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Abstract In this study, we combine bibliometric techniques with a machine learning

algorithm, the sequential information bottleneck, to assess the interdisciplinarity of

research produced by the University of Hawaii NASA Astrobiology Institute (UHNAI). In

particular, we cluster abstract data to evaluate Thomson Reuters Web of Knowledge

subject categories as descriptive labels for astrobiology documents, assess individual

researcher interdisciplinarity, and determine where collaboration opportunities might

occur. We find that the majority of the UHNAI team is engaged in interdisciplinary

research, and suggest that our method could be applied to additional NASA Astrobiology

Institute teams in particular, or other interdisciplinary research teams more broadly, to

identify and facilitate collaboration opportunities.

Keywords Astrobiology � Bibliometrics � Information bottleneck method �
Interdisciplinary science � Machine learning � Text mining

Introduction

Astrobiology, the study of the origin, evolution, distribution, and future of life in the

universe, is a relatively new field comprised of researchers from a range of scientific
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disciplines. Apart from its sublime object of study, astrobiology has been identified as a

field that can integrate diverse sciences (Staley 2003), provide a tangible target for

interdisciplinary science education (Cockell 2002), and provide a pathway to adult science

literacy (Oliver and Fergusson 2007). Many of the field’s core questions require knowledge

from multiple disciplines to be harvested, integrated and applied outside of their source

domains, and as such, astrobiology is inherently interdisciplinary. For example, the Uni-

versity of Hawaii NASA Astrobiology Institute (UHNAI) studies the origin of water in the

solar system and beyond, in the context of understanding the origins of life. Astronomers,

chemists, geologists, oceanographers and biologists work together to study data from

meteorite fragments to comets to the interstellar medium to address the question of where

else in the universe water, and thus life, might be found. Without collaboration across

disciplinary boundaries to interpret often-scarce data, important questions in astrobiology

will remain incompletely addressed. Developing a method to identify, measure and cata-

lyze interdisciplinary work in the astrobiology research environment is the goal of this

paper.

One of the benefits of a broad-based research community is that new developments in

astrobiology occur fairly frequently. The downside is that researchers must stay abreast of

these numerous developments both inside and outside of their home fields. As new

astrobiology research findings are reported, the considerable effort involved in finding,

evaluating and integrating them indicates a need for a better understanding of how findings

in one field might inform others, and to identify potential collaboration opportunities

between individual researchers working on similar questions.

Our previous example suggested that knowledge from multiple disciplines is required to

understand the origin of water to answer questions regarding the origin of life. Satisfac-

torily understanding the research record of scientists that work in this area requires mea-

suring interdisciplinarity on an acute scale. Following van Leeuwen (2007), we distinguish

between a top-down bibliometric approach, where large-scale trends at the highest levels of

publication aggregation are considered (such as the research output of a country or uni-

versity), and prefer a bottom-up approach, where we analyze individual documents and the

papers they cite. We harvest each astrobiologist’s publication data by comparing NASA

Astrobiology Institute annual reports, where publications are systematically documented,

with the researchers’ websites and CVs, and further verify the data by browsing the author

indexes of each database to identify name variations, to represent the research output of

each astrobiologist.

A common method used to examine the potential of collaboration across disciplinary

boundaries is to interview domain experts, but this method suffers from several limitations,

such as sample size and subjectivity problems (Zhang et al. 2011). Furthermore, given that

the subject matter of astrobiology spans many disciplines, meaningful analysis of the

responses would require the knowledge of an astrobiology polymath. After considering

these limitations, we suggest that measuring interdisciplinarity should be guided by one or

more individuals versed in astrobiology, but whose expertise need not span all of its

constituent disciplines. Therefore, an unsupervised approach is optimal as such methods

can find trends in data without prior knowledge of its structure.

As of 2011, the NASA Astrobiology Institute is comprised of 14 teams spanning ten

universities in addition to NASA Ames, Goddard, and the Jet Propulsion Laboratory.

While a cross-team analysis is beyond the scope of this paper, we suggest that our method

for measuring researcher interdisciplinarity at UHNAI could be extended to other NASA

Astrobiology Institute teams, and to scientific collaborations more broadly. Furthermore,
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our method suggests where collaborations might productively occur, and allows us to

better understand the nature of interdisciplinary scientific discovery.

In this pilot study, we investigate the use of an unsupervised machine learning clus-

tering technique, the sequential information bottleneck (sIB) (Slonim et al. 2002) to aid in

measuring researcher interdisciplinarity. Furthermore, we assess the extent to which

Journal Subject Categories from the Thomson Reuters Web of Knowledge database suite

are sufficient for labelling astrobiology documents. The clustering and classification of text

allow interdisciplinary analysis that (1) describes collaboration and the integration of

knowledge and (2) draws conclusions that are useful to astrobiology researchers by

uncovering the underlying structure of research tracks. The results of this pilot study will

serve to guide a subsequent investigation that will identify collaboration opportunities and

measure the disciplinary roots across the entire NASA Astrobiology Institute.

Researchers in astrobiology tend to be comfortable speaking in the language of multiple

scientific disciplines. As suggested in Gargaud and Tirard (2011), these interdisciplinary

researchers are somewhat isolated from their counterparts in other academic departments.

The multidisciplinary context given by astrobiology affords an excellent opportunity to

examine the methods used to study researcher interdisciplinarity and knowledge integra-

tion. Furthermore, we propose an iterative process to identify specific publications that

bridge diverse fields, to facilitate interdisciplinary collaborations and ease the cognitive

load of a single researcher who wishes to integrate knowledge from multiple disciplines.

Background

Research that occurs at the intersection between disciplines is thought to lead to great

advances in science (Porter and Rafols 2009). Many funding agencies exist specifically to

support and encourage interdisciplinary research; the U.S. National Science Foundation’s

interdisciplinary research efforts span all of their divisions and directorates (National

Science Foundation, Accessed November 21, 2011). For example, some authors measuring

interdisciplinarity lament that there is not enough coverage of the societal causes for

climate change (Bjurström and Polk 2011) as described in the Intergovernmental Panel on

Climate Change (IPCC) literature. In this specific case, measuring both the disciplinary

diversity and the integration of knowledge is of paramount importance to ensure that future

IPCC reports include appropriate factors. A cynical disposition to this problem is elo-

quently stated in Brewer (1999): ‘‘The world has problems, but universities have

departments.’’

Many important terms in this work have so far been discussed without qualification. The

term interdisciplinary tends to be tacitly understood by researchers, with no consensus

definition. We adopt the definition suggested by Porter et al. (2007), which followed the

definition given by the National Academies (2005): interdisciplinary research requires an

integration of concepts, theories, techniques and/or data from two or more bodies of

specialized knowledge. Multidisciplinary research may incorporate elements of other

bodies of specialized knowledge, but without interdisciplinary synthesis (Wagner et al.

2011) that leads to research that is greater than the sum of its parts.

Despite the increase in claimed interdisciplinarity, traditional indicators are of ques-

tionable value in assessing and quantifying interdisciplinary research (Morillo et al. 2001).

Additionally, policies regarding interdisciplinarity are often based more on conventional

wisdom than empirical studies (Rafols and Meyer 2010). The usefulness of bibliometric

indicators depends critically on the level at which we wish to understand the integrative
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process. For example, funding agencies may only require high-level publication co-

authorship and collaboration statistics, describing the research performed by their grantees

and the diversity of their home disciplines, but not addressing the essential aspect of

synthesis. When there is no mechanism to identify, measure and encourage these points of

intellectual crossover, there is no way to quantify the extent to which interdisciplinary

science is taking place.

Top-down approaches have been used to map scientific literature (for example, see

Boyack et al. 2005), and often represent broad areas of science with Web of Knowledge

(WoK) subject categories (SCs). For example, van Raan and van Leeuwen (2002) and

Porter et al. (2007) used SCs in their methodology to measure interdisciplinarity. In these

studies, SCs have been employed as de facto disciplinary boundaries, and as a benchmark

to measure how much a given author, journal or research area crosses scientific fields.

Unfortunately, low-level conclusions that might inform potentially productive individual

collaborations cannot be made when relying on these top-down approaches, as they

focus on past outputs rather than future integration. Conversely, bottom-up bibliometric

approaches incorporate the authors’ own words, in free-text fields such as: titles,

abstracts, keywords1 and the full text of a document. Clustering bibliometric data at this

level can describe the structure of a researcher, journal or an entire field, and suggest

productive future directions. Comparing the bottom-up clustered output with the top-

down approach of SCs for astrobiology publications yields an indication of the effec-

tiveness of SCs as document labels for works in this interdisciplinary domain. Kostoff

(1998) describes how a citation analysis can serve as a ‘‘radioactive trace’’ of research

impacts. One limitation of cluster analysis is that ‘‘…precise disciplinary divisions are

not obtained, rendering inter-cluster links misleading’’ (Small 2010), but Upham and

Small (2010) propose a methodology to identify emerging ‘‘research fronts’’, highly cited

micro-specialty areas that transcend existing fields. Their method requires that the

researcher not presuppose the existence of any research field, but to rely instead on a

comprehensive monitoring of citations to identify points across disciplines where

research interests intersect, echoing one goal of the present study. Both top-down and

bottom-up approaches are useful in different applications. A study by Rafols and Meyer

(2010) combines bottom-up and top-down approaches to measure both disciplinary

diversity and knowledge integration.

Measuring scientific output in bibliometric terms requires some degree of integration

and normalization of the publication records of researchers, which are published in diverse

formats, venues and scholarly traditions. The publication record generally includes data

such as departmental affiliations, keywords, year of publication, journal, cited references,

and the abstract and/or full text of the publication. This data can be compared using various

bibliometric techniques to assess interdisciplinary research. While bibliometric studies

tend to rely on a citation analysis, such an analysis may not be appropriate for every

discipline or field. For example, a given field may tend to reference conference proceed-

ings, websites, newspapers, or colloquia which are not as conducive to a co-citation

analysis as journal articles. Due to this observation, Sugimoto (2011) suggests that

studying interdisciplinarity should include publications beyond journal articles. While we

agree with this position, it happens that journals are the preferred method of communi-

cation within the great majority of the fields that compose the UHNAI team; therefore, the

present study is not hindered by this limitation.

1 Keywords are not always a free-text field.
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Methodology

In this section, we outline our method for measuring interdisciplinary research. In the

previous section we noted that particular bibliometric indicators are conducive to under-

standing research at varying levels. One of the goals of this research is to uncover the

underlying structure within an astrobiology research team that undertakes interdisciplinary

projects at the macro scale, but may differ in the extent of interdisciplinary work at the

micro level. To understand the research structure, we examine the abstract text of research

publications and employ a method from the field of information theory, the sIB method, to

cluster our high dimensional abstract data.

An advantage of using WoK for bibliometric studies is that it provides a mapping of

SCs to each journal. Given the incommensurability of other bibliometric data (for example,

journals do not agree upon a common set of keywords), SCs provide a way to compare

publications on the journal level. In Zhang et al. (2010), the authors used a cross-citation

analysis to create seven high-level clusters of related SCs, though their analysis was

somewhat confounded by the ‘‘idiosyncrasy’’ that a journal may be assigned to multiple

SCs in WoK. In Porter et al. (2007), the authors examine the references in sets of journal

articles gathered from WoK, and relate the journals to their corresponding SCs. In this

approach, a more diverse set of SCs that represent a paper derived from its references

indicates a higher degree of interdisciplinarity than a set of similar SCs that represent a

paper.

Using the references of a paper is a reasonable approach to measure researcher inter-

disciplinarity. Analoguous to Porter et al. (2007), we use the references in each UHNAI

publication. In particular, we combine all of the abstracts of all of the references cited by a

UHNAI publication, and use these aggregated abstracts to represent each publication. In

another text mining study (Kostoff et al. 2001), employed free-text fields (such as title,

keywords and abstracts) of cited/citing publications in combination with phrase frequency

analysis and phrase clustering analysis to obtain a low-level understanding of research

impact and interdisciplinary research.

In the present study, we focus on the abstracts of cited papers only, and we do not

consider the papers that cite the UHNAI papers. A major limitation of studying the

citations to the UHNAI papers is that it would require the database to contain those

papers that cite a particular work, which varies between disciplines, fields and databases.

The same is true of those references that are cited in our UHNAI papers. To obviate this

problem, we elect to use the NASA Astrophysics Data System (ADS) to collect the

majority of our abstracts, as more UHNAI team publications are covered in this database

than any other. The extensive coverage in ADS ensures that a considerable majority of

papers referenced by the UHNAI team are also within the database. However, previous

research has illustrated how the differences in scientific publication patterns between

fields often require that records from multiple databases be harvested to encompass the

output of interdisciplinary scientific researchers (see, for example, Kousha and Thelwall

2008). For UHNAI authors whose publications were not sufficiently represented in ADS,

we used WoK to obtain their publication data and cited references. As it turns out, those

authors, and the papers they cite, were highly represented in WoK. We were able to

gauge author coverage in ADS and WoK by consulting the CV of each UHNAI team

member.

In the following subsections, we describe our methods used to achieve the following

goals:
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• Examine whether WoK SCs are sufficient for labelling astrobiology documents. While

we believe SCs are useful in mapping broad scientific research trends in established

disciplines, whether they are appropriate for classifying individual publications or

interdisciplinary works remains an open question.2 We cluster a corpus of astrobiology

abstracts labelled with their corresponding conflated SCs (‘‘WoK subject categories and

document classification’’ section), and assume that if a given cluster is comprised

mostly of a single SC, then SCs are a sufficiently accurate classifier.

• Identify actual and potential instances of interdisciplinary research in astrobiology

using conflated SCs (‘‘WoK subject categories and document classification’’ section).

• Identify actual and potential instances of interdisciplinary research and identify

potential collaboration opportunities between researchers using aggregated abstracts to

represent the research tracks of the UHNAI team (‘‘Text mining aggregated abstracts’’

section).

Text mining and the sequential information bottleneck method

The sIB clustering algorithm (Slonim et al. 2002) is employed to cluster our datasets

described below. We chose this clustering method over others because it has been shown to

perform better than other unsupervised clustering methods, such as k-means (Slonim et al.

2002). Furthermore, the approach should allow us to identify instances of interdisciplinary

research by examining the cluster membership of our abstract data without prior knowl-

edge of the data’s properties. It is necessary to use an unsupervised clustering method

because a canonical set of astrobiology documents with which to train a clustering tech-

nique does not exist.

Data collection

We gather publications by the UHNAI team members from 2001 until June 2011. Publi-

cations earlier than 2001 were not collected, as many researchers may not have been

engaged in astrobiology research, and the UHNAI team was not yet founded.3 However,

we place no age restrictions on the papers that they cite.

NASA Astrophysics Data System

The ADS has extensive coverage of astronomy, astrophysics and physics journal articles,

pre-prints and conference proceedings. We gather the data in a semi-automated fashion.

Instead of accessing the articles through a web browser, ADS has a perl script library4 that

can be used to access parts of the database. To gather the abstracts and journals of UHNAI

papers, and the abstracts and journals of the papers they cite, we employed the following

procedure:

2 The classification of documents is a requirement for an astrobiology publication information retrieval
system. Our research group is inclined to create such a system. See http://airframe.ics.hawaii.edu/ for more
information.
3 This is also the year that the journal Astrobiology began publication. While astrobiology research was, and
continues to be published in other journals, this indicates that astrobiology research may not have coalesced
as a field prior to 2001.
4 The scripts can be found here: http://vo.ads.harvard.edu/adswww-lib/.
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• Ran one of the ADS perl scripts to return a list of all of the publications for each

UHNAI team member. This returned a list of ADS bibcodes, which uniquely identify

each record in the ADS.

• Compared these papers with each author’s CV to ensure that we did not collect

undesired articles. For example, we filtered out papers by authors with the same last

name as members on the UHNAI team.

• Used the ADS bibcodes to create a script that goes to the URL of the webpage

that lists the references in each UHNAI paper. We download the individual

webpages.

• Created and ran a script to capture all of the ADS bibcodes in each downloaded html

webpage.

• Used this list of bibcodes to get the abstracts and journals of all of the UHNAI papers

and references therein using the ADS perl scripts.

Web of Knowledge

To include the published output of UHNAI authors whose work is underrepresented in

ADS, and to provide a comprehensive portrait of the entire UHNAI team, we also used

WoK to gather abstracts and bibliographic data. To our knowledge there is not an API or

alternative way to access WoK other than using a web browser. To gather this data, we

employed the following procedure:

• Created a list of all of the papers authored by UHNAI authors that were not in or

underrepresented in the ADS database.

• Manually downloaded the html pages of each record describing each UHNAI

publication and references therein.

• Created a script that parses the html pages to harvest the abstracts and journal titles.

When working with WoK data, it is important to be mindful of the differences in

institutional subscriptions, which include access to different subsets and date ranges of

WoK’s constituent databases, and may affect the results of bibliometric analysis (Jacsó

2005; Derrick et al. 2010). Therefore, we provide a list of the University of Hawaii WoK

subscriptions at the time of data collection:

• Web of Science, 1980 –

• Biological Abstracts, 1969 –

• Medline, 1950 –

• Journal Citation Reports Science & Social Science editions, 2004 –

WoK subject categories and document classification

Having collected the abstracts and journal names of UHNAI publications and references,

we create a dataset that contains the abstract text and the SC of the associated journal for

each UHNAI publication and the publications they cite.

Many of the SCs of the papers in our dataset were significantly underrepresented.

Furthermore, as other researchers have encountered (see, for example, Zhang et al. 2010)

some journals in WoK are assigned multiple SCs, necessitating some conflation into

superclusters, or ‘‘macro-disciplines’’ (Porter and Rafols 2009). We modify the SCs using

the following method:
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• Journals with a single WoK SC that appears 10 or more times in our dataset use the

assigned WoK SC name.

• Journals with a single WoK SC that appears less than 10 times are changed to a broader

WoK category (e.g. ‘‘Biochemical Research Methods’’ becomes ‘‘Biochemistry &

Molecular Biology’’).

• Journals with two or more SCs of roughly equivalent weight are assigned a new

conflated SC (e.g. ‘‘Astrophysics & Geophysics’’).

• Journals with two or more SCs that have a clear primary SC have ‘‘-Multidisciplinary’’

appended to the primary name.

The ADS system also contains non-journal publications. In these instances, we manu-

ally assigned an appropriate SC to the publication. Table 1 shows the mapping of WoK

SCs to our conflated SCs.

We eliminated those abstracts whose SCs were unique or constituted a very small

fraction of the entire dataset. Furthermore, publications are commonly cited across the

UHNAI team; therefore, multiple duplicate abstracts could appear in our dataset. Duplicate

abstracts were removed from the sample. Once removing the duplicate abstracts, we traced

back which databases these abstracts came from to reflect the relative proportion of

abstracts obtained through WoK and ADS. The dataset has 10,216 abstracts integrated over

13 conflated SCs. Table 2 shows the number and fraction of abstracts labeled with each

conflated SC. From Table 2, we observe that there is a large class imbalance problem, as

the Astronomy & Astrophysics SC contributes 67.68 % of the entire dataset.

We oversample the minority classes (where a class is a SC), which is every SC but

Astronomy & Astrophysics, to examine if the class imbalance problem significantly affects

the resultant clusters. There are a number of methods utilized to oversample minority

classes in the field of data mining. Duplicating the abstracts in the minority classes could

potentially result in model overfitting. To obviate this problem, we create synthetic data

that is similar to the other abstracts within a given SC. We use the Synthetic Minority

Over-sampling Technique (SMOTE) (Chawla et al. 2002) to produce synthetic feature

vectors, where a feature vector (or feature) is a normalized numerical representation of the

words that describe each abstract/instance. For example, consider the following two

truncated abstracts:

1. Water is found on the earth and in the solar system.

2. Water exists on the moon, and Mars.

The two feature vectors of word counts after punctuation is removed is shown in Fig. 1.

For clustering our abstracts and their corresponding conflated SCs, we create two

datasets. In the first dataset (hereafter conflated_SC_default), we cluster the dataset as

described by Table 2, without considering the class imbalance problem. In the second

dataset (hereafter conflated_SC_sampled), we randomly sample without replacement 25 %

of the features contained within the Astronomy & Astrophysics SC and every feature in the

minority SCs three times. We use SMOTE to create synthetic feature vectors for the

minority SCs such that each SC is represented by the same number of features. A visual

representation of the distribution of real and synthetic data is shown in Fig. 2.

Text mining aggregated abstracts

We create a dataset of aggregated abstracts (hereafter aggregated_abstracts) for the pur-

poses of representing each UHNAI publication. The dataset contains 731 publications by
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Table 1 Mapping of WoK SCs to conflated subject categories

Conflated subject category WoK source subject category

Agricultural Engineering-
Multidisciplinary

Agricultural Engineering with Fisheries

Astronomy & Astrophysics Astronomy & Astrophysics

Astronomy & Astrophysics-
Multidisciplinary

Astronomy & Astrophysics-Multidisciplinary or Astronomy &
Astrophysics with: Mechanics; Engineering-Aerospace; History;
Multidisciplinary Sciences; Physics; Spectroscopy

Astrophysics & Geophysics Astronomy & Astrophysics with: Geochemistry & Geophysics;
Geosciences-Multidisciplinary

Biochemistry & Molecular Biology Biochemistry & Molecular Biology

Biochemistry & Molecular Biology-
Multidisciplinary

Biochemistry & Molecular Biology with: Biochemical Research
Methods; Chemistry, Analytical; Biotechnology & Applied
Microbiology; Mathematical & Computational Biology; Biology;
Biophysics; Cell Biology; Computer Science, Interdisciplinary
Applications; Genetics & Heredity; Medicine, Research &
Experimental; Chemistry, Analytical; Chemistry, Medicinal;
Chemistry, Organic; Pharmacology & Pharmacy; Evolutionary
Biology; Microbiology; Immunology; Infectious Diseases

Biology Biology

Biology-Multidisciplinary Biology with: Ecology; Evolutionary Biology; Environmental
Sciences; Mathematical & Computational Biology

Biology & Geology Biology or Environmental Sciences with Geosciences,
Multidisciplinary

Biotechnology & Applied
Microbiology

Biotechnology & Applied Microbiology

Biotechnology & Applied
Microbiology-Multidisciplinary

Biotechnology & Applied Microbiology with: Food Science &
Technology; Microbiology; Genetics & Heredity; Marine &
Freshwater Biology

Chemistry Chemistry; Chemistry, Analytical; Chemistry, Physical; Chemistry,
Organic; Chemistry, Inorganic & Nuclear

Chemistry-Multidisciplinary Chemistry, Multidisciplinary or Chemistry or Chemistry, Analytical
with: Spectroscopy; Chemistry, Medicinal; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Chemistry,
Applied; Computer Science, Information Systems; Computer
Science, Interdisciplinary Applications; Pharmacology &
Pharmacy; Environmental Sciences; Toxicology; Physics,
Condensed Matter; Engineering, Chemical; Mathematics &
Computational Biology; Oceanography; Nuclear Science &
Technology; Polymer Science

Chemistry & Physics Chemistry with Physics

Chemistry & Physics-
Multidisciplinary

Chemistry and Physics with Nuclear Science & Technology

Computer Science Computer Science

Computer Science-Multidisciplinary Computer Science, Multidisciplinary or Computer Science with:
Information Science & Library Science; Cybernetics; Computer
Science, Artificial Intelligence; Computer Science, Theory &
Methods; Engineering, Electrical & Electronic; Computer
Science, Hardware & Architecture; Computer Science,
Information Systems; Computer Science, Interdisciplinary
Applications; Geosciences, Multidisciplinary; Physics, Fluids &
Plasmas

Crystallography Crystallography
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Table 1 continued

Conflated subject category WoK source subject category

Education Education or Education with Multidisciplinary Sciences

Engineering Engineering; Engineering, Instruments & Instrumentation;
Engineering, Electrical & Electronic; Engineering, Mechanical

Environmental Sciences & Ecology Environmental Sciences or Ecology

Environmental Sciences & Ecology-
Multidisciplinary

Environmental Sciences or Ecology with: Limnology; Evolutionary
Biology; Marine & Freshwater Biology; Microbiology;
Oceanography; Engineering, Civil; Water Resources;
Engineering, Environmental; Engineering, Chemical; Geology;
Meteorology & Atmospheric Sciences; Geography, Physical;
Geosciences, Multidisciplinary; Soil Science; Toxicology;
Fisheries

Genetics & Heredity Genetics & Heredity

Genetics & Heredity-
Multidisciplinary

Genetics & Heredity with: Ecology; Evolutionary Biology

Geochemistry & Geophysics Geochemistry & Geophysics

Geochemistry & Geophysics-
Multidisciplinary

Geochemistry & Geophysics-Multidisciplinary or Geochemistry &
Geophysics with: Geology; Meteorology & Atmospheric
Sciences; Mineralogy; Geography, Physical; Geosciences,
Multidisciplinary; Paleontology

Geography Geography, Physical

Geology Geology

Geology-Multidisciplinary Geology or Geosciences, Multidisciplinary with: Energy & Fuels;
Engineering, Petroleum; Mineralogy; Mining & Mineral
Processing; Paleontology; Geography, Physical; Mathematics,
Interdisciplinary Applications

Geology & Oceanography Geology with Oceanography

Geophysics & Oceanography Geochemistry & Geophysics with Oceanography

Instruments & Instrumentation Instruments & Instrumentation

Life Sciences & Biomedicine-
Multidisciplinary

Life Sciences & Biomedicine, Other Topics; Multidisciplinary
Sciences; Science & Technology, Other Topics

Materials Science Materials Science

Materials Science-Multidisciplinary Materials Science, Multidisciplinary or Materials Science with
Physics, Metallurgy & Metallurgical Engineering

Mathematical & Computational
Biology

Mathematical & Computational Biology

Mathematics Mathematics; Mathematics, Applied; Statistics & Probability

Medicine Medical Sciences; Psychology, Clinical; Medicine, General &
Internal; Public, Environmental & Occupational Health; Sport
Sciences

Meteorology & Atmospheric
Sciences

Meteorology & Atmospheric Sciences

Meteorology & Oceanography Meteorology & Atmospheric Sciences with Oceanography

Microbiology Microbiology

Mineralogy Mineralogy

Multidisciplinary Sciences Multidisciplinary Sciences

Neurosciences Neurosciences

Nutrition & Dietetics Nutrition & Dietetics

Oceanography Oceanography
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the UHNAI team. Table 3 shows the team members and their associated home disciplines.

Each publication is represented by its own abstract and the abstract of each cited publi-

cation. We aggregate all of these abstracts in a single feature vector to represent each

Table 2 The distribution of conflated SCs, their corresponding abstracts and the fraction of abstracts
obtained through ADS and WoK

Subject category Number of
abstracts

Fraction of
dataset (%)

ADS
(%)

WoK
(%)

Astronomy & Astrophysics [Astro] 6,914 67.68 98.7 1.3

Astronomy & Astrophysics-Multidisciplinary [Astro-M] 66 0.65 98.5 1.5

Astrophysics & Geophysics [Astro & GeoPhys] 364 3.56 93.4 6.6

Biochemistry & Molecular Biology [BioChem & MBio] 61 0.6 0 100

Biochemistry & Molecular Biology-Multidisciplinary
[BioChem & MBio-M]

109 1.07 0.9 99.1

Biotechnology & Applied Microbiology-Multidisciplinary
[BioTech & AMBio-M]

58 0.57 0 100

Environmental Sciences & Ecology-Multidisciplinary
[EnvSc & Eco-M]

66 0.65 1.5 98.5

Geochemistry & Geophysics [GeoChem & GeoPhys] 978 9.6 65.1 34.9

Geochemistry & Geophysics-Multidisciplinary
[GeoChem & GeoPhys-M]

491 4.8 45.8 54.2

Multidisciplinary Sciences [Multidisciplinary] 830 8.12 78.9 21.1

Oceanography 55 0.54 0 100

Physics 86 0.84 100 0

Physics-Multidisciplinary [Physics-M] 138 1.35 98.6 1.4

Table 1 continued

Conflated subject category WoK source subject category

Oceanography & Marine Biology Oceanography and Marine & Freshwater Biology or Limnology

Optics Optics

Optics-Multidisciplinary Optics with: Spectroscopy; Engineering, Multidisciplinary

Pharmacology & Pharmacy Pharmacology & Pharmacy

Physics Physics; Physics, Fluids & Plasmas

Physics-Multidisciplinary Physics, Multidisciplinary or Physics with: Mechanics; Physics,
Particles & Fields; Physics, Nuclear; Nuclear Science &
Technology; Physics, Atomic, Molecular & Chemical; Chemistry,
Physical; Instruments & Instrumentation; Optics;
Thermodynamics; Energy & Fuels

Psychology Psychology

Spectroscopy Spectroscopy

Spectroscopy-Multidisciplinary Spectroscopy with: Chemistry, Physical; Chemistry, Analytical;
Physics, Atomic, Molecular & Chemical

Virology Virology

Zoology Zoology

Assessing researcher interdisciplinarity 143

123



UHNAI publication. Non-journal publications such as book chapters, conference pro-

ceedings and dissertations were included in the dataset, although they constitute a very

small fraction of the total publications. A majority of the abstracts in the aggre-
gated_abstracts dataset are the same as the ones in the conflated_SC_default and con-
flated_SC_sampled datasets.

We estimate the completeness of the aggregated abstracts, which is defined as the

fraction of abstracts harvested out of the total number of citations in a UHNAI publication.

For example, if an individual UHNAI publication contains 20 referenced citations, and 15

corresponding cited abstracts were harvested, then the aggregated abstract is 75 % com-

plete. We randomly sampled (N = 100) abstracts from the 731 in the aggregated_abstracts
dataset. We find that the average completeness for the aggregated abstracts in this sample is

74.3 %, as shown in Table 4. Therefore, we expect that on average our aggregated abstracts

in the aggregated_abstracts dataset are *74 % complete. Interestingly, the UHNAI pub-

lications harvested from ADS have a higher degree of completeness than those abstracts

harvested from WoK.

Fig. 1 Depiction of feature vectors as constructed from abstract data

Fig. 2 The distribution of real (black) and synthetic (white) data in the conflated_SC_sampled dataset
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Preprocessing of the datasets

We preprocessed the conflated_SC_default, conflated_SC_sampled and aggre-
gated_abstracts datasets in the same manner. Our preprocessing of the datasets included

Table 3 Home discipline of the
authors at the University of
Hawaii NASA Astrobiology
Institute

An asterisk (*) denotes a post-
doctoral researcher

Author Departmental affiliation/
home discipline

Bennett* Chemistry

Binsted Computer Science

Cowen Oceanography

Freeland Biology

Gazan Computer Science

Haghighipour Astronomy

Huss Geology

Jewitt Astronomy

Jogo* Geology

Kaiser Chemistry

Keane* Astronomy

Keil Geology

Kleyna* Astronomy

Krot Geology

Meech Astronomy

Mottl Oceanography

Owen Astronomy

Reipurth Astronomy

Riesen* Astronomy

Sarid* Astronomy

Schörghofer Astronomy

Scott Geology

Taylor Geology

Yang* Astronomy

Table 4 Statistics for the UHNAI aggregated abstracts dataset

ADS WoK Total

Total UHNAI publications in the dataset 655 (89.6 %) 76 (10.4 %) 731

Number of publications randomly selected 88 12 100

Total number of references found across the sample 3,426 756 4,182

Total referenced abstracts harvested 2,908 386 3,294

Average completeness of the aggregated abstractsa 77.5 % 50.3 % 74.3 %

A sample (N = 100) of the total number of UHNAI publications is shown to estimate the completeness of
the aggregated abstracts
a The average completeness is measured as the mean of the completeness of each individual aggregated
abstract in the sample
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converting uppercase words to lowercase, and ignoring non-alphabetical characters. We

stemmed the words using the Porter stemming algorithm (Porter 1980) to ensure that

related words were not duplicated in the datasets. We created a stopword list to remove

formatting tags, and other non-content-bearing terms. We selected words which had a

minimum frequency of 12, integrated over the entire datasets, resulting in a total of

*4,000 words in each dataset. Most of our preprocessing was performed in WEKA

(Witten and Frank 2005), and the sIB method was also executed in this environment.

We normalize each feature vector in our datasets. Each feature is described by the term

frequency of each word found in the *4,000 words distilled from their respective datasets.

We normalize the sum of each feature vector to 1. In the case of the aggregated abstracts,

some feature vectors will be much shorter or longer than others, as there is a large range of

abstract sizes, and number of references within a given publication. If we did not normalize

the term frequencies, then instances with high word or low word counts may cluster

together. Such clusters would be less revealing of the content of the documents themselves.

Figure 3 reiterates the steps employed to construct our datasets.

Limitations

There are several limitations to our study. First, some of the papers were authored by

multiple members of the UHNAI team. In this case, we assigned the abstract data to the

first-listed author on the paper, thereby not fully characterizing the research contribution of

the non-primary authors. Otherwise, having multiple labels on the same document would

inadvertently oversample those documents with multiple UHNAI authors. Also, there is a

minor discrepancy between the abstracts gathered in ADS and WoK; ADS contains

abstracts from non-journal sources, whereas WoK does to a lesser extent for the

researchers studied here. The vast majority of our data was from journal articles; therefore,

we do not expect this to have a significant, if any negative impact on our study. WoK maps

multiple SCs to a single journal. While we need to conflate the SCs in order to compare

them to clusters (in the conflated_SC_default and conflated_SC_sampled datasets), the

aggregation procedure undermines the fundamental function of SCs. Furthermore, we

reduced the total number of conflated SCs to 13 which may have a negative effect on our

ability to assess interdisciplinary research.

Results

In this section we present the results of our text mining experiments. For the purposes of

this paper, where our goal is to identify actual and potential instances of interdisciplinary

research in astrobiology, a meaningful cluster relationship is one where papers from two or

more SCs cluster together, or when researchers from different fields have the aggregated

abstracts of their papers cluster together. Our present and future work is focused on these

heterogeneous clusters, however our method could be used for a variety of purposes, each

Fig. 3 An overview of the steps in our methodology. The UHNAI authors and publications to be harvested
are shown as region A and outlined in the ‘‘Methodology’’ section. The motivation for using the sIB is
discussed in the ‘‘Text mining and the sequential information bottleneck method’’ section. The data
collection procedure is discussed in the ‘‘Data collection’’ section and is described by region B. The method
for creating our conflated SCs is shown as region C and discussed in the ‘‘WoK subject categories and
document classification’’ and ‘‘Preprocessing of the datasets’’ sections. The method for creating our
aggregated abstracts is shown as region D and discussed in the ‘‘Text mining aggregated abstracts’’ and
‘‘Preprocessing of the datasets’’ sections

b

Assessing researcher interdisciplinarity 147

123



with a different corresponding indicator of interest. For example, a research team wishing

to demonstrate its uniqueness within a collaboration might highlight its work being rep-

resented as a relatively homogenous cluster, with its dominant SC not found in other

clusters. A group seeking to align or connect itself with researchers in a particular area

might target clusters where their work and that of their target domain co-exist.

Subject categories as document labels

We begin by estimating the extent to which conflated Web of Knowledge SCs accurately

describe the content of astrobiology publications. In Fig. 4 we visualize the results of

clustering the abstract data before sampling as described in ‘‘WoK subject categories and

document classification’’ section. The same data is presented numerically in Table 5 in the

online supplement. If SCs accurately reflect shared topical content of documents assigned

to them, when the abstracts are clustered we should expect each SC to be primarily

assigned a single cluster. However, when abstracts are assigned one of five clusters (Fig. 4-

top panel), we observe that the cluster membership for most SCs is heterogeneous: there is

no clear correspondence between a cluster and a single dominant SC. Even the most

common SC, Astronomy & Astrophysics, is primarily distributed across the first three

clusters, but is represented in all five.

Table 5 in the online supplement does suggest some areas in which SCs may be more

appropriate document labels. For example, Oceanography appears in only one cluster, and

the Multidisciplinary Sciences SC is fairly evenly distributed across four of the five.

However, when increasing the number of clusters to 10, 15, and 20 (Fig. 4), the hetero-

geneity of SCs within an individual cluster becomes even more pronounced.

The dominance of the Astronomy & Astrophysics SC in the conflated_SC_default
dataset suggests that we also examine the cluster relationships after the dataset has been

sampled. Fig. 5 shows the distribution of SCs in five clusters over three trials, where the

cluster results of each trial are not related to each other. For example, in successive trials,

the same abstract may be assigned to different clusters; for the Astrophysics & Geophysics

SC, each trial results in different cluster assignments, though the overall distribution of

clusters is roughly equal, suggesting that there is little variability between trials.

We present the data in Fig. 5 as a fraction of the total number of features in the

conflated_SC_sampled dataset, where the number of features representing each SC are

equal (Fig. 2). Furthermore, the data in Table 6 in the online supplement displays the data

somewhat differently, where the fraction of features in each SC that are found in a given

cluster is presented. Examining the data with the tables provided in the online supplement

makes interpreting the results easier in some instances. In Fig. 5 and Table 6 in the online

supplement, the Astronomy, Biochemistry & Microbiology, and Physics SCs consistently

cluster with their Multidisciplinary counterparts. Therefore, on the five cluster level, SCs

seem to reasonably classify individual publications.

Since five clusters may not be sufficient to reflect the diversity of content within

astrobiology, we increase the number of clusters in subsequent trials. One would intuitively

expect more SC heterogeneity within each cluster; however, increasing the number of

clusters also allows more potential of each SC to dominate a single cluster. When we

increase the number of clusters to 10 (Fig. 6; Table 7 in the online supplement), we find

that most of the SCs disperse into multiple clusters. One way to interpret this result is that

more clusters allow finer distinctions between content to be revealed. For example, Physics

and Physics-Multidisciplinary, which cluster together in each trial at the five cluster

level, tend to cluster separately at the 10 cluster level. However, the Biochemistry &
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Fig. 4 The results of clustering
the conflated_SC_default dataset.
Results are given for 5, 10, 15
and 20 clusters from top to
bottom
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Fig. 5 The results of clustering
the conflated_SC_sampled
dataset in three separate trials.
Each abstract is assigned one of
five clusters
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Fig. 6 The results of clustering
the conflated_SC_sampled
dataset in three separate trials.
Each abstract is assigned one of
10 clusters
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Microbiology SC and its multidisciplinary variant continue to have their abstracts cluster

together. Moreover, from Fig. 6, we observe that the abstracts in the Biotechnology &

Applied Microbiology-Multidisciplinary SC consistently cluster together. At the 10 cluster

level, more clusters contain single dominant SCs than at the five cluster level.

Figures 7 (Table 8 in the online supplement) and 8 (Table 9 in the online supplement)

present the results of clustering the abstracts into 15 and 20 clusters, respectively. We

observe that many of the SCs are found distributed in multiple clusters. For example, at the

20 cluster level, what had been homogeneous cluster membership in the Biochemistry SCs

at the 10 cluster level is split into three or more clusters, neither of which is shared across

any other SC. Therefore, at these clustering levels, we operationalize a dominant SC within

a cluster as one that either constitutes 50 % or more of the abstracts alone, or one that is

within 50 % of the size of the most common SC.5 By this approximation, the results at the

10 cluster level hold: as a group, the Biochemistry and Biotechnology-related SCs dom-

inate the fewest clusters; the Astronomy, Oceanography and Physics group slightly more,

and the Geochemistry and Geophysics SCs are again the most diverse, short of the Mul-

tidisciplinary Sciences SC. Overall, at the 10 cluster level, more clusters contain single

dominant SCs than at the 5, 15 or 20 cluster levels, and the usefulness of SCs as document

labels reaches a relative maximum.

In some cases, the trial processes reveal some inconsistencies in the cluster membership

of SCs. For example, in the Biotechnology & Applied Microbiology-Multidisciplinary SC,

one would expect to have diverse membership at the 15 cluster level (Fig. 7). However, the

Biotechnology & Applied Microbiology-Multidisciplinary SC is dominant in one cluster in

trials 1 and 3, and is dominant in three clusters in trial 2. While these results may be an

artifact of the sampling and multiple-trials processes, we would expect and find that the

two related SCs, Biochemistry & Molecular Biology and Biochemistry & Molecular

Biology-Multidisciplinary are found mostly within the same clusters. This observation also

holds for the Geochemistry & Geophysics and Geochemistry & Geophysics-Multi-

disciplinary SCs. The multidisciplinary SC variants (BioChem & MBio, BioChem &

MBio-M and GeoChem & GeoPhys, GeoChem & GeoPhys-M) are slightly more diverse

than their associated core SC, but there is a high degree of similarity between the abstracts

in these two sets of related SCs. Therefore, we conclude that even with some observed

inconsistencies, the clusterer is collocating related abstracts across related SCs.

Certain related SCs tend to consistently cluster together, which suggests that SCs are

sufficient for characterizing some astrobiology publications. However, other SCs have a

limited effectiveness as document labels in this interdisciplinary domain, as some SCs did

not map well to successively smaller cluster sizes. Therefore, our results suggest that WoK

SCs may not consistently reflect the diverse content of astrobiology publications.

Utilizing subject categories to assess interdisciplinarity

In this section, we attempt to leverage the heterogeneity of SC cluster membership to

assess the interdisciplinarity of astrobiology publications, and analyze only the sampled

data to de-emphasize the dominance of the Astronomy & Astrophysics SC in the dataset.

Furthermore, many observations are similar to those discussed in the ‘‘Subject categories

as document labels’’ section; therefore, we will only mention in brief possible interdisci-

plinary connections that can be found by utilizing SCs.

5 For example, a cluster with SCs constituting 30, 18, 16 and 12 % of the abstracts would have three
dominant SCs.
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Fig. 7 The results of clustering
the conflated_SC_sampled
dataset in three separate trials.
Each abstract is assigned one of
15 clusters
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Fig. 8 The results of clustering
the conflated_SC_sampled
dataset in three separate trials.
Each abstract is assigned one of
20 clusters
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In Fig. 5, the clustering technique correctly collocates obviously similar SCs across all

trials, but also identifies some less obvious potential interdisciplinary connections. For

example, across all trials in Table 6 in the online supplement, 9 % of the abstract data

in Biochemistry & Molecular Biology-Multidisciplinary clusters with 11–14 % of the

abstracts in Geochemistry & Geophysics. Given a document corpus of relatively equal SC

distribution, as we have approximated here by the sampling process, these results suggest

that papers from different SCs that consistently cluster together should be targeted for

investigation by researchers interested in potential connections between the two fields.

Across all three trials at the 10 cluster level in Fig. 6, a single clearly dominant SC

could be identified in 27 of the 30 clusters. The Astronomy, Oceanography and Physics

SCs demonstrated somewhat less monodisciplinary dominance at the 10 cluster level; all

had roughly 20 % of their abstracts assigned to other clusters. The Geochemistry &

Geophysics and Environmental Sciences SCs demonstrated the most diversity apart from

the pure Multidisciplinary Sciences SC, though somewhat surprisingly, the Geochemistry

& Geophysics-Multidisciplinary SC appeared in fewer clusters than its core SC.

These findings yield several possible interpretations and applications. We would expect

all astrobiology researchers to publish and cite primarily within their home disciplines, but

as these results suggest, the norms of disciplinary diversity vary by field. A potential

application of this approach is a field-specific baseline metric of interdisciplinarity, a

method by which an individual’s research output can be compared to others in the same

field in terms of the potential interdisciplinary applicability of their work. This process

could also result in an aggregate metric of interdisciplinarity for research teams via their

past published work, while addressing the primary goal of discovering latent connections

between the work of diverse researchers for the present and future.

Analyzing the heterogeneous cluster membership of publications from diverse SCs is

one way to assess interdisciplinary research possibilities, but the probabilistic nature of this

method should be emphasized. A heterogeneous cluster could indicate that SCs are poor

document labels, or that the clustering level should be adjusted to better match the data and

metadata, or that a potential interdisciplinary relationship exists. In either case, this process

could inform targeted, iterative investigation.

Text mining the aggregated abstracts

The sIB technique was employed to cluster the abstracts of the publications by the UHNAI

team and the references within these publications. Fig. 9, shows the results of clustering

the data into five clusters. The results indicate that authors from their respective home

disciplines cluster together (see Table 3 for the list of authors and their respective home

disciplines). For example, the geologists Krot, Keil, Huss, Scott, and Jogo are strongly

represented in cluster 4. One exception is Taylor (geologist) who clusters with the

oceanographers (Cowen and Mottl). Additionally, Schörghofer (an astronomer by

departmental affiliation) also clusters with the oceanographers. Furthermore, the astro-

chemists (Bennett and Kaiser) have all of their publications in cluster 1. This result

suggests that the sIB technique is able to cluster similar research on a high level; however,

utilizing more clusters should provide a lower-level view of overlap in research interests

between the authors.

When running the sIB technique for 10 clusters, we begin to see where researchers may

find potential collaboration opportunities, and we observe which authors have specialized

or broad research interests. Research can be specialized but still integrate methods, tech-

niques and data from multiple disciplines. We believe that an author who is represented
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primarily in a single cluster may not be engaging frequently in interdisciplinary research,

or may be focusing on narrow research problems, or using similar research methods or

equipment. In Fig. 10, we see that the two astrochemists (Bennett and Kaiser) are entirely

represented by cluster 8, consistent with the results presented in Fig. 9. We know that their

research is heavily influenced by their experimental apparati, thus suggesting that the

experimental methods and apparati significantly affect the description of a research track.

Interestingly, Schörghofer’s research is on various planetary bodies such as Mars and the

Moon, which is also true of Taylor. Therefore, clustering the text of the aggregated

abstracts sufficiently illuminates similarities in research tracks across disciplinary bound-

aries, in this case, between astronomy and geology.

In Fig. 11, we observe that Huss, Jewitt, Krot and Meech’s research is found in many

clusters. This signifies that their research is likely to be very interdisciplinary. With regards

to those authors represented by a few clusters, we cannot conclude that their research is

absolutely mono-disciplinary, as it may be very specialized, or utilize the same methods or

apparati. However, we believe that those UHNAI authors with publications in multiple

clusters are more likely to be engaged in interdisciplinary research. In Fig. 12, we observe

that of the senior (non-postdoctoral fellows) astronomers (Reipurth, Meech, Jewitt, Hag-

highipour, Owen, Schörghofer), half (Meech, Jewitt, and Owen) are fairly diverse in their

research interests and the other half (Reipurth, Haghighipour, Schörghofer) are engaged in

specialized or mono-disciplinary research.

These results suggest that the sIB method, in combination with aggregated abstracts, can

illuminate areas of implicit commonality where the research areas of scientists from

Fig. 9 Clustering the aggregated_abstracts dataset using five clusters. This plot ensures that we are not
obtaining extremely unlikely correlations and shows that researchers from the same academic department
are largely clustering together. For example, Bennett is a post-doctoral fellow working with Kaiser; they
often publish together and their aggregated abstracts are clustering entirely in cluster 1. As another example,
the geologists/geophysists Krot, Keil, Huss, Scott and Jogo are all strongly represented in cluster 4. The one
exception is Taylor, who appears to be clustering more strongly with the two oceanographers (Cowen and
Mottl). As expected, researchers have the most in common with those in their home discipline
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diverse disciplines overlap. Furthermore, while clusters do not inherently relate any

information about a researcher’s discipline, it is clear that researchers from the same

department often cluster together. Therefore, we expect that performing a similar analysis

on the entire NASA Astrobiology Institute will show where collaborations between

researchers can occur, and can assist NASA with outlining research priorities. These results

can serve as the framework for a geospatial visualization of common yet unconnected

research tracks and potential collaborators, similar to the ‘‘hot regions’’ described by

Bornmann and Waltman (2011).

Discussion and conclusions

We clustered astrobiology abstract data to evaluate SCs as document labels. We attempt to

reconcile clustering (bottom-up approach) with pre-defined categories (top-down

approach). The clusters produced by text mining the abstract data did not generally cor-

respond well to the SCs. Therefore, we conclude that SCs are not well suited to the

classification of astrobiology publications, and speculate that this may also be true for other

interdisciplinary fields. One explanation is that astrobiology research outputs cite mono-

disciplinary and interdisciplinary publications which may prevent SCs from forming

cohesive clusters. Additionally, as discussed in Small (2010), many journals publish highly

diverse content, which no journal-level classification system could represent completely.

The class imbalance problem in our dataset requires us to explore utilizing an oversam-

pling technique. While we believe that the method remedies the skewed distribution of

conflated SCs in our dataset, performing a text mining clustering analysis on a balanced

Fig. 10 Clustering the aggregated_abstracts dataset using 10 clusters. The two oceanographers (Cowen
and Mottl) have all of their papers clustering together in cluster 5. The same is true of Bennett and Kaiser
(Astrochemistry). In the previous figure, Taylor was clustering with the oceanographers. However, we can
see here that Taylor’s work is similar to that of Schörghofer’s, despite their different home disciplines
(Geology and Astronomy respectively). Rather striking is the mono-disciplinarity regarding Reipurth’s
research
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astrobiology dataset without sampling may produce different results. That is, SCs may be

more accurate when the distribution of SCs is uniform without sampling using synthetic

data. Nonetheless, the distribution of departmental affiliations of the UHNAI researchers is

skewed, which affects the distribution of publications across different SCs; it is likely that

this scenario will be consistent with the other NASA Astrobiology Institute teams.

Our results suggest that 10 clusters may be the most appropriate level at which to

analyze the astrobiology collection (Fig. 6). Too few clusters and the interdisciplinary

diversity of the source documents is not well represented; too many and they may be

oversegregated, lessening the chance to identify potential commonalities in documents

from different disciplines and SCs. We suggest that when documents from different SCs

cluster together, this may indicate implicit interdisciplinary connection, where knowledge

in one field might inform another. Having researchers from the constituent disciplines

evaluate these common documents may provide one mechanism by which interdisciplinary

science can take place, and provide a starting point for potentially productive interdisci-

plinary collaborations.

Similarly, text mining the aggregated abstracts using the sIB method is also suited to the

task of finding collaboration opportunities. Our experiments consistently showed that

authors from the same academic department tended to have their publications cluster

together. If this were not the case, we would be unable to make any claims regarding the

similarity of publications within a given cluster. We suggest that authors whose publica-

tions cluster together could collaborate productively. An author that has publications in

many clusters indicates that they are engaged in interdisciplinary research, or perhaps

that they are not, but should be. Those authors with few publications were either

Fig. 11 Clustering the aggregated_abstracts dataset using 15 clusters. In this figure, Bennett and Kaiser are
no longer entirely represented by a single cluster. When we utilized five and 10 clusters, Binsted and Gazan
(Computer Science) and Freeland (Biology) had their publications cluster together. We know in particular
that the research by the computer scientists is likely to be the most dissimilar to all authors from other home
disciplines. However, when clustering with 15 clusters, we observe Binsted’s research depart from the
cluster that contains Gazan and Freeland’s research and that the research has a tangential relation to research
produced by other team members
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underrepresented in WoK and ADS, or were post-doctoral fellows at the UHNAI. We find

that the majority of publications by UHNAI investigators and post-doctoral fellows appear

in multiple clusters, providing evidence of actual or potential interdisciplinary research.

This is an encouraging result, as promoting boundary-crossing scientific research is one

of the goals of the NASA Astrobiology Institute. Younger generations of researchers

will need to synthesize techniques from multiple disciplines to answer some of the most

fundamental questions in science in general, and astrobiology in particular.

We insinuated that a strong conclusion cannot be made regarding those authors that are

strongly represented in a single cluster. Research in this context is either: (1) interdisci-

plinary but specialized, perhaps incorporating a synthesis between methods, techniques and

data from multiple disciplines, but with a narrow scope or (2) mono-disciplinary. Distin-

guishing between these two cases requires studying the individual works in each cluster.

Additionally, such an analysis would lead to narrowing the scope of collaboration between

two or more researchers that are found within a single cluster. This analysis will be

explored in future work.

The context of the interdisciplinary field of astrobiology has permitted us to explore a

method of measuring interdisciplinarity, and identify potential collaboration opportunities.

We find that most of the UHNAI team are engaged in interdisciplinary research, and that

our method suggests where productive interdisciplinary collaborations could occur. We

believe our method, which combines bibliometrics and machine learning, makes valid

predictions, based on our a priori knowledge of the structure of the research team and those

intra-team collaborations that currently exist. Bibliometric studies of interdisciplinarity can

Fig. 12 Clustering the aggregated_abstracts dataset using 20 clusters. If we assume that membership in
many clusters indicates a high degree of interdisciplinarity, Huss is the most interdisciplinary UHNAI team
member. Of the senior astronomers (Reipurth, Meech, Jewitt, Haghighipour, Owen, Schörghofer) half
(Meech, Jewitt, and Owen) are fairly diverse in their research interests, or engage in interdisciplinary research,
and the other half (Reipurth, Haghighipour, Schörghofer) are engaged in specialized or mono-disciplinary
research. As younger researchers, the UHNAI post-doctoral fellows appear to be engaging in interdisciplinary
research
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benefit when augmented with machine learning algorithms, in an attempt to understand the

fine-grained details of interdisciplinary research.
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