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Abstract Here we study the relationship between journal quartile rankings of ISI impact

factor (at the 2010) and journal classification in four impact classes, i.e., highest impact,

medium highest impact, medium lowest impact, and lowest impact journals in subject

category computer science artificial intelligence. To this aim, we use fuzzy maximum

likelihood estimation clustering in order to identify groups of journals sharing similar

characteristics in a multivariate indicator space. The seven variables used in this analysis

are: (1) Scimago Journal Ranking (SJR); (2) H-Index (H); (3) ISI impact factor (IF); (4)

5-Year Impact Factor (5IF); (5) Immediacy Index (II); (6) Eigenfactor Score (ES); and (7)

Article Influence Score (AIS). The fuzzy clustering allows impact classes to overlap,

thereby accommodating for uncertainty related to the confusion about the impact class

attribution for a journal and vagueness in impact classes definition. This paper demon-

strates the complex relationship between quartiles of ISI impact factor and journal impact

classes in the multivariate indicator space. And that several indicators should be used for a

distinct analysis of structural changes at the score distribution of journals in a subject

category. Here we propose it can be performed in a multivariate indicator space using a

fuzzy classifier.

Keywords Publication analysis � Quartiles of ISI impact factor � Journal classification �
Impact factor � SJR � Fuzzy clustering � Multivariate indicator space

Introduction

The research evaluation for different countries (e.g., Spain, Finland, Australia) is based on

quantitative performance indicators which have the added advantage of being more cost

efficient (OECD 2010; Butler 2004).
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At the sectoral (university, hospital, government), institutional, and even lower levels

of aggregation, such as faculties, departments, and researchers, the allocation of funds

earmarked for research is based on a formula encapsulating a number of performance

measures such as aggregate productivity counts and publication output (Butler 2004).

For example, since 1989 a research incentive system has existed in Spain, administered

by the National Commission for the Evaluation of Research Activity (CNEAI 2011).

Researchers were rewarded with salary bonuses for publishing in prestigious journals,

principally articles appearing in a relatively high position (approximately the top one third)

in ISIs Journal Citation Report lists by subject category (Jiménez-Contreras et al. 2003). In

Finland part of the funding for universities rests on publication points, weighted according

to the impact factor of the journals carrying the work (Adam 2002). While in the British

Research Assessment Exercise the link between research rankings and performance

measures, and hence funding, is less direct, they nevertheless play an important role in the

deliberations of the review panels (Butler 2004).

The idea is that with no attempt made to differentiate between the quality, visibility or

impact of the different journals when funding is allocated, there is little incentive to strive

for publication in a prestigious journal. In journal ranking models, the ranking score is a

numerical value assigned to a journal representing an indicator of its scientific prestige and

influence. An analysis of a country’s presence in the given journal ranking model is the first

step taken to investigate whether it is possible to demonstrate the apparent effect of the

introduction of any funding formulas. For this analysis, journals can be allocated to

quartiles based on a prestige indicator (e.g., the average citation per publication rates of the

publications they carried). Journal quartiles are the value of the boundary at the 25th, 50th,

or 75th percentiles of an ordered distribution of journal ranking scores divided into four

parts, each containing a quarter of the journal ranking scores. And the share of total

publications in each of the four quartiles is then tracked and studied over the full period of

time under analysis.

To this aim journal quartile rankings are derived for journals in each of their subject

categories according to which quartile of the score distribution the journal occupies for that

subject category. They can play an important role in performance-based funding of public

research.

For instance, using the ISI impact factor to represent the journal ranking score (Garfield

2006), quartile rankings are therefore derived for journals in each of their subject cate-

gories according to which quartile of the impact factor distribution the journal occupies for

that subject category, where Q1 denotes top 25% of the ISI impact factor distribution, Q2 a

middle-high position (between top 50% and top 25%), Q3 a middle-low position (top 75%

to top 50%), and Q4 bottom position (bottom 25% of the ISI impact factor distribution).

For example, the 2010 ISI impact factor for Scientometrics is 1.905. With this score the

journal ranks 22nd (out of 97 journals, Q1 quartile) in subject category computer science

interdisciplinary applications.

Giving the impact of performance-based funding schemes in countries like Spain and

others, it follows that quartile ranking validation can be a very important issue because it

needs to be established the soundness of journal quartile rankings for research evaluation

systems. That is, assuming that journal impact relates to the recognition of the originality

of research and its impact on the development of the same or related discipline areas from

the multivariate viewpoint of several journal ranking models (e.g., ISI impact factor, SJR

(González-Pereira et al. 2010), etc.), what is the link between quartile rankings and journal

impact? In particular, are there first quartile journals in a given subject category which are
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not of highest impact? And, which are the impact rankings of journals in the four quartiles

for a subject category?

In this paper we study the relationship between journal quartile rankings and unsu-

pervised statistical classification in four impact classes: Highest impact, medium highest

impact, medium lowest impact, and lowest impact journals. To this aim an unsupervised

classification algorithm is used to identify groups of journals sharing similar characteristics

in a multivariate indicator space, that is, a number of different indicators shall be used in

the analysis, e.g., SJR, H-index, ISI impact factor, Eigenfactor Score, Article Influence

Score, etc.

The objective of this study is to apply fuzzy clustering algorithms to identify impact

classes (in a multivariate indicator space) and to study their relationship with journal

quartile rankings. The fuzzy clustering algorithms allow impact classes to overlap, thereby

accommodating for uncertainty related to impact classes transition zones (i.e., the confu-

sion about the impact class attribution for a journal) and vagueness in impact classes

definition (e.g., what is a medium-lowest impact journal?). The resulting impact classes

will be optimal in the sense that the multivariate within impact class variance is minimal.

As a result, we will be able to study the occurrence of first quartile journals which are

not of highest impact as well as the occurrence of medium-highest impact journals which

are not in first quartile of ISI impact factor.

For example, the 2010 ISI impact factor for Pattern Recognition is 2.607. With this

impact factor the journal ranks 16th (out of 108 journals, Q1 quartile) in subject category

computer science artificial intelligence. And Pattern Recognition is found to be a medium

highest impact journal using fuzzy clustering to identify impact rankings (see ‘‘Results’’

section).

The 2010 ISI impact factor for Pattern Recognition Letters is 1.213. With this score the

journal ranks 62nd (out of 108 journals, Q3 quartile) in subject category computer science

artificial intelligence. But Pattern Recognition Letters is also found to be a medium-highest

impact journal using unsupervised classification (i.e., fuzzy clustering algorithms).

That is, two journals of different quartiles (Q1 and Q3) of ISI impact factor are both

allocated to the medium-highest impact class when using fuzzy clustering in a multivariate

indicator space (see ‘‘Results’’ section).

The setup of the paper is organized as follows: ‘‘Methods’’ section introduces study

subject category, multivariate indicator space, and unsupervised statistical classification.

‘‘Results’’ section reports the results of our analysis. ‘‘Conclusion’’ section concludes.

Methods

Study subject category and multivariate indicator space

Several metrics based on citation counts have been developed to evaluate the impact of

scholarly journals (van Raan 2004), one of which, the impact factor published by Thomson

Scientific (also called ISI impact factor) (Garfield 2006), has been the dominant measure

for ranking a journal’s impact, which is used by research institutions, policy makers, and

journal editors alike.

The impact factor, often abbreviated IF, is a measure reflecting the average number of

citations to articles published in science and social science journals. It is frequently used as

a proxy for the relative importance of a journal within its field, with journals with higher

impact factors deemed to be more important than those with lower ones. The impact factor
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was devised by Eugene Garfield (Garfield 2006), the founder of the Institute for Scientific

Information (ISI), now part of Thomson Reuters. Impact factors are calculated yearly for

those journals that are indexed in Thomson Reuter’s Journal Citation Reports.

Even though most evaluators stick to some form of the traditional impact factor, one of

the earliest proposals was a weighted measure for journals developed by Pinski and Narin

(1976). There are other exceptions like analyses carried out by Liebowitz and Palmer

(1984), Palacios-Huerta and Volij (2004), Kalaitzidakis et al. (2003) and Kodrzycki and

Pingkang (2006), who rank economic journals using an iterative procedure.

A recent trend is aimed to develop metrics which represent scientific impact as a

function not of just the quantity of citations received but of a combination of the quantity

and the quality (Palacios-Huerta and Volij 2004; Bollen et al. 2006; Ma et al. 2008;

Bergstrom 2007). In particular, Rousseau et al. (2009) applies an alternative approach to

the measurement of scholarly quality which summarizes the incidence, intensity, and

inequality of these journals’ highly cited articles.

The SCImago Journal Rank (SJR) (González-Pereira et al. 2010), presents an indicator

of ‘‘journal prestige’’ (Bollen et al. 2006), that belongs to a new family of indicators based

on eigenvector centrality. The SJR indicator is a size-independent metric aimed at mea-

suring the current ‘‘average prestige per paper’’ of journals for use in research evaluation

processes. It has already been studied as a tool for evaluating the journals in the Scopus

database, compared with the Thomson Scientific Impact Factor and shown to constitute a

good alternative for journal evaluation (Leydesdorff et al., 2010).

The Eigenfactor Score calculation is based on the number of times articles from the

journal published in the past 5 years have been cited in the JCR year, but it also considers

which journals have contributed these citations so that highly cited journals will influence

the network more than lesser cited journals (Journal Citation Reports 2011). References

from one article in a journal to another article from the same journal are removed, so that

Eigenfactor Scores are not influenced by journal self-citation.

The Article Influence determines the average influence of a journal’s articles over the

first 5 years after publication (Journal Citation Reports 2011). It is calculated by dividing a

journal’s Eigenfactor Score by the number of articles in the journal, normalized as a

fraction of all articles in all publications. This measure is roughly analogous to the 5-Year

Journal Impact Factor in that it is a ratio of a journal’s citation influence to the size of the

journal’s article contribution over a period of 5 years.

The H-index is an index that attempts to measure both the productivity and impact of

the published work of a scientist or scholar. The index is based on the set of the scientist’s

most cited papers and the number of citations that they have received in other people’s

publications. The index can also be applied to the productivity and impact of a department

or university or country or journal. The index was suggested by Jorge E. Hirsch, a physicist

at UCSD, as a tool for determining theoretical physicists’ relative quality (Hirsch 2005),

and is sometimes called the Hirsch index or Hirsch number. In our analysis, the H-index

expresses the journal’s number of articles (h) that have received at least h citations over the

whole periode. To compute the H-index for each journal in a subject category we simply

follow the values given in the SCImago Journal and Country Rank portal (available at:

http://www.scimagojr.com).

An immediacy index is a measure of how topical and urgent work published in a

scientific journal is. Along with the better known impact factor measure, it is calculated

each year by the Institute for Scientific Information for those journals which it indexes;

both impact factors and immediacy indices are published annually in the Journal Citation

Reports (2011).
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In this study we analyse the relationship between journal quartile rankings of ISI impact

factor (at the 2010) in subject category computer science artifical intelligence and journal

classification in four impact rankings (i.e., highest impact, medium highest impact, med-

ium lowest impact, and lowest impact). To this aim, we use unsupervised statistical

classification in order to identify groups of journals sharing similar characteristics in a

multivariate indicator space. The seven variables used in this analysis are: (1) Scimago

Journal Ranking (SJR); (2) H-Index (H); (3) ISI impact factor (IF); (4) 5-Year Impact

Factor (5IF); (5) Immediacy Index (II); (6) Eigenfactor Score (ES); (7) Article Influence

Score (AIS).

The last 5 variables are taken from the SCI JCR produced by Thompson Reuters ISI and

derived off its Science Citation Index. The first two are produced by SCImago and derived

off Scopus produced by Elsevier. The indicator scores are standardised to [0, 1] by a linear

stretch between the minimum and maximum score values. Standardisation ensures that

each of the indicators is equally weighted as no prior information about the relationships

between the indicators and the journals of subject category computer science artificial

intelligence was here assumed.

Part of the datasets (SJR and H scores) was retrieved from the website SCImago Journal

and Country Rank portal (SCImago portal 2011). The rest of the data was retrieved from

the website Journal Citation Reports (2011) Thomson Reuters. The data were downloaded

in June–July 2011.

Thompson Reuters ISI is a US company, Elsevier is a European company, and SCImago

is a Spanish research group, which is influential in Spain and Latin America. Journal

coverage of the SCI and Scopus is based on different principles, and this–possibly the

different national perspectives of the producers—influences the variables being input into

our model. The former coverage is based on sociometric, elitist principles, whereas the

latter aims to be more comprehensive. Information on this coverage can be obtained from

the Web sites of the companies, where they discuss their respective products. It can be of

interest to point out that SCImago uses Google PageRank to construct its measures.

Fuzzy k-means classification

The fuzzy k-means clustering algorithm is an unsupervised classification algorithm

designed to identify groups of samples sharing similar characteristics in a multivariate

feature space (Dunn 1973). Even though it is an extension to the k-means algorithm (Duda

et al. 2001), the fuzzy k-means allows class clusters to overlap, thereby accommodating for

uncertainty related to journal impact ranking transition zones and vagueness in journal

impact definition. The clusters are optimal in the sense that the multivariate within cluster

variance is minimal.

Small variance implies that all journals have similar indicators, which means a high

density and small distance between them in multivariate indicator space. Large variance is

equivalent to low density and large distances in multivariate space. An optimal cluster

procedure will identify these dense spots in multivariate indicator space as class centres,

while the boundaries between classes in multivariate indicator space should be located in

the lowest density regions.

Hence the main aim of such a unsupervised clustering is to subdivide a complex

continuous multivariate indicator space into a set of clusters. Unsupervised clustering

algorithms do not attach meaningful class labels to these clusters (as opposed to supervised

classifiers).
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In our problem, journal impact relates to the recognition of the originality of research

and its impact on the development of the same or related discipline areas from the mul-

tivariate viewpoint of seven indicators (i.e., IF, 5IF, II, ES, AIS, SJR, H). And we are

interested in the link between journal quartile rankings and an unsupervised statistical

classification in four impact classes: Highest impact, medium highest impact, medium

lowest impact, and lowest impact journals. But although the central concepts of journal

impact classes may be clearly defined, often for subject categories it is difficult to avoid

overlap in both impact class definitions and in the values of key indicators.

There fuzzy classification may be successfully applied in a given subject category to

overcome the problem of impact class overlap. The method serves as an unsupervised

exploratory technique that suggests how best to divide a collection of journals (using a

multivariate indicator space) into meaningful groups, both in terms of the number of

impact classes and their definition.

The fuzzy k-means algorithm applies an iterative procedure that starts with an initial

allocation of the journals to be classified into impact class clusters.

Let Q1 be top 25% of ISI impact factor distribution for subject category under analysis;

Q2 be middle-high position (between top 50% and top 25%); Q3 be middle-low position

(top 75% to top 50%); and Q4 bottom position (bottom 25% of ISI impact factor distri-

bution. To obtain an initial allocation we proceed as follows: Q1 journals are allocated to

highest impact class; Q2 journals to medium-highest impact class; Q3 to medium-lowest

impact class; and finally, Q4 journals to lowest impact class.

Given a cluster allocation, the centre of each cluster (in terms of indicator values) is

calculated as the weighted mean of the journal indicator values, also known as the centroid.

Reallocation of the centroids proceeds by iteration until a stable solution is reached where

the algorithm has found the optimal locations of the cluster centres and where the locations

of the centroids do not change.

This process is also referred to as convergence of the fuzzy k-means and can be

measured by the changes in impact class allocation to each journal. When the algorithm

has converged, each journal in subject category can be classified according to their dis-

tances to the impact class centroids (Dunn 1973; Duda et al., 2001).

The similarity of a journal to each one of the four impact classes is expressed by a

membership value. Let uk i be the membership probability of the ith journal of ISI impact

factor distribution to the kth class cluster (where k = 1, 2, 3, 4 is for highest impact,

medium highest impact, medium lowest impact, and lowest impact class cluster, respec-

tively), which is defined as:

uki ¼
d2

ki

� � 1
q�1

P4
p¼1 d2

pi

� � 1
q�1

ð1Þ

where dpi is the distance between the indicator values of journal ith and cluster centre p in

multivariate indicator space and q is the fuzziness exponent representing the degree of

impact class overlap. Generally the Euclidean distance from a sample vector to a cluster

mean is taken to be the similarity criterion. It induces hyperspherical clusters. Hence it can

only detect clusters with the same shape and orientation.

The degree to which a journal in the original ISI impact factor distribution belongs to an

impact class is expressed not in terms of a binary yes or no but by a continuous mem-

bership value that ranges between 0 and 1, where 1.0 indicates perfect similarity with the

impact class centroid.
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The parameter q [ 0 is the fuzzy exponent determining the amount of overlap in the

impact class model. A value close to 1.0 results in a classification with discrete impact

class boundaries (which is similar to the k-means output).

A very large value of q, q ? ?, results in fully overlapping impact class clusters, i.e.,

uki = 1/4 for k ¼ 1; . . .; 4: Values between 1.5 and 3.0 are commonly found in literature,

but a value of 2.0 is most widely used (McBratney and Odeh 1997; McBratney et al. 1992;

Burrough and McDonnell 1998; Fisher and Wood 1998).

The fuzzy k-means algorithm computes with the standard Euclidean distance norm,

which induces hyperspherical clusters. Hence it can only detect clusters with the same

shape and orientation since it assumes that clusters are hyperspherical with similar radii.

But impact class clusters can be more irregularly shaped and have different sizes.

Fuzzy maximum likelihood estimation clustering

To circumvent the limitations of the fuzzy k-means, we have chosen the method of Gath

and Geva (1989), sometimes referred to as fuzzy maximum likelihood estimation (FMLE).

Unlike many other clustering algorithms, FMLE can accommodate elongated clusters and

clusters of widely varying memberships, both of which may be encountered for journals in

the multivariate indicator space, since it allows for ellipsoidal clusters of arbitrary extent.

The fuzzy cluster memberships uk i calculated using the FMLE algorithm are posterior

probabilities which can be used for post classification processing as follows.

Let N be the number of journals in a given subject category under analysis (e.g.,

computer science artificial intelligence). Membership values are assigned to each ith
journal so that all values sum to 1.0:

X4

k¼1

uki ¼ 1; i ¼ 1; � � � ; N: ð2Þ

In Eq. 1 the impact class membership uk i is replaced by the posterior probability

P(k|gi), following Bayes’ Theorem. The posterior probability is dependent on the condi-

tional probability P(gi|k) of observing the value gi if it belongs to impact class k. The

conditional probability is taken to be a multivariate normal density function. The FMLE

clustering algorithm now replaces the Euclidean distance (of the fuzzy k-means) by the

directionally-sensitive Mahalanobis distance (Bezdek and Dunn 1975):

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgi � mkÞT s�1

k ðgi � mkÞ
q

ð3Þ

where mk is the cluster mean and sk is the fuzzy covariance matrix defined as:

sk ¼
PN

i¼1 ukiðgi � mkÞðgi � mkÞTPN
i¼1 uki

ð4Þ

The membership value for a journal i to impact class cluster k is now defined as:

uki ¼
1
ffiffiffiffiffiffiffi
jskj

p exp
�1

2
ðgi � mkÞT s�1

k ðgi � mkÞ
� �

Nk

N
ð5Þ

where Nk is the number of journals for impact class k and N is the total number of journals

in subject category; this ratio is calculated as 1
N

PN
i¼1 uki:
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For the FMLE algorithm, the covariance matrix sk and the mean mk of impact class

k define its location and ellipsoidal extent in the multivariate indicator space given by the

seven variables used in this analysis (i.e., Scimago Journal Ranking; H-Index; ISI impact

factor; 5-Year Impact Factor; Immediacy Index; Eigenfactor Score; Article Influence

Score).

In this study, we apply the FMLE algorithm as implemented in Abonyi et al. (2011).

Because of the exponential distance dependence of the fuzzy cluster membership, the

algorithm is very sensitive to initialization conditions, and can even become unstable. To

avoid this problem we follow the suggestion of Gath and Geva (1989), and first obtain

initial values for the membership values uki by preceding the calculation with the fuzzy

k-means algorithm (see ‘‘Fuzzy k-means classification’’ section), for which the class

memberships can be chosen to follow an inverse square law. That is, it is recommended to

use the resulting partition matrix of fuzzy k-means to initialize the FMLE algorithm.

As the membership values are a new continuous attribute, the distribution of these

values for each journal impact class can be displayed by conventional methods of mapping

providing useful information on classification uncertainty (e.g., see Figs. 2, 3, 4, 5, 6).

Results

Here we show the analysis performed upon subject category computer science artificial

intelligence. Figure 1 shows the journal quartile ranking of ISI impact factor for artificial

intelligence. Table 1 (second column) describe the numbers used in Fig. 1 to represent

each journal of artificial intelligence (i.e., ranking by ISI impact factor).

Our analysis is based on the multivariate indicator space described in ‘‘Study subject

category and multivariate indicator space’’ section, and thus, the seven variables used in

this analysis are: (1) Scimago Journal Ranking (SJR); (2) H-Index (H); (3) ISI Impact

0 27 54 81 108
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3
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6

Q
1

Q
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Q
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Q
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ISI Impact Factor
Computer Science Artificial Intelligence

Fig. 1 Journal quartile ranking of ISI impact factor in computer science artificial intelligence
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Table 1 Subject category computer science artificial intelligence

Quartile Ranking (IF) Abbreviated journal title Impact class Membership values

u1i u2i u3i u4i

Q1

1 IEEE T PATTERN ANAL HI 1.0000 0.0000 0.0000 0.0000

2 INT J COMPUT VISION HI 1.0000 0.0000 0.0000 0.0000

3 IEEE T EVOLUT COMPUT MHI 0.0000 1.0000 0.0000 0.0000

4 SIAM J IMAGING SCI HI 1.0000 0.0000 0.0000 0.0000

5 MED IMAGE ANAL HI 1.0000 0.0000 0.0000 0.0000

6 INT J NEURAL SYST MHI 0.0000 1.0000 0.0000 0.0000

7 INT J INF TECH DECIS MLI 0.0000 0.0041 0.9959 0.0000

8 COMPUT LINGUIST MHI 0.0000 1.0000 0.0000 0.0000

9 J MACH LEARN RES HI 1.0000 0.0000 0.0000 0.0000

10 IEEE COMPUT INTELL M MHI 0.0000 1.0000 0.0000 0.0000

11 J WEB SEMANT MHI 0.0000 1.0000 0.0000 0.0000

12 IEEE T FUZZY SYST MHI 0.0000 1.0000 0.0000 0.0000

13 IEEE T SYST MAN CY B MHI 0.0000 1.0000 0.0000 0.0000

14 EVOL COMPUT MHI 0.0000 1.0000 0.0000 0.0000

15 IEEE T NEURAL NETWOR MHI 0.0000 1.0000 0.0000 0.0000

16 PATTERN RECOGN MHI 0.0000 1.0000 0.0000 0.0000

17 IEEE T IMAGE PROCESS MHI 0.0000 1.0000 0.0000 0.0000

18 IEEE INTELL SYST MHI 0.0000 0.9318 0.0682 0.0000

19 ARTIF INTELL MHI 0.0000 1.0000 0.0000 0.0000

20 COMPUT VIS IMAGE UND MHI 0.0000 1.0000 0.0000 0.0000

21 NEURAL COMPUT HI 1.0000 0.0000 0.0000 0.0000

22 J AUTOM REASONING MLI 0.0000 0.0095 0.9905 0.0000

23 CHEMOMETR INTELL LAB MHI 0.0000 0.6418 0.3582 0.0000

24 DECIS SUPPORT SYST MHI 0.0000 1.0000 0.0000 0.0000

25 ARTIF LIFE MLI 0.0000 0.0033 0.9967 0.0000

26 AUTON AGENT MULTI-AG MLI 0.0000 0.0032 0.9961 0.0007

27 IEEE T SYST MAN CY C MLI 0.0000 0.0290 0.9710 0.0000

Q2

28 APPL SOFT COMPUT MLI 0.0000 0.1209 0.8791 0.0000

29 AUTON ROBOT MLI 0.0000 0.0673 0.9327 0.0000

30 KNOWL INF SYST MLI 0.0000 0.0000 1.0000 0.0000

31 MACH LEARN MHI 0.0000 0.9999 0.0001 0.0000

32 NEURAL NETWORKS MHI 0.0000 1.0000 0.0000 0.0000

33 EXPERT SYST APPL MHI 0.0000 1.0000 0.0000 0.0000

34 IEEE T KNOWL DATA EN MHI 0.0000 1.0000 0.0000 0.0000

35 DATA KNOWL ENG MLI 0.0000 0.0014 0.9986 0.0000

36 J ARTIF INTELL RES MLI 0.0000 0.0301 0.9699 0.0000

37 INT J APPROX REASON MLI 0.0000 0.0015 0.9985 0.0000

38 INT J SEMANT WEB INF MLI 0.0000 0.0007 0.9992 0.0001

39 INT J INNOV COMPUT I MLI 0.0000 0.0000 1.0000 0.0000

40 J HEURISTICS MLI 0.0000 0.0040 0.9960 0.0000

41 INFORM FUSION MLI 0.0000 0.0008 0.9992 0.0000

42 KNOWL-BASED SYST MLI 0.0000 0.0005 0.9992 0.0003

43 ARTIF INTELL MED MLI 0.0000 0.0008 0.9992 0.0000
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Table 1 continued

Quartile Ranking (IF) Abbreviated journal title Impact class Membership values

u1i u2i u3i u4i

44 INTEGR COMPUT-AID E MLI 0.0000 0.0024 0.9976 0.0000

45 IMAGE VISION COMPUT MHI 0.0000 0.8602 0.1398 0.0000

46 SOFT COMPUT MLI 0.0000 0.0069 0.9931 0.0000

47 J AMB INTEL SMART EN LI 0.0000 0.0001 0.0103 0.9896

48 MACH VISION APPL MLI 0.0000 0.0003 0.9796 0.0201

49 INT J COMPUT INT SYS MLI 0.0000 0.0001 0.9999 0.0000

50 NEUROCOMPUTING MHI 0.0000 1.0000 0.0000 0.0000

51 CONSTRAINTS MLI 0.0000 0.0004 0.9979 0.0017

52 ADV ENG INFORM MLI 0.0000 0.0002 0.9998 0.0000

53 J CHEMOMETR MLI 0.0000 0.0003 0.9997 0.0000

54 INT J FUZZY SYST MLI 0.0000 0.0002 0.9997 0.0001

Q3

55 COMPUT SPEECH LANG MLI 0.0000 0.0000 1.0000 0.0000

56 ENG APPL ARTIF INTEL MLI 0.0000 0.0004 0.9996 0.0000

57 INT J INTELL SYST LI 0.0000 0.0017 0.0893 0.9090

58 ROBOT AUTON SYST MLI 0.0000 0.0014 0.9986 0.0000

59 J MATH IMAGING VIS MLI 0.0000 0.0115 0.9885 0.0000

60 DATA MIN KNOWL DISC MHI 0.0000 1.0000 0.0000 0.0000

61 KNOWL ENG REV LI 0.0000 0.0002 0.2473 0.7526

62 PATTERN RECOGN LETT MHI 0.0000 1.0000 0.0000 0.0000

63 GENET PROGRAM EVOL M MLI 0.0000 0.0007 0.9980 0.0013

64 ADAPT BEHAV MLI 0.0000 0.0004 0.9996 0.0000

65 NEURAL PROCESS LETT LI 0.0000 0.0000 0.0000 1.0000

66 J INTELL MANUF LI 0.0000 0.0000 0.0044 0.9956

67 PATTERN ANAL APPL LI 0.0000 0.0000 0.0042 0.9958

68 CONNECT SCI LI 0.0000 0.0000 0.0010 0.9990

69 INT J DOC ANAL RECOG LI 0.0000 0.0000 0.0155 0.9845

70 ACM T AUTON ADAP SYS MLI 0.0000 0.0026 0.9971 0.0003

71 COGN SYST RES MLI 0.0000 0.0000 1.0000 0.0000

72 J REAL-TIME IMAGE PR LI 0.0000 0.0000 0.0633 0.9367

73 NETWORK-COMP NEURAL MLI 0.0000 0.0054 0.9946 0.0000

74 MECHATRONICS MLI 0.0000 0.0010 0.9990 0.0000

75 APPL INTELL LI 0.0000 0.0000 0.0013 0.9987

76 J INTELL INF SYST LI 0.0000 0.0000 0.0000 1.0000

77 INT J UNCERTAIN FUZZ LI 0.0000 0.0000 0.0000 1.0000

78 AI COMMUN LI 0.0000 0.0000 0.0000 1.0000

79 INT J AP MAT COM-POL LI 0.0000 0.0000 0.0000 1.0000

80 J INTELL ROBOT SYST LI 0.0000 0.0000 0.0000 1.0000

81 EXPERT SYST LI 0.0000 0.0000 0.0000 1.0000

Q4

82 COMPUT INTELL-US LI 0.0000 0.0000 0.0000 1.0000

83 FUZZY OPTIM DECIS MA LI 0.0000 0.0000 0.0000 1.0000

84 ADV ELECTR COMPUT EN LI 0.0000 0.0000 0.0003 0.9997

85 INT J PATTERN RECOGN LI 0.0000 0.0000 0.0000 1.0000
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Factor (IF); (4) 5-Year Impact Factor (5IF); (5) Immediacy Index (II); (6) Eigenfactor

Score (ES); (7) Article Influence Score (AIS).

One problem encountered is the absence of some indicator score in a particular

dimension for a journal. To overcome this obstacle, the absent indicator value for jth
journal was calculated by averaging the indicator scores of the immediate fj� n; . . .; j�
1; jþ 1; . . .; jþ ng neighborhood journals (sorted by ISI impact factor) at the dimension of

interest; where n was set to 3 for this research.

In order to analyse the relationship between journal quartile rankings of ISI impact

factor (at the 2010) in subject category computer science artifical intelligence and journal

classification in four impact classes (i.e., highest impact, medium highest impact, medium

lowest impact, and lowest impact), we firstly apply the FMLE algorithm to identify groups

of journals sharing similar characteristics in the multivariate indicator space.

Figure 2 shows the four impact classes (i.e., highest, medium-highest, medium-lowest,

and lowest impact) which were obtained using the FMLE classifier in the multivariate

indicator space, as given in ‘‘Fuzzy maximum likelihood estimation clustering’’ section. As

said above, Table 1 (second column) describe the numbers used in Figs. 2, 4, 5, and 6 to

represent each journal of artificial intelligence (ranking by ISI impact factor).

Table 1 continued

Quartile Ranking (IF) Abbreviated journal title Impact class Membership values

u1i u2i u3i u4i

86 J EXP THEOR ARTIF IN LI 0.0000 0.0000 0.0000 1.0000

87 J INTELL FUZZY SYST LI 0.0000 0.0000 0.0029 0.9971

88 AI EDAM LI 0.0000 0.0000 0.0000 1.0000

89 INF TECHNOL CONTROL LI 0.0000 0.0000 0.0000 1.0000

90 MIND MACH LI 0.0000 0.0000 0.0000 1.0000

91 NEURAL COMPUT APPL LI 0.0000 0.0000 0.0000 1.0000

92 APPL ARTIF INTELL LI 0.0000 0.0000 0.0000 1.0000

93 AI MAG LI 0.0000 0.0000 0.0000 1.0000

94 NEURAL NETW WORLD LI 0.0000 0.0000 0.0000 1.0000

95 IET COMPUT VIS LI 0.0000 0.0000 0.0002 0.9998

96 ARTIF INTELL REV LI 0.0000 0.0000 0.0000 1.0000

97 ANN MATH ARTIF INTEL LI 0.0000 0.0000 0.0000 1.0000

98 INTELL DATA ANAL LI 0.0000 0.0000 0.0000 1.0000

99 MALAYS J COMPUT SCI LI 0.0000 0.0000 0.0000 1.0000

100 COMPUT INFORM LI 0.0000 0.0000 0.0000 1.0000

101 J MULT-VALUED LOG S LI 0.0000 0.0000 0.0000 1.0000

102 INT J ARTIF INTELL T LI 0.0000 0.0000 0.0000 1.0000

103 TURK J ELECTR ENG CO LI 0.0000 0.0000 0.0000 1.0000

104 INT J SOFTW ENG KNOW LI 0.0000 0.0000 0.0000 1.0000

105 J COMPUT SYS SC INT? LI 0.0000 0.0000 0.0000 1.0000

106 INTELL AUTOM SOFT CO LI 0.0000 0.0000 0.0000 1.0000

107 TRAIT SIGNAL LI 0.0000 0.0000 0.0000 1.0000

108 INT ARAB J INF TECHN LI 0.0000 0.0000 0.0000 1.0000

Relationship between journal quartile rankings of ISI impact factor (at the 2010) in subject category computer
science artificial intelligence and journal classification in four impact classes
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The problem is that even though the fuzzy clustering always tries to find the best fit for a

fixed number of clusters (four clusters in our problem) and the parameterized cluster

shapes (the FMLE clustering allows for hyperellipsoidal forms of the clusters), however

this does not mean that even the best fit is meaningful at all. To evaluate whether the fuzzy

Fig. 2 Journal impact classes for artificial intelligence

Fig. 3 Journal impact classes for Q1 journals of artificial intelligence
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Fig. 4 Journal impact classes for Q2 journals of Artificial Intelligence

Fig. 5 Journal impact classes for Q3 journals of Artificial Intelligence
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partition fits to the journal data (i.e., cluster validity), we used the Partition Coefficient

(PC) (Bezdek and Dunn 1975), that measures the amount of overlapping between clustersP
k (
P

i (uki)
2)/N [as implemented in Abonyi et al. (2011)].

Fig. 6 Journal impact classes for Q4 journals of Artificial Intelligence

Table 2 Impact class differences with respect to results in Table 1, when using only five indicators: IF, 5IF,
II, ES, AIS

Subject category: Computer science artificial intelligence

Quartile Ranking
(IF)

Abbreviated journal title Impact
class

Membership values

u1i u2i u3i u4i

Q1

5 MED IMAGE ANAL MHI 0.000000 1.000000 0.000000 0.000000

7 INT J INF TECH DECIS MHI 0.000000 0.998684 0.001316 0.000000

9 J MACH LEARN RES MHI 0.000000 1.000000 0.000000 0.000000

21 NEURAL COMPUT MHI 0.000000 1.000000 0.000000 0.000000

Q2 47 J AMB INTEL SMART EN MLI 0.000000 0.000496 0.999432 0.000072

Q3

57 INT J INTELL SYST MLI 0.000000 0.004199 0.995556 0.000245

61 KNOWL ENG REV MLI 0.000000 0.001423 0.997613 0.000964

70 COGN SYST RES MHI 0.000000 0.985627 0.014373 0.000000

72 J REAL-TIME IMAGE PR MLI 0.000000 0.000475 0.652520 0.347005
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Table 3 Impact class differences with respect to results in Table 1, when using only one indicator: IF

Subject category: Artificial intelligence

Quartile Ranking
(IF)

Abbreviated journal title Impact
class

Membership values

u1i u2i u3i u4i

Q1

3 IEEE T EVOLUT COMPUT HI 1.000000 0.000000 0.000000 0.000000

6 INT J NEURAL SYST HI 0.999997 0.000003 0.000000 0.000000

7 INT J INF TECH DECIS MHI 0.000319 0.999068 0.000000 0.000613

9 J MACH LEARN RES MHI 0.000010 0.998721 0.000000 0.001269

21 NEURAL COMPUT MHI 0.000000 0.929318 0.000000 0.070682

22 J AUTOM REASONING MHI 0.000000 0.911508 0.000000 0.088492

25 ARTIF LIFE MHI 0.000000 0.758531 0.000000 0.241469

26 AUTON AGENT MULTI-AG MHI 0.000000 0.725677 0.000000 0.274323

27 IEEE T SYST MAN CY C MHI 0.000000 0.699493 0.000000 0.300507

Q2

28 APPL SOFT COMPUT MHI 0.000000 0.689747 0.000000 0.310253

29 AUTON ROBOT MHI 0.000000 0.528011 0.000000 0.471989

30 KNOWL INF SYST MHI 0.000000 0.501523 0.000000 0.498477

31 MACH LEARN LI 0.000000 0.395332 0.000000 0.604668

32 NEURAL NETWORKS LI 0.000000 0.392962 0.000000 0.607038

33 EXPERT SYST APPL LI 0.000000 0.321858 0.000000 0.678142

34 IEEE T KNOWL DATA EN LI 0.000000 0.176621 0.000000 0.823379

35 DATA KNOWL ENG LI 0.000000 0.049480 0.000000 0.950520

36 J ARTIF INTELL RES LI 0.000000 0.037327 0.000000 0.962673

39 INT J INNOV COMPUT I LI 0.000000 0.027656 0.000000 0.972344

40 J HEURISTICS LI 0.000000 0.017323 0.000000 0.982677

41 INFORM FUSION LI 0.000000 0.014212 0.000000 0.985788

42 KNOWL-BASED SYST LI 0.000000 0.009735 0.000000 0.990265

43 ARTIF INTELL MED LI 0.000000 0.009061 0.000000 0.990939

44 INTEGR COMPUT-AID E LI 0.000000 0.007384 0.000000 0.992616

45 IMAGE VISION COMPUT LI 0.000000 0.005380 0.000000 0.994620

46 SOFT COMPUT LI 0.000000 0.004585 0.000000 0.995415

48 MACH VISION APPL LI 0.000000 0.003040 0.000000 0.996960

49 INT J COMPUT INT SYS LI 0.000000 0.002749 0.000000 0.997251

50 NEUROCOMPUTING LI 0.000000 0.001611 0.000000 0.998389

51 CONSTRAINTS LI 0.000000 0.001261 0.000000 0.998739

52 ADV ENG INFORM LI 0.000000 0.001107 0.000000 0.998893

53 J CHEMOMETR LI 0.000000 0.000820 0.000000 0.999180

54 INT J FUZZY SYST LI 0.000000 0.000673 0.000000 0.999327

Q3

55 COMPUT SPEECH LANG LI 0.000000 0.000597 0.000000 0.999403

56 ENG APPL ARTIF INTEL LI 0.000000 0.000530 0.000000 0.999470

58 ROBOT AUTON SYST LI 0.000000 0.000349 0.000000 0.999651

59 J MATH IMAGING VIS LI 0.000000 0.000136 0.000000 0.999864

60 DATA MIN KNOWL DISC LI 0.000000 0.000125 0.000000 0.999875

62 PATTERN RECOGN LETT LI 0.000000 0.000088 0.000000 0.999912

63 GENET PROGRAM EVOL M LI 0.000000 0.000046 0.000000 0.999954
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The PC index values range in [1/nc, 1], where nc is the number of clusters. The closer

to unity the index the crisper the clustering is, and thus, the closer this value is to one the

better the journal data are classified (Bezdek and Dunn 1975). In case that all membership

values to a fuzzy partition are equal, that is, 1/nc, the PC obtains its lower value. Thus, the

closer the value of PC is to 1/nc, the fuzzier the clustering is. Furthermore, a value close to

1/nc indicates that there is no clustering tendency in the considered dataset or the clustering

algorithm failed to reveal it.

To the fuzzy partition for subject category computer science artificial intelligence

(following ‘‘Fuzzy maximum likelihood estimation clustering’’ section), we have that

PC = 0.9797, and consequently, it indicates that journals of artificial intelligence (at 2010)

were well classified in four impact clases using the FMLE algorithm.

For each one of the four quartiles of ISI impact factor (2010), Figs. 3, 4, 5, and 6

illustrate the fuzzy classification results in a map that shows the continuous spatial vari-

ation of the impact class membership values. Table 1 (five column) present the mem-

bership probabilities for each journal. The coordinates (xi, yi) used to locate the ith journal

of ISI impact factor (at the 2010) on impact classes maps (showed in Figs. 2, 4, 5, 6) are

calculated as given by:

xi ¼
X4

k¼1

uki � cosððk � 1Þ � 45�Þ ð6Þ

and

yi ¼
X4

k¼1

uki � sinððk � 1Þ � 45�Þ ð7Þ

with uki being the membership probability of the ith journal of ISI impact factor distri-

bution to the kth class cluster (where k = 1, 2, 3, 4 is for highest impact, medium

highest impact, medium lowest impact, and lowest impact class cluster, respectively).

From the membership values we can derive a hard classification by assigning the impact

class label with the maximum membership value to each journal. This step is known as

defuzzification. The resulting impact class label [i.e., Highest Impact (HI), Medium

Highest Impact (MHI), Medium Lowest Impact (MLI), and Lowest Impact (LI)] are also

illustrated in Table 1 (four column), for each journal in subject category computer science

artificial intelligence (at 2010).

Now, from the four maps (for Q1, Q2, Q3 and Q4) illustrated in Figs. 3, 4, 5, and6, we

can give a response to the initial points of interest: What is the link between quartile

Table 3 continued

Subject category: Artificial intelligence

Quartile Ranking
(IF)

Abbreviated journal title Impact
class

Membership values

u1i u2i u3i u4i

64 ADAPT BEHAV LI 0.000000 0.000029 0.000000 0.999971

70 COGN SYST RES LI 0.000000 0.000004 0.000000 0.999996

71 ACM T AUTON ADAP SYS LI 0.000000 0.000004 0.000000 0.999996

73 NETWORK-COMP NEURAL LI 0.000000 0.000002 0.000000 0.999998

74 MECHATRONICS LI 0.000000 0.000002 0.000000 0.999998
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rankings of ISI impact factor and journal impact classes? Are there Q1 journals in a given

subject category which are not of highest impact? and so on.

Only six Q1 journals of ISI impact factor were allocated to the highest impact class:

Journals #1, #2, #4, #5, #9, and #21. It is interesting to note that Neural Computation

ranks 21-st (out of 108 journals, Q1 quartile) in subject category computer science artificial

intelligence.

Regarding the occurrence of Q1 journals in artificial intelligence which are not of higher

impact, we have that five Q1 journals of ISI impact factor were allocated to the medium

lowest impact class: Journals #7, #22, #25, #26, and #27.

For example, Int. J. Inf. Tech. Decis. ranks 7th (Q1 quartile of ISI impact factor); while

it ranks 90th (Q4 quartile of SJR), 88th (Q4 quartile of Article Influence), and 84th (Q4

quartile of H-index).

From Table 1, it also follows the occurrence of medium-highest impact journals which

are not in first quartile of ISI impact factor. In particular Data Min. Knowl. Dis. ranks 60th

(Q3 quartile of ISI impact factor) and Pattern Recogn. Lett. ranks 62nd (Q3 quartile of ISI

impact factor). And Data Min. Knowl. Dis. and Pattern Recogn. Lett. are both allocated to

the medium-highest impact class when using fuzzy clustering in a multivariate indicator

space.

It is interesting to point out that Data Min. Knowl. Dis. ranks 18th (Q1 quartile of

5-years impact factor), 19th (Q1 quartile of Immediacy Index), 16th (Q1 quartile of Article

Influence), and 17th (Q1 quartile of SJR).

Also, Pattern Recogn. Lett. ranks 8th (Q1 quartile of Eigenfactor Score), and 17th (Q1

quartile of H-index).

There exists another interesting result regarding Q2 journals of ISI impact factor. From

Table 1 we have that a Q2 journal of ISI (J. Amb. Intel. Smart En.) is allocated to the

lowest impact class in the multivariate space. In fact, J. Amb. Intel. Smart En. ranks 93-rd

(Q4 quartile of Immediacy Index), 100th (Q4 quartile of Eigenfactor Score), and 69th (Q3

quartile of Article Influence).

The fuzzy clustering algorithms allow impact classes to overlap, thereby accommo-

dating for uncertainty related to impact classes transition zones (i.e., the confusion about

the impact class attribution for a journal) and vagueness in impact classes definition (e.g.,

what is a medium-lowest impact journal?). The resulting impact classes will be optimal in

the sense that the multivariate within impact class variance is minimal.

Multidimensional clustering provides an elegant method for flexible, continuous, and

automatic clustering of journals in a subject category along multiple dimensions (using

several prestige indicators). This can result in significant improvements in the performance

of research evaluation. That is, multidimensional clustering enables a subject category to

be physically clustered on more than one indicator, or dimension, simultaneously.

Journal prestige indicators play an important role in the deliberations of the review

panels and have the added advantage of being more cost efficient. With multidimensional

clustering, these benefits are extended to more than one dimension, or prestige indicator. In

the case of journal performance analysis involving any, or any combination of, specified

dimensions (indicators) will benefit from multidimensional clustering.

Regarding the number of dimensions (prestige indicators) used to produce the fuzzy

classification, here we consider indicators with different degrees of correlation among

them, but which should be used for a distinct analysis of structural changes at the score

distribution of journals in each subject area. In fact the seven prestige indicators were

proposed in the Literature to this aim, and all of them are actually used to perform the

journal ranking (Journal Citation Reports 2011; SCImago portal 2011). In any case,
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multidimensional fuzzy clustering provides a panel of experts with an automatic tool which

can be used to objectively rank the journals in Artificial Intelligence or any other subject

category in multidimensional space involving any combination of prestige indicators.

For instance, Table 2 shows impact class differences with respect to results in Table 1,

when using only five indicators: IF, 5IF, II, ES, AIS. And, even though we delete Scimago

indicator (SJR) from the original seven indicators, the resulting classification was not quite

different from what showed in Table 1. By the contrary, when using only one prestige

indicator (impact factor) to perform the fuzzy classification, the resulting classification

would be quite different as illustrated in Table 3.

Conclusions

From the results in Table 1 it follows the occurrence of both first quartile journals (of ISI

impact factor) which are not of highest impact class as well as of medium-highest impact

journals which are not in first quartile of ISI impact factor.

As can be seen from Table 1 and Fig. 6, all the Q4 journals of ISI impact factor were

allocated to the lowest impact class. Hence we can conclude the link between Q4 of ISI

impact factor and lowest impact class using the fuzzy classifier in the multivariate indicator

space, at least in subject category computer science artificial intelligence.

Also, from Table 1 and Fig. 5, it follows the link between Q3 of ISI impact factor and

two different impact classes: Medium-lowest impact and lowest impact class.

Table 1 and Fig. 4 show the link between Q2 of ISI impact factor and two different

impact classes, that is, medium lowest and medium highest impact class.

And Table 1 and Fig. 3 illustrate the complex relationship between Q1 of ISI impact

factor and journal impact classes in the multivariate indicator space: Q1 journals are

allocated to three different impact classes (highest impact, medium highest impact and

medium lowest impact class).

To sum up, this analysis shows that the quartile ranking of journals is a complex field.

The results of cross journals comparisons depend on the chosen indicator (i.e., ISI impact

factor, SJR, H-Index, Eigenfactor Score, etc). Therefore several indicators should be used

for a distinct analysis of structural changes at the score distribution of journals in a subject

category. Here we have proposed that it can be performed in a multivariate indicator space

using a fuzzy classifier.

We are developing a publicly available suite of Web-based tools designed to facilitate

analysis of subject categories using the proposed approach. It will be freely available to the

scientific community at: http://cvg.ugr.es/scientometrics.
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