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Networks of scientific journals:
An exploration of Chinese patent data

XIA GAO,? JIANCHENG GUANP

& School of Management, Beijing University of Aeronautics and Astronautics, Beijing, P.R. China
b School of Management, Fudan University, 200433 Shanghai, P.R. China

We apply social network analysis to display the characteristics of the networks resulting from
bibliographic coupling of journals by the Chinese patent data of United States Patent and
Trademark Office (USPTO) between 1995 and 2002. The networks of journals in all fields, the
three strongly science-based fields (i.e. Biotechnology, Pharmaceuticals, and Organic Fine
Chemistry), and the three weakly science-based fields (i.e. Optics, Telecommunications, and
Consumer Electronics), have been analyzed from the global and the ego views, respectively. We
study a variety of statistical properties of our networks, including number of actors, number of
edges, size of the giant component, density, mean degree, clustering coefficient and the
centralization measures of the network. We also highlight some apparent differences in the
network structure between the subjects studied. Besides, we use the three centrality measures, i.e.
degree, closeness, and betweenness, to identify the important journals in the network of all fields
and those strongly science-based networks.

Introduction

Current society has become increasingly technology-driven and knowledge-based.
Science and technology are often viewed as closely related, at times interacting systems.
The role of science and relationship to technology has been a matter of great interest in
policy makers and research communities. A substantial body of research has
investigated the link between science and technology in a quantitative and especially
bibliometric manner.

In these studies, patents and publications has been widely used as proxy output
indicators of technological and scientific activity, respectively. Based on the various
facets of linkages shown by these indicators, interactions between science and
technology have been interpreted. Tracing publication activity of firms can throw some
light on the industrial science connection [BHATTACHARYA & MEYER, 2003].
Identifying all patents that are owned by universities as well as patented technology
invented by at least one university researcher can illuminate the technological aspects of
scientific activity. Besides, tracing science/technology links includes the study of
scientific articles authored in industry [GODIN, 1993, 1995], co-authored publications
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by industry and academe [CHONG & AL., 2003] and patents cited in the scientific
literature [GLANZEL & MEYER, 2003]. However, the majority of the quantitative
contributions focus on analyzing the scientific literature cited in patents, so-called non-
patent references (NPRs). This approach of patent citation analysis was pioneered by
CARPENTER & NARIN [1983], and NARIN & NOMA [1985], and has become the most
popular method to determine the interplay between science and technology [VERBEEK
& AL., 2002; MEYER, 2006; GUAN & HE, 2007]. MEYER [2000] pointed out that citation
links between patents and papers signify, if not explicitly, at least implicitly the
contribution of science to technology. The non-patent references in patent documents
were deemed as indicator of “science-intensity or science proximity of patents” [VAN
Looy & AL., 2003; CALLAERT & AL., 2006; VAN LOOY & AL., 2006].

The relationship between science and technology as a complex interplay between
them is now more acceptable. The different forms of direct and indirect contributions
science makes to technology, and vice versa, pose challenges to the measurement of
science—technology exchange [MEYER, 2006]. Social network analysis (SNA) proved to
be a promising method for understanding the complex relations between various actors,
such as industry and academe, inventors within organizations, organizations with
regions, and so forth. This approach was developed mainly by sociologists and
researchers in social psychologists, and further developed in collaboration with
mathematics, statistics and physicists. It can be used for identifying the structures in
social systems based on the relations among the system’s components rather than the
attributes of individual cases [LATOUR, 1987; OTTE & ROUSSEAU, 2002; WASSERMAN
& FAUST, 1994]. Extensive empirical and theoretical studies on social network analysis
have been carried out. Some recent examples include the work of NEWMAN [2001A,
20018, 2001c], who studied a variety of statistical properties, nonlocal statistics and the
structure of scientific collaboration networks. GIRVAN & NEWMAN [2002] explored the
property of community structure in social and biological networks. BALCONI & AL.
[2004] focused on the specific role of academic inventors in different technological
classes based on the Italian networks of inventors. METCALFE [2006] discovered the
indirect connections between industry and the academy as seen through sponsorship
relations between corporations and associations. CANTNER & GRAF [2006] described
the evolution of the innovator network of Jena, Germany during the period from 1995 to
2001. INOUE & AL. [2007] analyzed the network of Japanese patents, especially
focusing on its spatial characteristics.

There is an evident difference as compared bibliometric analysis or patent citation
analysis with Social network analysis (SNA). Social network analysis is not a formal
theory in sociology but rather a strategy for investigating social structures [OTTE &
ROUSSEAU, 2002]. The traditionally individualistic approach, such as bibliometric
analysis or patent citation analysis, considers only properties of individual actors
without taking the behavior of others into consideration. In SNA, however, the
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relationships between actors become the first priority, and individual properties are only
secondary [OTTE & ROUSSEAU, 2002]. KNOKE & KUKLINSKI [1982] pointed out that
individual characteristics as well as relational links are necessary in order to fully
understand social phenomena.

In the case of GUAN & HE [2007], they applied patent citation analysis to explore
the characteristics and pattern of the linkage between science and technology in China,
based on Chinese patent data of United States Patent and Trademark Office (USPTO)
during 1995-2004. In this paper, we combine patent citation analysis with SNA to
further investigate the interaction between science and technology in China. The
analysis is mainly focused on networks resulting from bibliographic coupling of
journals by the Chinese patent data of United States Patent and Trademark Office
(USPTO) between 1995 and 2002. The bibliographic coupling technique is often used
to construct the connections between the studied objects. (e.g., [EGGHE & ROUSSEAU,
2002; HUANG & AL 2003; AHLGREN & JARNEVING, 2008]) There have been some
studies on journal networks. MARTINSONS & AL. [2001] studied the network of journals
in the field of strategic management and showed this field has entered the mainstream
of social science. LEYDESDORFF & ZHOU [2007] constructed the network of journals,
which is based on the Journal Citation Reports of the Science Citation Index, and
delineated a core set of nanotechnology journals and a nanotechnology-relevant set.
LEYDESDORFF [2007A] proposed that the betweenness centrality is an indicator of the
interdisciplinarity of journals, and then used it to a variety of citation environment.
There is a common property in these studies: journal networks are generated on journal-
to-journal citation environment. However, in this paper we expect to construct the
network of journals using the data of patents, and further explore the properties of the
network of journals from the global and ego views, respectively.

Data and journal networks

Patents provide information on patent citations, namely citations to scientific
references as well as patents. NPRs comprise a variety of documents, such as journal
articles, conference papers, technical papers, text books, technical bulletins, abstracting
services, and so on. We call journal articles and conference papers as scientific NPRs.
Those scientific NPRs are appropriate proxy to indicate and quantify the relation
between technological inventions to scientific research [GRUPP, 1996; GRUPP & AL.,
1996; LEYDESDORFF, 2004; GUAN & HE, 2007]. On the other hand, in order to
investigate the structure of journal networks resulting from patent data, special attention
will be paid to journal articles, especially journal publications covered by Science
Citation Index (SCI).

Scientometrics 80 (2009) 285



GAO & GUAN: Networks of scientific journals: An exploration of Chinese patent data

We use data on patents that were applied for at USPTO and disclosed between 1995
and 2002. To include all patents that are relevant to China, we filtered out all patents
where there is at least one of Chinese inventors on the patent at the time of application.
Here we only focus on utility patents because they represent the progress of technology
and more closely connect to scientific research. Altogether we could identify 2546
utility patents, covering 5361 scientific NPRs. 3560 out of 5361 scientific NPRs are SCI
journal papers, distributing on 724 SCI journals. Thus, we set up a patent-journal
database, which is composed of patent numbers and their corresponding SCI journals.

The patent-journal database permits us to construct a network of SCI journals, based
upon Chinese patent data from USPTO. The following hypothetical example illustrates
the main idea (see Figure 1).

Patents ———» a B Y

Papers > 1@ 3\>\<§ ® [J RCINC)
_ \/ ./ \

Journals ———» (A B © O ® F G

Figure 1. Bipartite graph representation of the network of scientific journals

Let us suppose we face nine papers [1-9], coming from three different patents (e, /5,7).
Nine papers have been produced by seven journals (A-G). So, for example, patent
ahas five scientific references of journal papers [1-5], deriving from four different
journals (A-D). Besides, journal B is responsible for two papers [2, 3]. More precisely,
patent « is produced on a scientific base comprising journals A-D. A reasonable
assumption to make at this point is that non-patent citations within a patent can be taken
as “representative for the scientific base of the citing patents” [PAVITT & SOETE, 1980].
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Due to the providers of the scientific source for a common citing patent, the four
journals are ‘linked’ to each other by such knowledge relation. The existence of such
linkage can be graphically represented by drawing an undirected arrow between each
pair of journals, as shown on the bottom part of Figure 1. The size of the node
corresponds to the citation times that each journal obtains within the citation
environment of patents. The width of the lines corresponds to the strength of the
relation between each pair of nodes, namely, linked times between each pair of journals.
Repeating the same exercise for each group of journals, we end up with a map
representing the network of linkage among all journals. In other words, we obtain the
undirected networks of scientific journals pertaining to Chinese patent data during the
period of 1995-2002. Our networks are generated by the bibliographic coupling of
journals by patents. We call them journal networks in the remainder of the article.

Empirical results

Social network analyses include two main forms: the ego network analysis, and the
global network analysis. In ego network analyses the network of one person is analyzed.
In global analyses one tries to find all relations between the participants in the network
[OTTE & ROUSSEAU, 2002]. In this section we mainly view the networks from ‘global’
and ‘ego’ perspectives, respectively.

Global view of the networks

In the following, we first identify eleven scientific oriented technological fields, and
then focus our attention to the three strongly science-based fields and another three
weakly science-based fields. Next, pertaining to the network of all fields and the
networks of the above six technologies we study a variety of statistic properties of the
networks, including number of actors, number of edges, size of the giant component,
density, mean degree, clustering coefficient and the centralization of the network.

Bibliometric description of science intensive technologies

It is now more accepted that some technologies are strongly related to scientific
development and others where this relatedness is more tenuous [ VERBEEK & AL., 2002].
The science connection strongly differentiates between technological sectors and yet
tenuously between countries [GRUPP, 1996]. Using the scientific non-patent references
(NPRs) within the Chinese patents from USPTO between 1995 and 2002, GUAN & HE
[2007] investigate the science-technology linkage in eleven scientific oriented
technological fields specified by OECD [2004] and the Fraunhofer Gesellschaft-
Institute fiir Systemtechnik und Innovationsforschung (FhG-ISI, Germany). Based on
their empirical research, we can obtain two findings. First of all, for China the
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difference of science intensity between technologies becomes obvious. Second, there is
a gap between a ‘cluster’ of strongly science-based technologies (i.e. biotechnology,
pharmaceuticals, and organic fine chemistry) and a ‘cluster’ of weakly science-based
technologies (i.e. optics, telecommunications, and consumer electronics). Hence, we
pay special attention to the above six technological domains.

Table 1 summarizes the science intensity and SCI-journal counts pertaining to all
technology fields in total and the above six fields, namely Biotechnology,
Pharmaceuticals, Organic Fine Chemistry, Optics, Telecommunications, and Consumer
Electronics in the studied period. In terms of the science intensity, i.e. number of
scientific references cited per patent, the average Science Intensity in all technology
fields is 2.1. The science intensity for the six technologies varies from a high of 12.29 to
a low of 0.46. Biotechnology, Pharmaceutical and Organic fine chemistry distinguish
them with very high degree of Science Intensity, which are all far higher than the
average level. We call these three fields as the strongly science-based fields. On the
contrary, as for the fields of Optics, Telecommunication and Consumer Electronics, the
values of Science Intensity are all lower than the average level, less than 1.0.
Similarly, these three fields are named as the weakly science-based fields. Besides,
among the selected fields, Pharmaceutical takes the first position with 2092 scientific
references to patents, including 844 papers distributed on the 319 journals covered by
SCI. On the other hand, the least scientific literatures are observed in Consumer
Electronics, only including 42 scientific references to patents. 15 out of them are
published on the 13 journals indexed by SCI. It is obvious that the scientific journals
covered by SCI are skewed distributed in the selected technological areas.

Table 1. Science intensity and SCI-journal counts, by technology fields, 1995-2002

Technological Patent Scientific Science SCI SClI-journal

fields counts NPRs Intensity NPRs counts
All technology fields 2546 5361 2.1 3560 724
Biotechnology 85 1045 12.29 477 201
Pharmaceutical 206 2092 10.16 844 319
Organic fine chemistry 202 1674 8.29 653 263
Optics 115 71 0.62 27 25
Telecommunications 137 74 0.54 15 14
Consumer Electronics 92 42 0.46 15 13

Source: USPTO database (http://www.uspto.gov)

Remarks: Scientific NPRs includes journal articles and conference papers. SCI NPRs denote papers covered
by Science Citation Index (SCI). Science intensity is the ratio between the number of patents and the total
number of Scientific NPRs registered at USPTO between 1995 and 2002.

It is interesting to explore the characteristics of journal networks generated by all
fields and the selected six technological areas.
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General properties of journal networks

The general properties of the Chinese network of SCI journals are summed up in
Table 2, both for the overall network and for the six nested network, each of them built
by considering only the utility patents belonging to specific technological fields such as
Biotechnology, Pharmaceuticals, Organic Fine Chemistry, Optics, Telecommunications,
and Consumer Electronics. Besides, in the following sub-sections we only consider
networks without loops and multiple lines.

Table 2. Networks of scientific journals from Chinese patent data, by technology fields,1995-2002

. e Organic Fine . Telecom- Consumer

All fields Biotechnology Pharmaceuticals Chemistry Optics munications Electronics
Number of journals 724 201 319 263 25 14 13
Number of links 7634 1844 4126 3007 61 1 9
connecting journals
Number of journals
with no links to any 47 2 7 4 3 3 5
other journals
Number of components 55 4 11 8 7 7 7
Density 0.0297 0.0917 0.0813 0.0873 0.2033 0.1209 0.1154
Largest component
Diameter 7 4 5 6 1 1 2

o

E}‘t‘;‘)bz'“fﬁgnﬁs"; the 662 197 304 253 10 4 5
component (91.43) (98.01) (95.30) (96.20) (40.00) (28.57) (38.46)
Mean degree 21.09 18.34 25.86 22.87 4.88 1.5714 1.3846
clustering coefficient 0.0425 0.0809 0.0916 0.0941 0.52 0.4286 0.2949
Average distanceamong 5 75 2.147 22446 22842 1.0896 i 13077

reachable pairs

We first notice that the number of actors and edges across networks differ widely.
The network in all fields has considerably 724 actors and 7634 edges. The networks for
those strongly science-based fields i.e. Biotechnology, Pharmaceuticals, Organic Fine
Chemistry, own no less 200 actors and 1800 edges while those of weakly science-based
fields i.e. Optics, Telecommunications, and Consumer Electronics, have extremely low
number of actors and edges. Thus the networks can be divided into three groups,
namely the network of all fields, strongly science-based networks (Biotechnology,
Pharmaceuticals, and Organic Fine Chemistry) and weakly science-based networks
(Optics, Telecommunications, and Consumer Electronics).

The size of components for those networks varies from 55 to 4. Measuring the size
of groups of connected journals in each network, we find that in the network of all
fields and strongly science-based networks, the largest component fills more than 90%
of all journals, especially the giant component of Biotechnology network containing
about 98% of all journals. It appears that the largest components we mentioned above
are as big as or bigger than the giant components of scientific collaboration networks
identified by NEWMAN [2001A]. The figure of more than 90% for the size of the largest
component is a promising one. It indicates that vast majority of journals are connected
via knowledge relations. On the other hand, in weakly science-based networks, the
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fraction is smaller and no less than 40% of total size of the network. This occurred
because that there are less vertices and edges, and more isolated vertices in those
weakly science-based networks. NEWMAN [2001A; 2001C] has pointed out that with
increasing density of edges in a graph, a ‘giant component’ forms, i.e., a connected
subset of vertices whose size scales extensively. The diameter of the largest component
(i.e. the length of the largest geodesic between any pair of nodes) gives rough indication
of how effective in the network is in linking pairs of journals in the component. Such
diameters measure less than 7 in all of networks. Particularly in the network of all fields
and those strongly science-based networks, the diameters of the giant components are
still small, despite the large size of the components. Another more precise indicator of
the efficiency in communication path is the average distance among all reachable pairs
of journals in a network. The average distance between all reachable pairs of journals
for each of the networks studied here is all less than 3. Even in the relatively large
network such as the network of all fields and strongly science-based networks, it takes
an average of only about three or two steps to reach a randomly chosen journal from
any other of the network. The existence of a large giant component, as discussed above,
allow ‘information’ to reach most members of the network faster.

The density of the journal networks also varies across technologies. The density of
those weakly science-based networks is higher than that of other networks. The possible
reason is that the density of a network depends on the size of the network. Average
degree of all actors is another indicator of measuring the structure cohesion of a
network, which is independent of the size of a network. As shown in Table 2, the
average degree of the network is the highest in Pharmaceutical, followed by Organic
Fine Chemistry. This implies that the possibility for two journals in the Pharmaceutical
field to get in touch through a chain of patents is much higher than in other fields,
despite the much larger size of the network they are embedded in. Another structure
measure for a network is the overall clustering coefficient. In Table 2, we can see that
three is a very strong clustering effect in Optics: two journals have a 50% or greater
possibility of being connected if both have connected with the third journal. The
network of all fields and the three strong science-based networks all possess much
lower values of the clustering coefficient than the weakly science-based networks.

Centralization of journal networks

The concepts of centrality and centralization are two of the oldest concepts in social
network analysis. Here we focus on the network centralization, which mainly includes
degree centralization, closeness centralization and betweenness centralization. The
centralization of a network is higher if it contains very central vertices as well as very
peripheral vertices. It can be computed from the centrality scores of the vertices within
the network: more variation in centrality scores means a more centralized network [DE
NooY & AL., 2005].
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The centralization of journal networks is presented in Table 3. In terms of the degree
centralization and betweenness centralization, the Biotechnology network has the
highest values of centralization among all networks. It should be pointed out that
closeness centrality cannot be calculated on a network, which is not fully connected.
Here the closeness centralization is computed on the giant component of each network.
The value of closeness centralization for the Biotechnology network is also highest
except for the Consumer Electronics. Overall, it suggests that the Biotechnology
network is the most centralized in all networks. This means in the Biotechnology
network there is a clear boundary between the center and the periphery. On the contrary,
the Telecommunication is the least centralized in that it has lowest values of
centralization among all networks. More precisely, the values of betweenness
centralization and closeness centralization are zero. This occurred because that the
variation of the centrality scores of the vertices is zero.

Table 3. Three indicators of centralization in scientific journal networks

Centralization All fields Biotechnology Pharmaceuticals Organic Fine Optics Telecom Consumer
Chemistry munication Electronics
Degree 0.3952 0.6699 0.5384 0.5659 0.1866 0.1282 0.2576
Betweeness 0.1467 0.3636 0.1453 0.1646 0.0217 0 0.0606
Closeness™ 0.4508 0.6835 0.5622 0.532 0 0 0.7778

Remarks: *: Closeness centralization is calculated for the largest component (i.e. giant component).

Ego view of the networks

Most social networks contain people or organizations that are central. Ego network
analysis recognizes the position of nodes by virtue of their relation to other nodes. The
concept of centrality is based on the simple idea that information may easily reach
actors who are central in the given network. In other words, if social relations are
channels that transmit information between individual actors, central actors are those
have better access to information or may control the spread of information. The most
important centrality measures of vertices are: degree centrality, closeness centrality and
betweenness centrality. On the other hand, from the above global analysis of the
networks we find that networks for all fields, Biotechnology, Pharmaceuticals, Organic
Fine Chemistry are highly connected and the size of the networks are relatively large,
containing more actors and edges. On the contrary, the size of networks for Optics,
Telecommunications, and Consumer Electronics is far small, including less actors
(journals) and edges. In this sub-section, using these centrality measures, we expect to
find the relative prominent and more important actors (journals) in different networks.
Therefore, we pay more attentions to the networks of large size, namely the network of
all fields and those strongly science-based networks. In addition, we expect those
important journals to differ across technological fields. Findings for these centrality
measures across technological fields are discussed below, with descriptive statistics
shown from Table 4 to Table 9.
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Centrality measures for the network of all fields

Before conducting the analysis, we take a close look at the difference between these
centrality measures. Degree centrality and closeness centrality rests on the idea of the
reachability of an actor within a network. More precisely, if you are closer to the other
actors in the network, the paths that information has to follow to reach you are shorter,
so it is easier for you to get information [DE NOOY & AL., 2005]. In a simple undirected
network, if we consider direct neighbors of a vertex only, degree centrality is a simple
measure of centrality. If we also take into account of indirect contact, we use closeness
centrality, which is based on the total distance between one vertex and all other vertices.
The importance of a vertex to the circulation of information is captured by the concept
of betweenness centrality. This indicator qualifies who the most influential actors in the
network are, the ones who control the flow of information between most others
[NEWMAN, 2001B].

Table 4 provides the top 10 journals using the three centrality measures in the
network of all technological fields. We first examine degree centrality and closeness
centrality (see first fourth column in Table 4). As shown in Table 4, those journals with
high degree centrality can be roughly expected to have also a high closeness centrality.
As compared the first column with the third column, we find that the set for the degree
almost overlaps with closeness, and the two sets differ only by a single journals: the
Cell is included in the first set, and the Journal of the Chemical Society belongs to the
latter. More precisely, nine of ten journals occur on both lists, and the order of the top
four journals is the same. Degree centrality shows a highest value for the Proceedings
of the National Academy of Sciences of the United States of America (PNAS). Nature is
surpassed on this indicator by Science, which has a value of 0.3831.

Table 4. Top 10 journals on three indicators of centrality in all technology fields

Degree Closeness Betweenness
PNAS 0.4232 PNAS 0.6092 Science 0.1484
Science 0.3831 Science 0.5998 PNAS 0.1217
Nature 0.2960 Nature 0.5693 Nature 0.1186
J. Biol. Chem. 0.2324 J. Biol. Chem. 0.5192 J. Am. Chem Soc. 0.0364
Biochemistry 0.2102 J. Am. Chem. Soc.  0.5188 Appl. Phys. Lett. 0.0350
J. Med. Chem. 0.2089 Cancer Res. 0.5148 Chem. Pharm. Bull. 0.0308
BBRC 0.1978 Biochemistry 0.5139 J. Org. Chem. 0.0290
Cancer Res. 0.1950 BBRC 0.5088 Cancer Res. 0.0288
J. Am. Chem. Soc. 0.1936 J. Med. Chem. 0.5072 J. Biol. Chem. 0.0256
Cell 0.1715 J. Chem. Soc. 0.4988 J. Med. Chem. 0.0198

More precisely, PNAS has a highest of 306 links to other journals, followed by Science
and Nature with 207 and 214 ties, respectively. These three journals can be understood
to share the most prominent position in the network in terms of relationships to others.
In terms of closeness centrality, the PNAS also occupy the first position with a score of
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0.6029, followed by Science and Nature, respectively. The closeness centrality of a
vertex is higher if the total distance to all other vertices is shorter. It suggests that it
takes the ‘minimum steps’ for the PNAS to reach other journals in the network. In terms
of betweenness, the main difference that is visible in Table 4 is the skewness of its
distribution as compared with the other two measures. Only a few journals have a high
betweenness centrality. The highest value for betweenness centrality among these
journals is the Science. Other journals follow with slightly lower values, among them
PNAS with 0.1217 and Nature with 0.1186. It implies that the Science is situated on the
geodesics between many pairs of vertices, so it is crucial to transmit the information
through the network. Besides, there are obvious differences from the top 10 list in
betweenness as compared with the top 10 lists in degree and closeness. For example,
Applied Physics Letters, which is frequently cited in ICT areas, occupies 5™ on the list
of betweenness, and it is not included in the two lists of the other centrality measures. It
is clear that the PNAS and Science have the highest centrality at global level, no matter
how one measures the indicator.

Table 5 provides the top 10 journals in terms of the paper citations in Chinese
patents of USPTO during the period of 1995 to 2002. The most frequently cited journal
is a Chemistry journal, i.e. Journal of Medicinal Chemistry, with 142 papers cited in
Chinese patents of USPTO. Closely followed journal is the PNAS, where 136 papers are
cited. Science and Nature are also frequently cited, taking the third and the fourth
positions, respectively. Similar findings for the three multidisciplinary journals have
been presented for the science-technology interactions in VERBEEK & AL. [2002] on
USPTO patents during 1992—1996. Besides, the Applied Physics Letters also appears on
this list.

As compared Table 4 with Table 5, we first find that the leading journal: Journal of
Medicinal Chemistry in Table 5 is ranked in the middle or on the bottom of the columns
in Table 4. Further analysis shows that multidisciplinary journals like the PNAS,
Science and Nature, all occur on those three columns in Table 4, and take the top
positions on these lists. Similar findings have also been presented in LEYDESDORFF
[2007] on 7379 journals, harvested from Journal Citation Report of the Science Citation
Index and the Social Sciences Citation Index 2004.

Besides, VERBEEK & AL. [2002] pointed out that the PNAS, Science and Nature also
frequently appear in USPTO patents during 1992-1996. It therefore suggests that in
most of the cases the PNAS, Science and Nature, the three famous multidisciplinary
journals, are read mostly by patent inventors and examiners. In other words, patent
inventors and examiners don’t read specialized journals that much. In addition, each of
columns in Table 4 and Table 5 includes relatively more Chemistry journals like
Journal of Medicinal Chemistry, Journal of Biological Chemistry, Journal of the
American Chemical Society and Journal of Organic Chemistry, and so on. It implies
that those Chemistry journals are also the important science base of the Chinese patents.
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Table 5. Top 10 journals ranked by paper citations of Chinese patents for all fields

Journals Paper citations Category

J. Med. Chem. 142 Chemistry, Medicinal

Proc. Natl. Acad. Sci. USA. 136 Multidisciplinary Sciences
Science 120 Multidisciplinary Sciences
Nature 90 Multidisciplinary Sciences

J. Biol. Chem. 60 Biochemistry & Molecular Biology
J. Am. Chem. Soc. 57 Chemistry, Multidisciplinary
Appl. Phys. Lett. 49 Physics, Applied

J. Org. Chem. 49 Chemistry, Organic

Cancer Res. 48 Oncology

Anal. Chem. 44 Chemistry, Analytical

Let us now turn back to the third row in Table 2. We find that 47 journals are
isolates, which means that there is no link with any other journals for the 47 journals.
The rest journals have more or less links with others. Next, we will take the link
strength between each pair of journals into account. If a patent cites journal A and
journal B, there is a link between A and B. Therefore, the link strength between journal
A and journal B is the times journal A has connected with journal B. In other words, the
number of patents citing journal A and B simultaneously, is the link strength between
journal A and journal B. In addition, ties between journals are so dense that links can
not be seen clearly. Therefore, we must omit large numbers of lines for clarity. Here, we
care much about those strongly connected edges, so we remove lines with value less
than 20 to obtain a clear sub-network, only including those strongly linked edges and
corresponding vertices.

Figure 2 provides the visualization of these strongly linked journals with line value
more than 20 for the network of all fields. The width of the lines corresponds to the
strength of the relation between each pair of nodes, namely, linked times between each
pair of journals. Visual inspection of Figure 2 suggests that these two journals (PNAS
and Science) are central in relating to other journals. The linkage between PNAS and
Science is the strongest among all links in the network, because the width of the line
between them is the thickest. More precisely, the value of line between PNAS and
Science is 70, which means that the PNAS and the Science are cited simultaneously by
70 patents. The link strength between Nature and Science is 50, with the second-
thickest line. The link strength between Nature and PNAS is similar to that of
Biochemistry and PNAS, tied for the third place. The above findings show that these
three journals, i.e. PNAS, Science, and Nature, are co-cited most frequently by patents.
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Nat. Genet.

Nucleic Acids Res. Bioorg. Med. Chem. Lett.

.BIOCHIM. Biophys. Acta Anal. Biochem.

Biochem. Biophys. Res. Comm,

J. Med. Chem.

Caricer Res.

J. Org. Chem.

Biotechniques

Tetrahedron Lett

Figure 2. Strongly linked journals with line value more than 20 for the network of all fields

Centrality measures for the network of the three strongly science-based fields

As mentioned above, the three fields, i.e. Biotechnology, Pharmaceutical and
Organic fine chemistry, are called as the strongly science-based fields. Next, we will
focus on the centrality measures of the three networks, reported from Table 6 to
Table 8, respectively.

For Biotechnology shown by Table 6, the set for the degree overlaps with closeness
except for the order of two journals, i.e. the Nucleic Acids Research and Nature are
different. Besieds, these two sets differ only by two journals from the list for
betweenness: the Biotechnology and Bioengineering and the Plant Physiology are
included in the latter set, instead, FEBS Letter and the Molecular Genetics and
Genomics are included in former two sets. Table 6 also shows a strong skewness in the
distribution of betweenness centrality as compared with the other two measures. Only
the PNAS has a high betweenness centrality of 0.3673, and others are all less than 0.1. It
therefore suggests that PNAS is more central in controlling the information due to its
position in the network. In terms of these three centrality measures, the first and the
second positions are all occupied by these two multidisciplinary journals, i.e. the PNAS
and Science, respectively.

Scientometrics 80 (2009) 295



GAO & GUAN: Networks of scientific journals: An exploration of Chinese patent data

Table 6. Top 10 journals on three indicators of centrality in the field of Biotechnology

Degree Closeness Betweeness
PNAS 0.755 PNAS 0.8133 PNAS 0.3673
Science 0.485 Science 0.6555 Science 0.0808
Nature 0.395 Nucleic Acids Res.  0.6164 Nucleic Acids Res. 0.0485
Nucleic Acids Res. 0.39 Nature 0.6164 Gene 0.0483
Gene 0.355 Gene 0.5994 Nature 0.0473
Cell 0.325 Cell 0.5921 J. Biol. Chem. 0.0395
Biotechniques 0.315 Biotechniques 0.5833 Biotechnol. Bioeng. 0.0386
J. Biol. Chem. 0.285 J. Biol. Chem. 0.5748 Plant Physiol. 0.0356
FEBS Lett. 0.26 FEBS Lett. 0.5681 Cell 0.0253
Mol. Genet. Gen. 0.24 Mol. Genet. Gen. 0.56 Biotechniques 0.0247

Table 7. Top 10 journals on three indicators of centrality in the field of Pharmaceutical

Degree Closeness Betweeness
PNAS 0.6163 PNAS 0.7354 PNAS 0.1484
J. Med. Chem. 0.4591 Science 0.6406 Chem. Pharm. Bull.  0.0703
Science 0.4528 J. Med. Chem. 0.6352 J. Med. Chem. 0.0624
BBRC 0.4339 BBRC 0.6273 Science 0.0603
J. Biol. Chem. 0.4308 J. Biol. Chem. 0.6171 Cancer Res. 0.0530
Nature 0.3836 Nature 0.6060 J. Biol. Chem. 0.0521
Cancer Res. 0.3584 Cancer Res. 0.6012 BBRC 0.0513
Biochemistry 0.327 Biochemistry 0.5771 Nature 0.0479
Chem. Pharm. Bull. ~ 0.3113 Cell 0.5739 Toxicon 0.0412
J. Am. Chem. Soc. 0.2987 Chem. Pharm. Bull. ~ 0.5695 J. Org. Chem. 0.0332

For Pharmaceutical shown by Table 7, the set for degree centrality overlaps with
closeness and these two sets differ only by a single journal: the Journal of the American
Chemical Society is included in the former, and the Cel/ is instead incorporated into the
latter. Besides, like the field of Biotechnology, the PNAS has the highest centrality at
global level, no matter which of the indicators is concerned. In terms of degree
centrality, the second is taken by the Journal of Medicinal Chemistry, followed by the
Science. Closeness centrality also shows a second highest value for the Science, which
is same as the closeness of the Biotechnology. The highest value of betweenness
centrality is again for the PNAS (0.1484), and other journals follow with significantly lower
values, among them the Chemical and Pharmaceutical Bulletin with 0.0703 places in the
second position. However, in terms of the other two centrality measures, the Chemical and
Pharmaceutical Bulletin is ranked on the bottom of the lists. The set for betweenness is
differ widely from the above two sets. It suggests that the three measures may indicate
different dimensions, but they do n