more appropriate than MI in the treatment of a

mixture of high-frequency bigrams and low-frequency bigrams. The measure of the co-

occurrence of u and wj is as follows:

Iðwi;wjÞ ¼ log Lðp1; k1; n1Þ þ log Lðp2; k2; n2Þ � log Lðp; k1; n1Þ � log Lðp; k2; n2Þ

log Lðp; k; nÞ ¼ k log LðpÞ þ ðn� kÞ logð1� pÞ; p1 ¼
k1

n1

; p2 ¼
k2

n2

; p ¼ k1 þ k2

n1 þ n2

;

where k1, is the frequency with which wi occurs and is followed by wj, and n1 is the

frequency of wj, and k2 is the frequency with which wi occurs and is followed by words

other than wj, and n2 is the frequency of words other than wi.

Another way of identifying important concepts in bioinformatics is to use MeSH terms

assigned to articles. MeSH terms were used to analyze bioinformatics literatures in pre-

vious studies (Patra and Mishra 2006; Glänzel et al. 2009). Since PubMed Central articles

do not contain MeSH terms, we have to map PubMed articles from PubMed Central by

Fig. 1 Overall procedure of the proposed approach
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PubMed id to retrieve PubMed articles and then parse them in XML to count MeSH term

frequency.

Detecting organization and country with NER

As part of bibliometric analysis, we are interested in the publication activity and citation

impact by country and institute. Since there are no specific data fields in PubMed Central

datasets for country and affiliation and many articles do not have a data field for organi-

zation, we apply the Named Entity Recognition (NER) technique to identify country and

organization associated with authors in a full-text paper. To this end, we use Learning

Based Java (LBJ), a perceptron-based Named Entity Recognition (NER) system (Ratinov

and Roth 2009). LBJ proves to be an excellent NER technique for our study in that LBJ

achieved 90.8 F1 score on the CoNLL-2003 NER shared task at the CoNLL competition in

2003, which was the best reported result of the NER shared task. The sample input and

output of our NER task is given in Fig. 2.

Topic modeling for bioinformatics by LDA

We explore the salient topics in core literatures of bioinformatics. We use Latent Dirichlet

Allocation (LDA) for topic model generation (Blei et al. 2003). LDA, a statistical learning

algorithm, is a generative model that enables to account for a set of hidden topic structures

by using the observed documents to infer the hidden structures embedded in the collection.

The underlying intuition of LDA is that documents exhibit multiple topics. In LDA, each

group is described as a random mixture over latent topics where each topic is a discrete

distribution over the vocabulary of the collection. The generative process for a document

collection D under the LDA model is as follows: For k = 1…K: (a) uðkÞ �DirichletðbÞ and

for each document d 2 D : (a) hd �DirichletðaÞand (b) For each word wi 2 d :

1Þzi�DiscreteðhdÞ and 2) wi�DiscteteðuðziÞÞ where K is the number of latent topics in the

collection, u(k) is a discrete probability distribution over a fixed vocabulary that represents

the kth topic distribution, hd is a document-specific distribution over the available topics, zi

is the topic index for word wi, and a and b are hyper-parameters for the symmetric

Dirichlet distributions that the discrete distributions are drawn from. The generative pro-

cess described above results in the following joint distribution:

pðw; z; h;ujpðujbÞpðhjaÞpðzjhÞpðwjuzÞ

Each hd is a low-dimensional representation of a document in a topic space, each zi

represents which topic generated the word instance wi, and each u(k) represents a K 9 V
matrix where ui;j ¼ pðwijzjÞ. Therefore, one of the most interesting aspects of LDA is that

Input: Department of Biology, Faculty of Sciences, Kyushu
University, Fukuoka, 812-8581 Japan
=> NER Results:
[ORG Faculty of Sciences]
[ORG Kyushu University]
[LOC Fukuoka]
[LOC Japan]

Fig. 2 Sample input and output
by the NER process
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it can learn, in an unsupervised manner, words that we would associate with certain topics,

and this is expressed through the topic distributions u. For maximum likelihood (ML)

estimation of the LDA model the log-likelihood of the data is maximized with respect to

the model parameters a and b which are in general the parameter of interest. Since the

quantities pðwja; bÞ for the LDA model is not tractably computed, we use the expectation

maximization procedure.

Author co-citation analysis

Author Co-citation analysis (ACA) has been a compelling bibliometric method in Infor-

mation Science. ACA uses authors as the units of analysis and the co-citations of pairs of

authors as the variable that indicates their dissimilarity from each other. The underlying

assumption of ACA is that the more two authors are cited together, the closer the rela-

tionship between them (White and Griffith 1981).

In our study, we fully automated the ACA procedure which is one of the main con-

tributions of this study. Most ACA studies including White and McCain (1998) select

either manually or semi-automatically key journals from Web of Science, select top

N authors ranked by citation counts, and visualize a field through a representative slice of

its literature. In visualization, ACA studies select at most 300 authors due to the limitation

of the software used if the study employs Multi-dimensional Scaling (MDS). Unlike

previous studies, we developed an automated, scalable procedure for ACA to overcome the

problems of existing approaches. The procedures include calculating co-citation pairs from

the entire author list, constructing co-citation count table in a relational database, and

integrating several visualization tools such as Gephi and Prefuse via APIs.

Ranking important articles by PageRank

We use PageRank to identify important articles in bioinformatics. We apply PageRank for

spotting important articles in the citation network since PageRank can nicely work with the

citation network. PageRank provides an effective way to evaluate the relative importance

of publications beyond mere citation counts (Ding et al. 2009). In Bibliometrics, the

number of citations is used to measure the impact of scientific publications. However, there

is a critical issue with this measurement that it does not reflect the importance of the citing

papers. That is, a citation from a mediocre paper has the same weight as a citation from a

highly cited work (Maslov and Redner 2008). The PageRank algorithm can overcome this

shortcoming in that it gives higher weights to the publications that are highly cited and also

to papers cited by a few highly cited papers. PageRank is adopted as a complementary

method to citation analysis, which allows us to identify publications referenced by highly

cited articles.

Results and discussion

In this section, we report the results of mining bioinformatics literatures in terms of (1) text

analysis and (2) link analysis.
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Word co-occurrence analysis

To calculate word co-occurrence from 20,869 bioinformatics related articles, we filter out

common words that are normally used in Information Retrieval. It consists of 450 words

such as ‘and’, ‘or’, ‘which’, etc. In addition, co-occurrence of words is calculated from

abstracts of the data collection. Table 2 shows the list of keywords identified with word co-

occurrence. The importance of word co-occurrence is measured by LLR. Higher LLR

scores mean pairs of terms with the more interestingly connected terms. In this usage, the

LLR has proven very useful for discriminating pairs of features that have interesting

degrees of co-occurrence.

The results of word co-occurrence analysis indicate that highly co-occurred terms can

be by and large classified into two categories: biology and computer. Biological terms like

gene, genome are most dominant concepts in bioinformatics datasets from PubMed

Central. Computer related terms like data, algorithm, and database also are co-occurred

with high LLR scores.

In addition, individual word pairs with high LLR scores are presented in Table 3. The

word pair ‘‘Gene expression’’ is ranked top and its LLR score is two times bigger than the

second ranked pair ‘‘amino acid’’. As shown in Table 3, top 12 word pairs are all related to

molecular biology.

Frequency of MeSH terms

Out of 20,869 documents, there are 19,954 documents that have the corresponding

MEDLINE records (95.6 % matching). In 19,954 documents, 8,412 documents have

MeSH terms (42.2 %).

Table 4 shows the frequently occurred MeSH terms in bioinformatics literatures. Since

there are only 42 % of full-text articles that have MeSH terms, it is not desirable to

compare directly to LLR based co-occurrence. However, MeSH terms with high frequency

may show us an overview of how the structure of bioinformatics looks like in terms of

Table 2 Keywords with high ranked word co-occurrence

Keyword Word co-occurrence and LLR score

Gene Gene expression: 36947.5, gene ontology: 4729.7, expressed genes: 4115.5, genes involved:
3423.9, gene regulation: 1314.1

Genome Genome wide: 15485.4, whole genome: 5401.7, human genome: 2950.3, genome sequence:
1821.2, functional genomics: 1805.4

Expression Expression patterns: 4231.7, expression profiles: 6517.0, expression data: 3546.1, expression
levels: 3187.4

Data Data sets: 6593.5, microarray data: 6305.9, expression data: 3546.1

Protein Protein interaction: 4824.8, protein interactions: 3186.5, protein coding: 2841.8, protein
protein: 2719.8

Algorithm Clustering algorithm: 676.0, clustering algorithms: 585.0, new algorithm: 502.0, proposed
algorithm: 416.7, alignment algorithms: 266.3

Database Public databases: 1309.8, relational database: 1296.7, database search: 363.4

Computer Computer simulations: 538.7, computer program: 317.2, computer aided: 278.6, computer
science: 223.1, computational model: 221.9
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controlled vocabulary. Except for the top two terms (Animals and Humans), the list of

MeSH terms is related to either of the topics biology and computer. A major difference

between word co-occurrence with LLR and MeSH terms is that in MeSH terms, there are

more computer related terms, such as algorithm and software that are highly ranked than

the results of word-co-occurrence analysis. However, the majority of dominant concepts,

pertinent to Computational Biology and Genomics, are the same between two approaches.

Table 3 Top ranked word pairs
by LLC

Gene-expression 36,947.5

Amino-acid 16,483.9

Genome-wide 15,485.4

High-throughput 14,185.2

Large-scale 10,554

Binding-sites 9,450.1

Factor-transcription 8,580.7

Saccharomyces-cerevisiae 7,867.8

E-coli 6,849.4

Data-sets 6,593.5

Expression-profiles 6,517

Microarray-data 6,305.9

Gene-ontology 4,729.7

Expression-patterns 4,231.7

Expression-levels 3,187.4

Table 4 Top ranked MeSH
terms by frequency

MeSH term Frequency

Animals 5,178

Humans 4,883

Computational biology 3,070

Algorithms 2,980

Gene expression profiling 2,702

Oligonucleotide array sequence analysis 2,192

Software 2,154

Molecular sequence data 1,868

Models, biological 1,579

Computer simulation 1,568

Mice 1,511

Sequence analysis, DNA 1,489

Base sequence 1,374

Genomics 1,344

Evolution, molecular 1,336

Databases, genetic 1,325

Models, genetic 1,289

Sequence alignment 1,278

Proteins 1,135
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Topic modeling for bioinformatics literature

Table 5 shows the 10 topics generated with LDA, and we describe these topics briefly. Topic 1

has something to do with transcription of DNA in the Yeast, genome sequence, and gene

expression regulation. A sequence alignment is a way of arranging the sequences of DNA,

RNA, or protein to identify regions of similarity that may be a consequence of functional,

structural, or evolutionary relationships between the sequences. Topic 2 is mainly related to the

topic of Computational Genomics and gene prediction. In computational biology, gene pre-

diction or gene finding refers to the process of identifying the regions of genomic DNA that

encode genes. Topic 3 deals with Evolutionary Homologs and Caenorhabditis elegans that are

a free-living, transparent nematode (roundworm) and an accelerated rate of evolution in the C.
elegans lineage. Topic 4 is about embryonic stem cells and molecular cancer. Topic 5 is

pertinent to data mining and Proteomics. Topic 6 describes DNA methylation and sequencing.

Topic 7 is relevant to pathway and gene regulation. Topic 8 is related to System Biology and

protein network. Topic 9 is associated with Biogenesis and cellular function. Topic 10 is

related to RNS inference and Drosphilia Genome.

These results of topic modeling indicate that the majority topics are related to biological

aspects rather than computational aspects of bioinformatics. Only two topics (Topic 2 and

Topic 5) focus more on computational aspects. The rest of the topics are related to gene or

DNA sequencing, System Biology, and protein network to some extent. Topic 4 and 5 are

associated with some special topics such as Evolutionary Homologs and embryonic stem

cells. These results conform to the results of word co-occurrence analysis.

Research productivity analysis

In this section, we present the results of research productivity analysis as a result of mining

PubMed Central full-text articles. As mentioned in the ‘‘Methodology’’ section, we

examine changes in the number of citations over time, author productivity, publication

growth over time, and research productivity by institutes and countries. As illustrated in

Fig. 3, we observe that the relationship between the number of papers and the number of

citation a paper receives follows Zipf’s law. Among 740,353 papers (drawn from 20,869

papers and its citations), 285,439 citations receive 1 citation, 182,548 papers received 2

citations, and 138,090 papers receive 3 citations. Figure 3 shows the relationship between a

paper and the number of citations it receives.

The skewness issue of scientific publications has been reported by several researchers

(Seglen 1992; van Raan 2006; Stringer et al. 2010; Albarrán and Ruiz-Castillo 2011;

Franceschet 2011). Franceschet reported that 21 % of journal papers and 56 % of con-

ference papers received zero citation in the Computer Science related conferences and

journals (Franceschet 2011). Alb Albarrán and Ruiz-Castillo (2011) collected 7 million

articles from 22 research fields and observed that 74.7 % of the dataset follows the power

law distribution. In our case, we have a much higher rate of receiving zero citation than in

those related works. It may be attributed to the characteristics of our data collection that

citation counts are limited to 20,869 full-text articles and their references.

Author productivity

Authors with single publication were predominant (77.7 %) which is higher than the

predicted percentage (73.58 %) calculated by Lotka’s law. Patra and Mishra’s study show

192 Scientometrics (2013) 96:183–201

123



Table 5 Topics in bioinformatics with LDA

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Identification Model Human Expression Data

Signaling Gene Cells Profiling Time

Using Mapping Detection Regulatory Information

Cerevisiae Protein Pathway Specific Protein

Saccharomyces Human Protein Mouse Classification

Genes Structural Nematode Transcriptional Mining

Small Transcriptional DNA Molecular High

Thaliana Computational Analysis Dynamic Analysis

Alignment Binding Stem Regulation Mass

DNA Elegans Elegans Evolution Microarray

Cancer Genomes Recognition Cancer Throughput

Yeast Structure Structure Genes Based

Network Biology Caenorhabditis Comparative Algorithm

Genome Tool Evolution Sequence Sequence

System Interactions Complex Early Expressed

Expression Domains Gene Support Spectrometry

Genomic Role Lineage Discovery Database

Activity Cell Induced Proteins Differentially

Screening New Nuclear Machine Identifying

Specific Length Strand Stem PCR

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

Transcription Expression Analysis Gene Genome

Genomic Gene Protein Genetic Using

Evolutionary Analysis Networks Evolution Gene

Prediction Data Interaction System Inference

Factor Using Methods Metabolism Wide

Sites Genes Database Chromosome Sequences

Analysis Microarray Genomics Zebrafish Data

DNA Control Web Functional Method

Coli Chip-pet Genome Annotation Large

Gene Human Biology Open Whole

Genome Cell Genetic Associated RNA

Escherichia Regulation Biological Integrating Disease

Acid Case HIV Reveals Networks

Copy Assessment Systems Life Pathways

Number Size Sequence Bacteria Short

Binding Network Data Transcriptome Drosophila

Organization Multiple Bayesian Organisms Scale

Evolution Quality Tool Loss Alternative

Estimation Transcriptional Structure Mammalian Regions

Arabidopsis Cells Approach Microarrays Development
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the similar observation that there are 73.58 % of authors with single publication in bio-

informatics (Patra and Mishra 2006). Figure 4 shows the relationship between the number

of authors and the citations an author receives.

Based on this result together with the evidence of the fast growth rate reported in Fig. 5,

we assume that the number of researchers entering the field of bioinformatics keeps

increasing. The field is still in the growing phase and has not reached maturity.

Publication productivity by year

We examined the publication productivity by year. Out of the total number of full-text

articles (20,869), Fig. 5 shows that there is a dramatical increase in publication in 2003 and

onward. Note that the data for year 2010 is not complete since we collected the data in

February 2011. While this may not represent the whole picture of bioinformatics in terms

of publication productivity, it at least indicates that bioinformatics is a fast growing field.

Fig. 3 Relationship between a paper and its citation

Fig. 4 Co-citation count by the number of authors
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This stiff increase in the number of publications from 2003 and on is also observed in

Web of Science bioinformatics data. The number of articles is calculated by summing up

the articles assigned to subject areas of 34 overlapped journals with our data collection by

Web of Science.

Important papers by PageRank

The results of article ranking by PageRank are shown in Table 6 along with the title and

the journal title. The first top two articles are written by Altschul et al. Both articles are

related to BLAST algorithms (Altschul et al. 1990, 1997). The third ranked article is by

Ashburner et al. (2000) which introduces the Gene Ontology (GO) tool. Among top 10

articles, three articles were published in Nucleic Acids Research, and nine articles are

journal articles and one is a book.

One interesting observation is that most of highly ranked articles focus more on

computational aspects of bioinformatics rather than biological aspects. This shows the

different results from topic modeling where biological aspects of bioinformatics are

dominant. This is further scrutinized in discussion of Author Co-citation Analysis later in

this paper.

Research productivity by country and institute

To understand the research productivity by country and institute respectively, we first

extract country and institute names by NER. The 30 most active countries in the period

2000–2010 have been selected. We count country names that occur in the affiliation

address field. Figure 6 shows that USA is most productive followed by UK.

Among top 10 productive countries are USA, European, Asian countries.

Table 7 shows top 20 universities in terms of the research productivity by institute.

University of California is ranked first because multiple campuses in California are

counted as University of California together. Therefore, the number one institute as a

single body is Harvard followed by Stanford.

Fig. 5 Publication productivity by year
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Except for two universities (University College London and University of Toronto), all

universities are based in USA.

Author co-citation analysis

We conducted author co-citation analysis. We calculated all co-citation pairs. The number

of pairs is 339,121,666. This number is based on the first author co-citation count. Since it

is too big, it takes too long to calculate co-citation count even on the high end computer. To

overcome this big data issue, we used the MapReduce technique that supports data

intensive distributed applications. The MapReduce technique was proposed by Google as

part of their distributed computing model for processing large data sets. MapReduce

consists of two operations: map and reduction operations. The mapping operation is

independent of the others. All maps can be performed in parallel. Similarly, a set of reduce

Fig. 6 Research productivity by country
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operations can perform the reduction phase—provided all outputs of the map operation that

share the same key are presented to the same reduce operation at the same time. We built

our co-citation technique based on Apache Hadoop developed in Java (

Table 6 Important articles by PageRank on the citation network

Rank Title Journal title

1 Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs

Nucleic Acids Res

2 Basic local alignment search tool J Mol Biol

3 Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium

Nat Genet

4 CLUSTAL W: Improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice

Nucleic Acids Res

5 R: A language and environment for statistical computing Book

6 Initial sequencing and analysis of the human genome Nature

7 Molecular classification of cancer: Class discovery and class
prediction by gene expression monitoring

Science

8 The Protein Data Bank Nucleic Acids Res

9 Bioconductor: open software development for computational
biology and bioinformatics

Genome Biology

10 Exploration, normalization, and summaries of high density
oligonucleotide array probe level data

Biostatistics

Table 7 Research productivity
by Institute

University Frequency

University of California 1,678

Harvard Medical School 811

Stanford 768

National Institutes of Health 430

University of Washington 400

Yale University 373

University College London 329

Massachusetts Institute of Technology 310

Washington University 290

University of Toronto 287

Wellcome Trust Genome Campus 256

University of Illinois 252

University of Oxford 248

University of Michigan 240

University of Cambridge 236

University of North Carolina 235

Princeton University 234

Baylor College of Medicine 230

Columbia University 229

Cornell University 227
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http://hadoop.apache.org/). Once we calculated the co-citation count for all author pairs,

we order the pairs in terms of frequency. We selected the top 200 authors by rank of the co-

citation count. With these 200 authors, we built a co-citation matrix and applied the

PFNET scaling technique to the matrix. Our ACA technique is the bottom up approach

whereas existing ACA techniques use the top down approach. The top down approach

means that the top N highly cited authors are selected first and then compute the pair counts

between the author(s) of highly cited papers and author(s) of the citing papers. Instead, our

approach first computes all possible pairs of citing authors and cited authors. The pairs of

authors to be counted are enormous, and it can only be handled distributed computing

techniques like MapReduce. The detailed description of the author co-citation analysis

technique is provided in our forthcoming paper (Song and Chung 2013).

In terms of visualization, we employed Gephi’s visualization technique (

http://gephi.org/). Figure 7 illustrates the author co-citation network with Gephi. We used

the betweenness centrality to calculate the node distance. Betweenness centrality is a

measure based on the number of shortest paths between any two nodes that pass through a

particular node. Nodes around the edge of the network tend to have a low betweenness

centrality whereas a high betweenness centrality indicates that the individual is connecting

Fig. 7 Visualization of author co-citation analysis
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various different parts of the network together. In Fig. 7, bigger nodes, meaning a higher

centrality, indicates that researchers on the bigger nodes play a key role in connecting

different sub-disciplines of bioinformatics. For instance, Teusink is a scholar in System

bioinformatics who collaborates with researchers interested in biological networks. Cox is

a molecular biologist who is particularly interested in genetic rearrangements. Both Teu-

sink and Cox have a major in Biochemistry. In the lower left corner, there appear

researchers like Eggeling in Proteomics and H. Berman in biological databases. Eggeling is

in the Biotechnology department and Berman is in the department of Molecular

Bioscience.

Visualization results indicate that biologists or biochemistry scientists receive higher

recognition and have higher visibility than computation oriented researchers in the field of

bioinformatics. This result is in aligned with the results of word co-occurrence analysis, but

not with the results of PageRank based citation ranking on the citation network. We further

investigated whether the difference is attributed to the fact that PageRank is applied to the

citation network not the co-citation network. To this end, we built the co-citation network

with the author pairs whose co-citation count is greater than 5. The total number of pairs is

997,415. We applied PageRank with the damping factor set to 0.15 which is the same for

PageRank on the citation network.

Table 8 shows the results of top 5 important authors in the co-citation network ranked

by PageRank. This result coincides with the result of ACA, and it also reveals that the

important authors are leaning more toward biological aspects than computational aspects

of bioinformatics. This result also confirms that the findings reported by Ding and her

colleagues that the ranking of authors in the author co-citation network are heavily

influenced by whom the author is co-cited with (Ding et al. 2009). In other words, if an

author is co-cited with important authors, which means the author who has high co-citation

counts, a high PageRank score is assigned to the author. As shown in Table 8, authors

ranked in the top 5 are co-cited with most of important authors. This is in turn confirmed by

Fig. 7. For instance, the number one ranked author, Palsson, is co-cited with Reed, Eg-

geling and Teusink who are regarded as important authors in the co-citation network.

Conclusion

The field of bioinformatics is considered to be a fast-growing, interdisciplinary field with

the vast public attention starting from early 2000. In this paper, we explore the knowledge

structure of and trends in bioinformatics by applying text mining techniques to PubMed

Central full-text articles. Besides several core journals, important periodicals in molecular

biology as well as the multidisciplinary journals such as Science and Nature proved to be

Table 8 Important authors ranked by PageRank on the co-citation network

Rank Author name Co-cited authors

1 B. Palsson J. Reed (1), J. Papin (2), L. Eggeling (3), R. Mahadevan (4), B. Teusink (5)

2 T. Ideker G. Bader (1), C. Boone (2), M. Gerstein (3), M. Cox (4), E. Eisen (5)

3 J. Weissman N. Daly (1), C. Sevier (3), N. Bulleid (3), T. Madden (4), D. Johnson (5)

4 N. Krogan C. Myers (1), G. Bader (2), A. Gavin (3), M. Brauer (4), I. Lee (5)

5 D. Botstein R. Losick (1), D. Lockhart (2), T. Speed (3), G Churchill (4), R. Tibshirani (5)
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the most important publication channels. Although we focused on the bioinformatics core

literature, our study has confirmed findings by other recent studies concerning publication

patterns. There are several interesting findings reported in this paper. First, the majority of

the papers were not cited by others (83 % of papers received zero citation). Second, we

observed that there is a linear, consistent increase in the number of publications. Partic-

ularly year 2003 is the turning point. Third, most researches of bioinformatics are driven by

USA-based institutes followed by European institutes. Fourth, the results of topic modeling

and word co-occurrence analysis reveal that major topics are closer to biological aspects

than computational aspects of bioinformatics. But top 10 ranked articles identified by

PageRank are more related to computational aspects. Fifth, visualization of ACA indicates

that researchers in molecular biology or genomics play a key role in connecting sub-

disciplines of bioinformatics. This visualization result is confirmed by important authors

identified by PageRank in the author co-citation network.

The contributions of our paper are three-folds: (1) it is the first attempt to fully utilize

text mining techniques to understand the knowledge structure of a field. (2) We chose

PubMed Central full-text data and automated citation analysis based on the PubMed

Central data. 3) we conducted comprehensive content as well as citation analysis. As a

follow-up study, we plan to compare the results of our approach to PubMed Central data

with the traditional approach which is based on Web of Science citation data. We are also

interested in exploring new ways of utilizing citation data to discover new hypothesis

generation in bioinformatics.
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