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Abstract Many authors have discussed the question why we should use the history of

mathematics to mathematics education. For example, Fauvel (For Learn Math, 11(2): 3–6,

1991) mentions at least fifteen arguments for applying the history of mathematics in

teaching and learning mathematics. Knowing how to introduce history into mathematics

lessons is a more difficult step. We found, however, that only a limited number of articles

contain instructions on how to use the material, as opposed to numerous general articles

suggesting the use of the history of mathematics as a didactical tool. The present article

focuses on converting the history of logarithms into material appropriate for teaching

students of 11th grade, without any knowledge of calculus. History uncovers that loga-

rithms were invented prior of the exponential function and shows that the logarithms are

not an arbitrary product, as is the case when we leap straight in the definition given in all

modern textbooks, but they are a response to a problem. We describe step by step the

historical evolution of the concept, in a way appropriate for use in class, until the definition

of the logarithm as area under the hyperbola. Next, we present the formal development of

the theory and define the exponential function. The teaching sequence has been success-

fully undertaken in two high school classrooms.

1 Introduction

The initial reason for teaching of logarithms was their usefulness in doing complicated

numerical calculations more quickly and easily. To this end many instructional hours were

spent on teaching the use of logarithmic tables. This reason no longer applies, since

calculators and computers have simplified the problem of calculations with large numbers.

So, reality has imposed a change of the objectives and content of teaching the unit on

logarithms. The computational part of the theory of logarithms was pushed aside. The

logarithmic tables, that for centuries were the tool for each serious calculation, have passed
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into history. As Guedj (1998: 503), professor of history of sciences at Paris VIII University,

says ‘‘even the Mathematics are getting old’’. The functional part of the concept has

progressed into the limelight. The study of the properties of the logarithmic and expo-

nential functions will always remains an important subject, because these functions

describe many natural and social phenomena, such as radioactive decay, evolution of

populations, and spread of contagious diseases.

Thus, textbooks, up to 25 years ago, began the introduction of logarithms with the

definition given by Leonard Euler (1707–1783) in his famous book Complete Introduction
to Algebra (St. Petersbourg 1770). Euler’s definition, in modern form, goes as follows: ‘‘If
x [ 0, the logarithm of x to base a (a [ 0, a = 1), is the real number y such that ay = x
and is symbolized with y = loga x’’ (Euler 1770/1984: 63–64).

In modern textbooks the above definition is usually repeated but they stress the func-

tional form of logarithms: ‘‘The base a logarithmic function (a [ 0, a = 1) is the inverse
of the base a exponential function. If f (x) = ax then f -1(x) = loga x’’ (e.g., Brown 1992:

193).

However, both then and now, we encounter the following difficulties and questions as

we teach this unit to 11th grade students:

• How can we explain the meaning of ax when x is irrational, so that the definition of

logarithm is understandable?

• How will we justify the exponential law ax � ay = ax?y, a law essential for the proof of

the logarithmic properties?

• How will we demonstrate that for each y [ 0 there is a number x such that ax = y?

• Why and how we were led to the definition of logarithm?

• While the term exponential function for f (x) = ax does appear justified, what is the

origin of the term logarithm?

• How were we led to the eminent number e % 2.7182 … as a limit of the sequence

(1 ? 1/n)n.

• Why the logarithms to base e named natural and why they are particularly useful in

comparison with others?

• How were logarithms calculated?

• Why should we continue teaching logarithms now that the initial reason for teaching

them no longer applies?

There is no simple way to address the first three questions and for the other ones it is

impossible to give an answer as long as we follow a treatment of logarithms in which the

initial grappling with the material has been obliterated; this is the case in several of the

schools textbooks I examined in preparing this paper. If we wish students to comprehend

the importance of the theory of logarithms we have to follow the history of its creation.

Katz (1995) and Fauvel (1995) have also recognized the importance of teaching logarithms

by using history and proposed some classroom activities.

We describe briefly the organization of this paper. In Sect. 2 of the paper we follow the

historical path to the creation of logarithms. The principal purpose in Sect. 2.1 is to

highlight the difficulty in doing the basic operations in early numerical systems but even in

the decimal system of today in the case of many-digits numbers. In Sect. 2.2 we establish a

correspondence between arithmetic and geometric progressions, from which arose the

concept of logarithm. We illustrate that computations with numbers appearing among the

terms of the geometric progression are greatly simplified by this correspondence.

The problem was that any two given numbers are unlikely to be found in any given

geometric progression. In Sect. 2.3 we present how Napier built a suitably dense geometric

2 E. N. Panagiotou

123



progression in order to be useful for practical computations and employed the key idea of

the above correspondence to construct his logarithmic tables. In Sect. 2.4 we discuss the

surprising connection between the logarithm and the hyperbola area noticed by de Sarasa

reading through a work of Gregory of St. Vincent. This recognition served to stimulate the

study of hyperbolic areas and these investigations led to the densest geometric progression

and turned logarithms from a practical to a theoretical tool.

In Sect. 3 we illustrate how to use the work of Gregory of St. Vincent on the hyperbola

y = 1/x to define natural logarithms and then derive their major algebraic properties. The

discussion also shows how the mysterious number e is determined as the limit of the

sequence (1 ? 1/n)n, n [ N in a quite natural way. In the end we use logarithms to define

the exponential function.

In the final section, we discuss some arguments and related goals in favour of teaching

logarithms via their history.

2 The Historical Path to the Creation of Logarithms

2.1 First Attempts to Convert Multiplication into Addition

Students may not appreciate how difficult it was in the past the problem of performing the

four arithmetic operations because we now have a suitable numerical system and there are

algorithms to perform the calculations. They recognize, perhaps, how laborious and boring

it is to perform multiplications and divisions with many-digits numbers and calculating

square and cubic roots, since these operations require a lot of time and are prone to error.

However, no operation poses a serious problem if one can use a calculator. This fact

undermines the real understanding of the problem.

A good way for students to understand the problem and not downgrade the

achievements of the past should be to engage them in some classroom activities on

calculations in ancient Egypt, Babylon and Greece as well on calculations with large

numbers in our decimal system before the invention of the known algorithms. The extent

to which one would discuss these matters depends on the available time. To restrict the

length of this article, we avoid giving ready made activities. To construct activities

dealing with ancient systems we refer the interested reader to the material in Kline

(1972), Struik (1948/1987), Van der Waerden (1961), and the most elaborate work of

Resnikoff and Wells (1984).

The Indian-Arabic positional system of numeration certainly simplified calculations in

the usual daily circumstances, but, however, did not suffice for scientific calculations. In

astronomy, the demands for increasing precise predictions made the calculations difficult

and time-consuming. By the end of the 16th and the beginning of the seventeenth century,

the difficulty that everyone met in the multiplication of large numbers led to the invention

of several techniques to perform this operation. The idea behind these techniques is to

convert the multiplication problem into an addition problem. We suggest here an activity

based on the ‘jalousie method’ (e.g., Smith 1923/1958: 114–117) or on the ‘Napier’s
method of rods’ (e.g., Coolidge 1990) and another activity on ‘prosthaphaeresis’ (e.g.,

Pierce 1977).

By the end of these activities, we pose the questions: By these methods can you cal-
culate powers? Can you perform divisions? Can you calculate square roots? The answers

will show that our problem has not been solved.
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2.2 Converting Multiplication into Addition by Comparing Arithmetic

and Geometric Progressions

The invention of logarithms sprang up from the comparison between arithmetic and

geometric progressions that had repeatedly attracted the attention of mathematicians. The

explanations we find of the rule about the multiplication of the terms of a geometric

progression by addition of their ranks have a long prehistory; Smith (1915) mentions a

whole list of sixteenth century books of arithmetic where this ability is noted.

The relationship of the two progressions is exemplified by a table of numbers given by

the French mathematician Nicolas Chuquet (c.1440–c.1488) in his Triparty en la Science
des nombres (Lyon 1484) (e.g., Flegg et al. 1985: 247–249; Fauvel and Gray 1987: 248).

Chuquet notes that multiplication between two terms (numbers) of the geometric pro-

gression can be reduced to the addition of the respective denominations (numbers of their

‘natural order’) in the arithmetic progression. For example 2 9 4 = 8 corresponds to

1 ? 2 = 3. Chuquet describes the correspondence as follows: ‘‘…Whoever multiplies 21

by 42, it comes to 83. For 2 multiplied by 4 and 1 added with 2 makes 83. And thus whoever
multiplies first terms by second terms, it comes to third terms… And whoever multiplies
128 which is the 7th proportional by 512 which is the 9th, it should come to 65536 which is
the 16th’’ (Fauvel and Gray 1987: 248) (Table 1).

While this passage is useful to grasp the idea of simplifying multiplications, it is

noticeable that Chuquet does not show any interest for this application. Actually, his aim

was to define multiplication (and division) of monomials (of one variable). Note that in the

previous passage the raised numbers, for example 3 in 83 is not a power of 8 but registers

the denomination (the rank) of 8 in that place; we would write the expression as 8x3.

Table 1 The table of Chuquet
(Fauvel and Gray 1987: 248

Denominations Numbers

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

17 131072

18 262144

19 524288

20 1048576
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The product of two monomials can be found by multiplying the ‘numbers’ (the coefficients

of monomials) and adding their ranks (the denominations). In modern terms:

2x1 9 4x2 = (2 9 4)x(1?2). He uses then these rules to solve some forms of equations

(Cajori 1913: 13; Kouteynikoff 2006: 15–16).

An outstanding treatment of the conversion of the basic operations to simpler ones was

given by the remarkable German mathematician Michael Stifel (1486–1567). In his

Arithmetica Integra (Nuremberg 1544) employs the same progressions and states quite

clearly that addition in arithmetical progression corresponds to multiplication in geomet-

rical progression, that subtraction to division, multiplication to the finding of powers and

division to the extracting of roots (Table 2) (e.g., Kouteynikoff 2006: 17; Smith 1915: 86).

It is important that Stifel goes onto examine the ‘formal’ way of forming differences

and extends this correspondence ‘to the left’. He notes that in the same manner that we

place whole numbers after the unit and fractions of unit before it, we place the unit and the

whole numbers after 0 and the ‘fictitious’ unit and numbers before it. This time, as he

remarks, it is the geometric progression that serves the arithmetic one; multiplications and

divisions involving fractions help him to explain additions and subtractions of the fictitious

numbers. For example, like 1/8 dividing 64 gives 512, thus -3 subtracted from 6 gives 9,

namely 6 - (-3) = 9; however, 9 is the exponent of 512 (e.g., Kouteynikoff 2006: 20).

However, Stifel, like Chuquet, used the correspondence between series to calculate with

monomials and to solve algebraic equations. The originality of Stifel was the rule

A.M.A.S.I.A.S., an algorithm for the solution of any second degree equation (Kouteynikoff

2006: 18).

Giving Table 2 (extended to the right) to students, we will ask them the question: Is
there any relation that would connect the two rows? Most likely, in the first line, one

recognizes a simple numeration rather than an arithmetic progression. And naturally, it is

more difficult for the beginners to recognize that the list answers the question: To which
exponent the number 2 should be raised in order to obtain a given number? In any case,

students will be led to observe that the product of two terms in the geometric progression

(i.e., 32 9 256 = 8192) is found precisely under the sum of the corresponding terms in the

arithmetic (5 ? 8 = 13). That is to say, multiplication is essentially reduced to addition.

5  +  8                                  13

32  x  256                             8192

They will realize that division is reduced to subtraction:

4096: 128 = 32 12 - 7 = 5,

raising to power is reduced to multiplication by the exponent:

163 = 4096     4 . 3 = 12,

and the extraction of any root is reduced to division by the index
4 4096 = 8 12: 4 = 3.

Table 2 The table of Stifel (Kouteynikoff 2006: 19)

Exponent -4 -3 -2 -1 0 1 2 3 4 5 6

Number 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64
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Before continuing, we would ask the students to make some more computations by

using Table 2.

One year later Girolamo Cardano (1501–1576) published the very important book Ars
Magna (Nuremberg 1545) which contains the first signs of modern algebra. However, at

that time, in fact up to the beginning of seventeenth century, there did not exist a broadly

acceptable symbolism for powers and it is indeed one of the paradoxes in mathematics that

logarithms were invented long before the prevalence of the powers. Stifel, despite lucking

the modern symbolism to write the relation 2 m � 2n = 2 m?n, named the terms of the

arithmetic progression ‘exponents’ of the corresponding terms of geometric progression.

Later the terms of the arithmetic progression were named ‘red numbers’, since they were

printed in red ink in the tables. Even Napier, before the use of the term logarithms, named

the terms of the arithmetic progression ‘artificial numbers’. The term logarithm means

precisely: the number that measures the ratios (the Greek logos). Indeed, number 6, in

Table 2, that corresponds to 64 shows ‘how many ratios (logos)’ are required in the

continuous proportion

2

1
¼ 4

2
¼ 8

4
¼ 16

8
¼ 32

16
¼ 64

32
¼ . . .

to reach the term 64 (at the time of Napier, a geometric progression was defined as a
sequence of numbers that are in continuous proportion).

Today, it is obvious that the terms of the arithmetic progression are the base-2 loga-

rithms of the corresponding terms of the geometric progression. At this stage we would

introduce students to the modern symbolism, writing log2 1 = 0, log2 2 = 1, log2 64 = 6,

log2 256 = 8, …, as well as the properties log2 (a � b) = log2 a ? log2 b, log2 (a/

b) = log2 a – log2 b, log2 (an) = n log2 a.

We would now ask the question: Given this table, can we multiply any numbers?

Almost certainly the answer will be negative; otherwise we might ask the students to

compute, with the help of the table, the product 27 9 243. Consequently, the multipli-

cation has been turned into addition only for certain privileged numbers. In order to

increase our possibilities, we can ask the students if something similar is valid for powers
with base 3 and examine if this is generalized to every geometric progression.

The answer to both questions is affirmative. It is simple to check it for powers of 3. This

makes the calculations with these numbers easier. Certainly this will be true as well for

calculations with integers that are powers of 4, powers of 5 and so on. So, our computa-

tional efficiency is improved. With regards to the generalization, consider the arithmetic

progression of the non-negative integers and an arbitrary geometric progression beginning

with 1 and having common ratio r [ 1.

0 1 2 3 4 5 6 7 . . .
1 r1 r2 r3 r4 r5 r6 r7 . . .

It is easy to recognize once again that multiplication in the geometric progression corre-

sponds to addition in the arithmetic one. The terms of the arithmetic progression are the

base-r logarithms of the corresponding terms of the geometric progression. Very well! But

what does this mean in practice? Can we multiply any two numbers? Yes, provided that we

have an infinite catalogue of geometric progressions and that we are lucky enough to see

these two numbers appear among the terms of one of these progressions!!

These remarks would have practical value if we had a geometric progression sufficiently

‘dense’, so that we could find among its terms any two numbers or at least, the numbers

that appear often in computations (at that time, the values of trigonometric functions). One
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way to increase the density of the geometric progression 1, r, r2, … is to insert, for example

500 terms, between 1 and r, and at the same time find the corresponding 500 terms between

0 and 1 in the arithmetic progression. Then the logarithm of the nth inserted term in the

geometric progression is equal to the nth term of the arithmetic. If instead of 500 terms we

insert 5000, then we would have the possibility of finding the logarithms of many more

numbers. The need for some denser geometric progression was met through the invention

of logarithms by Napier, as we shall see in the next section.

2.3 A Denser Geometric Progression

The late sixteenth century was an age of numerical computation, as developments in

astronomy and navigation called for complicated trigonometric computations. The prost-

haphaeretic rules were the principal means used in the major astronomical laboratories of

Europe to simplify multiplication. We have seen in Sect. 2.2 that writers like Stifel had

called attention to certain relations between the terms of a geometric progression and the

terms of an arithmetic one. But those writers did not realize the possibilities of this idea nor

did they conceive and execute the plan of computing a pair of corresponding progressions

sufficiently dense for practical use in computation. The clear understanding of this idea led

John Napier and others to the logarithms about the turn of seventeenth century.

The Napier family belonged to the so called aristocracy of landowners. John Napier was

born at Merchiston, near Edinburgh in 1550, when his father was only 16 years old. He

died on 4 April 1617 in Edinburgh, three years after the announcement of his great

invention. Little is known about the early years of his life. He entered in 1563 St. Sal-

vator’s college at St. Andrews University. Napier spent some time there but his name does

not appear in the list of those graduating in the following years, so he must have left for

continental Europe before completing his studies. It is highly likely that he studied at the

University of Paris and also that he spent some time in Italy and in Holland, but there are

no records to corroborate this.

In 1571 he returned to Scotland as a scholar competent in Greek, but without any degree

in any science. The lack of information with regard to his studies does not allow any

answer to the question: Why and when did he engage in mathematics? To simplify the

computations he devised a mechanical means that became known as rods or bones of

Napier (see Sect. 2.1). In 1614 Napier published in Edinburgh his work Mirifici Loga-
rithmorum Canonis Descriptio that contained tables and instructions on how to use them

but there were no proofs of the statements. In a second work, published posthumously in

1619 and titled Mirifici Logarithmorum Canonis Contructio Napier gives the proofs of the

statements and also the steps for the constructions.

Napier wanted to simplify multiplication and division of sines. Perhaps for this reason

he initially limited to logarithms of sines of angles. In his time, the sine of an angle t was

not defined as a ratio but as half the length of the chord subtended by the angle 2t. The sine

of t was taken to be AD (Fig. 1). Of course, this length depends on the radius of the circle.

The choice of the radius indicated the precision of the calculations, given that with a large

radius of one’s choice, the trigonometric values can be both integers and as accurate as one

wants (or can calculate!). Napier took a radius equal to 107, because the table of sines that

he had at his disposal gave the numbers up to seven digits. The sines he sought to provide

simpler calculations for were, in our terms, integer approximations to the numbers 107sin t,
where t varies from 0� to 90� and is given in minutes since the instruments of the time did

not allow better precision. Because 107 sin 90� = 107 and 107 sin 10 = 2909, we conclude

that his sines were integers lying between 2909 and 10,000,000.
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Napier began with a comparison of arithmetical and geometrical sequences. He consid-

ered a geometric progression with first term a0 = 107 and common ratio r =

1 - 10-7 = 0.9999999. The choice of common ratio close to 1 was an intelligent idea

because it made the progression sufficiently dense, so that the gaps between successive terms

would remain small. Then, Napier set down, side by side, the terms of the geometric pro-

gression an = 107(1 - 10-7)n, n [ N and the terms of the arithmetic progression bn = n,

n [ N (Table 3). Initially, he called the numbers bn the logarithms of the numbers an, n [ N.

Napier should calculate over 81,000,000 terms of the sequence (an) to reach 2909 and

then the logarithms of all the sines between them by interpolation. This meant that one had

to perform an overwhelming volume of calculations. But Napier observed that it was

enough to calculate the terms down to 107 sin30� = 5,000,000. For if b \ 107/2 we can

find a natural number m such that a = b � 2 m C 107/2. Then, one can apply the loga-

rithmic properties to determine the logarithm of b from the logarithms of 2 and a. After this

observation Napier had to calculate about 7,000,000 terms instead of 81,425,000!

Indeed, the work was decreased considerably but still remained a lot to do. However,

the intelligence of Napier led him to a new invention. He calculated only 100 terms of the

above geometric progression. Then, he continued making jumps of 100 terms. To this end,

he used another geometric progression which starts from a0 = 107, but has common ratio

r = 1 - 10-5. The second term of the new sequence is 9,999,900 and it is approximately

equal with the 100th term of the previous one. Thus the table becomes less dense after the

hundredth term. However, it would still require over 69,000 steps to reach 5,000,000. But,

Napier had no any intention to continue this way. He calculated only 50 terms of the new

progression. Then, he continues with bigger jumps doing the same with 69 geometric

progressions of common ratio 1 - 5 � 10-4 and 21 of common ratio 1–10-2, always being

careful that his geometric progressions ‘‘tie up’’ one into the other (the last term of the first

progression is the second term of the second one and so on). This tactic enables him to get

to 5,000,000 in 1600 steps, a number far distant from 81,450,000!! (e.g., Ayoub 1993;

Coolidge 1990; Edwards 1979: 144–146).

O

A

B

D

t
C

Fig. 1 sin t = AD

Table 3 The two progressions that Napier used originally

A.P.
(bn)

0 1 2 3 – n –

G.P.
(an)

107
107ð1� 10�7Þ

k
9999999

107ð1� 10�7Þ2
k

9999998

107ð1� 10�7Þ3
k

9999997

– 107(1 - 10-7)n –
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Now Napier had to calculate the logarithms of these 1600 reference terms (apart from

the first 100). Edwards (1979: 146–147), for purpose of simple illustration, has outlined a

reconstruction of the table of logarithms of the 1600 reference terms using linear inter-

polation. However, Napier was perfectly aware of the non-linearity of the logarithmic

function and therefore employed a shrewder method of interpolation. For the purpose of

this non-linear interpolation, Edwards (ibid.: 148) writes: ‘‘… Napier required a contin-
uous definition of the logarithm function, rather than a discrete definition based on geo-
metric progressions’’. This may answer Coolidge’s (1990: 72) wonder: ‘‘… it is hard to see
why he (Napier) set up his logarithms in the clumsy fashion which I shall describe pres-
ently, …’’.

Napier’s curious definition of logarithms was based on a geometric model in which he

conceived two correlated points moving along two different lines. The first point P starts at

the initial point A of a segment AB of fixed length 107 with initial speed 107, and move

toward B, with its speed decreasing (from 107 at A to 0 at B) in such a way that it always

equals the remaining distance PB from its ultimate goal. The second point Q starts at the

initial point O of a ray OL, and moves to the right with constant speed 107 (Fig. 2).

At t = 0, let the two points start moving at A and O respectively. Napier proves that as P

moves geometrically, Q moves arithmetically (e.g., Ayoub 1993: 355).

If at a time t, the point P is at a distance x from B and Q at a distance y from O, then

Napier defines the segment OQ = y to be the logarithm of the segment PB = x.

We shall write

y ¼ N log x

to distinguish this function from the standard logarithm. Napier considers the same 1600

reference points, as above, calculates first their logarithms and then the logarithms of sines of

angles between 0o and 90o at intervals of one minute by means of a subtle interpolation

scheme. But now the logarithm of an = 107 (1 - 10-7)n is approximately n and not exactly

n as it was originally. For example, N log (a1) = 1.00000005, Nlog (a100) = 100.000005

instead of 1 and 100 correspodingly. For further details we refer the reader to the excellent

article of Ayoub (1993).

In class, we should not enter in so many details, which would probably disorientate and

confuse the students and make them forget that our objective is to place in correspondence

the terms of an arithmetic progression with the terms of a dense geometric progression. It is

preferable to pose the problem: Given the geometric progression a0, a0 r, a0 r2, …, we
require each of the terms to be close to its neighbours. How will we achieve it? Does it
depend from a0? Does it depend from r? After a little experimentation, we inform the

students that Napier considered the geometric progression with first term a0 = 107 and

common ratio r = 1 - 10-7 = 0.9999999. This is in reality the first of the geometric

progressions he used. The choice of r is already justified but you should explain briefly the

reason for the choice of the first term. Then, it is correct with great accuracy, in view of the

previous paragraph, to say that Napier determined a correspondence between the terms of

the geometric progression an ¼ 107 1� 1
107

� �n
and the terms of the arithmetic progression

bn = n, n [ N (Table 3); that is,

Fig. 2 Napier’s definition of
logarithm: N log x = y
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n ¼ N log an , an ¼ 107 1� 10�7
� �n

Here we can ask the question: Is the standard logarithmic property log AB = log A ? log
B valid in Napier’s system? Could you estimate Nlog1? Is it zero or not? Does this system
have a base? This is a chance for the students to work experimentally or, alternatively we

can help them answer the questions using a work sheet with portions of this system.

Obviously, we have Nlog1 = 0. As a consequence of this the basic logarithmic

property Nlog (AB) = Nlog A ? Nlog B fails and instead of it we have (e.g., Ayoub 1993:

356; Burn 2001: 5):

N log ABð Þ ¼ N log Aþ N log B� N log 1:

Napier had perceived this computational inconvenience and near the end of his life he

suggested to the English mathematician Henry Briggs (1561–1631), professor at Gresham

College in London, that the process could be simplified considerably if 1 was a term of the

geometric progression and matched with 0 in the arithmetic one. This, as well as the

adaptation to a decimal base, was subsequently completed by Briggs. He published his

Arithmetica Logarithmica (London, 1624) which contained a usable table of logarithms to

base 10, with 14 decimal digits, of the first 20 thousands natural numbers and the natural

numbers between 90,000 and 100,000. This book was translated from Latin into French

from the Dutch bookseller and editor Adriaen Vlacq (1600–1666), who filled the gap from

20,000 up to the 90,000 with a precision of 10 decimal digits and published it as A-
rithmétique logarithmétique (Gouda 1628). These last tables of logarithms were the basic

method to simplify the calculations for the next three centuries.

Returning to Napier’s system (Table 3) we note another crucial disadvantage. The

notion of a base, as used in the modern definition, is inapplicable. The terms of a geometric

progression were simply matched with the terms of an arithmetic progression and the terms

of the arithmetic progression were named logarithms of the corresponding terms of the

geometric progression. According to Napier (e.g., Cajori 1913: 7):

Logarithmi dici possunt numerorum proportionalium comites aequidifferentes
(Logarithms are numbers with constant differences matched with numbers in con-

tinued proportion).

This description characterizes all the logarithmic systems of seventeenth century,

particularly those before 1649 (e.g., Burn 2001).

The system of Napier would have a base if one replaced Napier’s progressions with

those that result by dividing all its terms with 107 (Table 4). The new system has

base a ¼ ð1� 10�7Þ107

¼ 0:367879422, that coincides up to 8 digits with the value of

1/e = 0.367879441.

In this modified system we can write in an approximate manner and in modern sym-

bolism, that:

log1=e 1� 1

107

� �n

¼ 10�7n, log1=e

an

107
¼ bn

107
ð1Þ

But in the system of Napier (Table 3) we have that Nlog an = bn and so Eq. 1 becomes:

N log an ¼ bn ¼ 107 log1=e

an

107
, N log an ¼ bn ¼ �107 ln

an

107
ð2Þ

If we name x = an

107 and y = bn

107 then Eq. 2 becomes:
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y ¼ � ln x ð3Þ

Consequently, if we divide the terms of the two progressions by 107, then the logarithms of

Napier are approximately the opposites of the natural logarithms. Thus the frequent des-

ignation of natural logarithms as ‘‘Naperian logarithms’’ is inaccurate. This could be a nice

activity after the discussion about the change of base formula.

Lastly, I would like to stress once again that in class we should not go into the details of

the definition and calculation of the logarithms of Napier. I believe it is better for the

students to give the definition as in Table 3 or even Table 4. If you want to help your

students get an idea of the difficulties Napier and his contemporaries encountered, you can

prepare a project leading them to construct, for themselves, a miniature version of a

logarithmic system (Burn 1998; Resnikoff and Wells 1984: 193). Basically, the exposition

could be supplemented with stories from the rich biography of Napier (e.g.,

http://en.wikipedia.org/wiki/John_Napier, and the references cited there) and the reception

of logarithms that spur on the interest and give cultural elements of the era and this fulfills

one of the goals of using history of mathematics in teaching. For example, so new and

original did logarithms seem to Briggs that he left London for Scotland, to visit Napier, the

inventor. One can give students the description of the first meeting and ask questions of

various levels about mathematics and the pedagogical reflections which it generates

(Fauvel and van Maanen 2000: xi–xiii).

I will now try to explain briefly why we should avoid the perplexities of the course that

Napier followed. The link between historical developments in mathematics and the stu-

dents’ learning of mathematics has often been done in terms of the ‘historical-genetic
principle’. It came to education at the turn of the ninteenth into the twentieth century from

biology as a result of Haeckel’s biogenetic law: ‘Ontogeny recapitulates Phylogeny’. The

historical-genetic principle is the adoption in education of a psychological version of the

biological recapitulation and may be stated as follows: effective learning requires that each
learner retrace the steps in the historical evolution of the subject under study. But a little

knowledge of mathematical history shows the course of its development to be much less

simple and linear than the historical-genetic principle would require. The relations between

history of mathematics and learning and teaching of mathematics can be much more

complex than was originally believed. What happened in the past and what will probably

happen in the classroom are two different things because they are based in very different

cultural, psychological and didactical environments (e.g., Furinghetti and Radford 2002).

The difficulties encompassing the simplistic version of psychological recapitulation

encouraged new reflections on the historical-genetic principle. Pólya (1981: 132) formu-

lated a temperate form of the historical-genetic principle and sounded a warning: ‘‘The
historical-genetic principle is a guide to, not a substitute for, judgement’’. Freudenthal

(1984) also provided a weaker interpretation of the historical-genetic principle. In the

conclusion of his lecture at the 1983 International Congress of Mathematicians at Warsaw,

said:

Table 4 Modification of Napier’s progressions to show their relation with the natural logarithms

A.P. 0 10-7 � 1 10-7 � 2 – 10-7 � n –

G.P.
ð1� 10�7Þ0

k
1

ð1� 10�7Þ1
k

0:9999999

ð1� 10�7Þ2
k

0:9999998

– (1 - 10-7)n –
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If mathematics teaching proves to be a failure, the reason is often, if not always, that

we do not realize that young people have to start somewhere in the past of mankind

and somehow repeat the learning process of mankind. This is the lesson historians

and educators can learn from each other (italics added).

That seems to be like the historical-genetic principle. But Freudenthal carefully states the

principle in a weaker form with a ‘somewhere’ and a ‘somehow’.

Waldeg (1997) has, also, discussed the theoretical underpinnings of the use of history,

including the question of the sense in which it is true that ontogeny recapitulates phy-

logeny. She cites several studies which indicate how one can understand this idea; namely,

works on epistemological obstacles (e.g., Bachelard 1938/1983; Brousseau 1983; Sier-

pinska 1994), on the mechanisms of passage from one stage of understanding a mathe-

matical idea to a following stage (e.g., Sfard 1995), on the approach of didactic
transposition by which modern teaching can in fact utilize old mathematics (e.g., Che-

vallard 1985), and on the status of mathematical objects (e.g., Sfard 1991). She has noted

that the actual learning of mathematics has increasingly been described in constructivist

terms, and in this context a similar approach to the use of the history of mathematics is

warranted. In other words, attention should be focused on the process of reconstructing

mathematics rather than rediscovering it. The studies seem to indicate specific ways one

can use history to help students understand particular points and even how to use historical

methods in teaching a modern course.

The two most commonly presented ways for the inclusion of a historical dimension in

the teaching strategy are depending upon whether the presence of history is explicit or

implicit in the teaching situation. In the case of an explicit use of history the educator

presents in detail the evolution and the stages in progress of a concept. In this case, even

with the necessary simplifications, the emphasis is on history. In a reconstruction in

which history enters implicitly, there is no need to mention every historical detail. The

historical development acts as a guideline; to take ideas. This means that history is not

an aim for itself, but teaching a subject one may use concepts, methods and notations

that appeared later than the subject under consideration. What counts is to keep in mind

that the ultimate goal is to understand mathematics in its modern form. In such an

approach, the constructive perspective would highlight the pedagogically more valuable

order of presentation; one enters into the area of didactic transposition and looks at the

historical evolution from the current stage of concept formation. Several researchers have

developed historical studies driven by the previous didactical aims (e.g., Bartolini-Bussi

and Sierpinska 2000; Friedelmeyer 1990; Kronfellner 1996; Radford and Guérette 1996).

At this point we also want to refer to The ICMI Study, Fauvel/Van Maanen (2000).

Chapter 7 from Tzanakis and Arcavi and chapter 8 from Siu give an analytic survey of

how history of mathematics has been and can be integrated into the mathematics

classroom.

However, the above two possible forms of reconstruction are not mutually exclusive but

both may be used in teaching a concept in complementary ways. Vasco (1995, p.62) has

proposed a methodology, called ‘forward and backward heuristics’, to help us find the

optimal teaching sequence of a mathematical subject. The forward heuristics propose

efficient ways of reviewing the phylogenesis of the particular mathematical subject, in

order to optimize the ontogenetic mastery of that conceptual field. The backward heuristics

propose ways to trim, compress, and even alter the sequences found through the forward

heuristics. Forward heuristics lay out the rough draft of the roads on the mathematical map;

backward heuristics do the redesigning, the shortcutting, and the road signaling. To that
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end, Menghini (2000) pointed out that a didactical competence is needed more than a

historic one. Note that Halmos, in his response to receiving the Steele Prize in 1983, said

(Alexanderson 2003):

I enjoy studying, learning, coming to understand, and the explaining, but it doesn’t

follow that communicating what I know is always easy; it can be devilishly hard. To

explain something you must know not only what to put, but also what to leave out;

you must know when to tell the whole truth and when to get the right idea across by

telling a little white fib.

Historians of mathematics may adopt different views of what history means. Most

historians of mathematics have not always found it easy to accommodate their sense of

the complexity and subtlety of history to the somewhat distorted and adjusted

interpretations given to a certain event for pedagogic purposes. Their work shows off

a critical interest in and respect for the integrity of past events. Rowe (1996: 10) notes

that this perspective was often absent in studies of the history of science prior to 1950.

After the appearance of Herbert Butterfield’s influential The Origins of Modern Science
(New York, 1957), however, which decried the evils of ‘‘Whing history’’ this principle of

approaching the past on its own terms has come to be regarded as an axiom within the

field.

The analysis of how a dialogue might be promoted between historians and mathema-

ticians is in need of investigation. Rowe (1996: 12) discusses two recent trends in phi-

losophy of mathematics that suggest promising possibilities for a fruitful such dialogue.

The first trend is the role of intuition in the process of mathematical discovery highlighted

by Pólya (1954/1990) and the related philosophical ideas of Imre Lakatos (1976) regarding

the nature of mathematical knowledge. Their work has broken down rigid stereotypes

about mathematics and has challenged historians and philosophers of mathematics to re-

examine more closely how mathematical knowledge grows. The second trend is that

mathematics is an activity set firmly in a socio-cultural context. So, in a sense, historical

research is moving away from a monolithic image of mathematics.

Bartolini-Bussi and Bazzini (2003) describe also the problematic relationship between

historians and didacticians. In some cases mathematics educators consider history as a

solution of the problem of involving students in mathematics, thus the transposition into

classrooms was carried out mainly relying on the glamour and neglecting a careful set up

of methodologies and objectives. On the other hand it is true that some times historians do

not view their primary task as showing how past achievements were absorbed into a more

familiar body of modern knowledge.

Many conferences have been organized in the past years to try to establish a connection

between historians and didacticians. Jahnke et al. (1996: ix) organized a conference in

Essen (1992), for historians and mathematics educators, with the next motivation:

Questions and viewpoints resulting from teaching must become an integral part of

the methodology of historical research. Although many historians may fear that this

could impose limitations on their own work, the opposite is true. Education will raise

a host of questions which will substantially enrich historical research.

Of course, this brief synopsis cannot possibly do justice to the works discussed above or to

the larger directions in research associated with them. We conclude pointing out the need

for a continuous collaboration between interested mathematics educators, historians of

mathematics and research mathematicians.
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2.4 The Densest ‘‘Geometric Progression’’

The tables of Napier and Briggs and their followers revolutionalised the art of numerical

computation. The repeated taking of square roots and insertion of geometric means could

refine a geometric progression to any required degree of denseness. This was a basic

property of progressions that had been used in the making of all known logarithmic tables.

While the numerical aspect of logarithmic computation is not devoid of theoretical interest,

the importance of logarithms in the historical development of calculus stems from a

discovery published in 1647 by the Belgian Jesuit Gregory of St. Vincent, that implies a

surprising connection between the natural logarithm function and the rectangular hyper-

bola xy = 1.

Gregory of St. Vincent was born in Bruges in 1584. He entered the Society of Jesus in

Rome, in 1607. There he studied mathematics under Christophorus Clavius (1538–1612), a

famous mathematician in the Roman College, who had appreciated the mathematical talent

of Gregory. Gregory stayed in Rome until the death of Clavius in 1612. Then he returned to

Belgium and after he was appointed to various positions and for short time intervals, he

taught mathematics for three years in Antwerp (1617–1620) and four years in Louvain

(1621–1625). This was the most creative period of his life and is characterized by

important mathematical inventions. It seems that in this period he wrote the bigger part of

his important work: Opus Geometricum Quadraturae Circuli et Sectionum Coni (Antwerp,

1647). He died in 1667 in Ghent after successive attacks of apoplexy (Van Looy 1984).

Up to the middle of the twentieth century Gregory of St. Vincent had not been

appreciated as an important mathematician, despite the clear statement of Leibniz

(Dhombres 1993: 403):

During my own apprenticeship, more essential help came from the famous triumvirs:

from Fermat by his invention of a method pro maximis et minimis, from Descartes

by his showing how to describe curves of usual geometry by means of equations, and

from Father Gregory of St-Vincent by his numerous bright inventions.

After his death, his manuscripts were bound in 17 volumes but unfortunately without any

regard to content or chronology. The number of sheets per volume varies from 319 to 583.

This enormous and disorganized mass of manuscripts had discouraged many investigators.

However, during the last 60 years many studies about his life and work have attributed to

him an important role. Gregory, along with Cavalieri, Fermat and Descartes is among those

who paved the way for the invention of calculus from Newton and Leibniz.

The aim of Gregory’s book is, as it is also written in the title, the squaring of circle. At

that time almost no one still believed in the possibility of resolution of the famous old

problem and thus no few people tried to locate an error in a book that had 1200 pages,

perhaps the only book of mathematics with so many pages that was ever published. Four

years later, in 1651, Christian Huygens finally found a serious error in the last chapter of

the book, on page 1121.

Unfortunately the words quadruturae circuli attracted most of the attention of mathe-

maticians, so that they ignored a lot of other important results in the work of Gregory. One

of them appears in the unit where he investigates the problem of finding two geometric

means x and y between two known line segments a and b, that the ancient Greeks had

connected with the conic sections. Gregory, examining the properties of conic sections

proves the next proposition, which gives, for first time in the history of mathematics, the

logarithmic property of the hyperbola:
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‘‘Let Ox and Oy be the asymptotes of a hyperbola ABD. Divide ON so that OK, OL,
OM, ON are in a continuous proportion. Then, the curvilinear figures ABLK, BCML,
CDNM have equal areas’’ (Fig. 3) (Proposition 673 in volume 13 (Van Looy 1984:

63); Proposition 130 in Book 6 (de Hyperbola) in Opus Geometricum (Burn 2001: 2)).

The term continuous proportion means that, as we have already noted, the segments OK,

OL, OM, and ON form a geometric progression. Thus, we can state the above proposition

as: If the segments OK, OL, OM, and ON are consecutive terms of a geometric progression,
then the areas (ABLK), (BCML), (CDNM) are equal. Naturally one would expect at this

point that the logarithms should make their appearance. But Gregory refers nowhere to

logarithms even though Napier had used this term with this meaning much earlier, in 1614.

It appears that Gregory had another aim; probably it was the first step of the Belgian priest

towards the squaring of a hyperbolic segment.

Gregory limited himself to two successive bands and he proves that they have equal

areas. He gives two proofs, one similar to Archimedes’ squaring of a parabolic segment,

and the other one similar to the current technique of calculating definite integrals by

approximating the integral by increasing the number of inscribed rectangles in the

hyperbolic segments (Burn 2000; Dhombres 1993). The first proof shows a good knowl-

edge of the properties of conic sections that he obtained, as he says, from the study of

Conics of Apollonius. He did not use coordinates because he gave the proof before 1625

and at that time Gregory did not have at his disposal the methods of analytic geometry.

Using coordinates the proof of this important proposition can be shaped so as to be a very

good project for the students.

In the second proof the Jesuit mathematician developes techniques that could lead to a

theory of limits. He gives the next definition for the limit (terminus) of a progression (Van

Looy 1984: 64):

The limit of a progression is the end, which none progression can reach, even if she is

continued in infinity, but which she can approach nearer than a given segment.

It seems to be the first to give a definition of limit. In his study of infinite series he uses

Proposition 1 of Book X of the Elements of Euclid (Heath 1956: 14):

Fig. 3 The logarithmic property of the hyperbola
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If two unequal quantities are given and if one takes more than the half from the

bigger quantity, and from what remains also more than the half, and if this process is

continued, then will remain at last something smaller than the smallest quantity.

Gregory of St. Vincent advances little further than Euclid because he adds to the

conclusion the phrase ‘the quantity will be exhausted’. It is to this phrase that the well-

known method of exhaustion owes its name. The second proof, shaped suitably, could be

used for the teaching in class and will be presented below in Sect. 3.1.

In 1648, one year after the publication of Opus Geometricum, Marin Mersenne

(1588–1648) published a review of this quadrature, in which he did not locate any error but

claimed that the problem was not yet solved and challenged Gregory with the next

problem: Given three rational or irrational magnitudes and given the logarithms of two, to
find the logarithm of the third geometrically. Mersenne posed the problem because he

believed it was as difficult as the quadrature of the circle. Both circle-squaring and finding

a third logarithm, given two, require the construction of transcendental numbers.

Father Alphonse Antonio de Sarasa answered, with the help of Gregory, the criticism of

Mersenne with the publication of his book Solutio problematis a R.P. Marino Mersenno
propositi (Antwerp, 1649) (e.g., Burn, 2001). De Sarasa was born in Nieuport, in Flanders,

in 1618 and he died in Brussels in 1667. He became member of the Jesuit order in Ghent in

1632, on the year that Gregory of St-Vincent also went there. He became a student and

later a colleague of Gregory in the local college for seven years. He also occupied aca-

demic positions in Antwerp and Brussels. When the correctness of the solution given by

Gregory to the problem of squaring the circle was discussed, de Sarasa became one of his

supporters.

Before looking at de Sarasa’s response to this problem, we must acknowledge the

difference between the term ‘logarithm’ in this context and our modern, narrower use. At

least from the time of Euler, once the base had been chosen, the logarithms of all positive

numbers were uniquely defined. But to say this we suppose that log 1 = 0 and logarithms

are defined on the continuum. Before 1650, as already we have noticed in the discussion of

Napier’s system, there was neither the concept of base, nor any agreement about which

number had logarithm zero. Logarithms were simply the terms of an arithmetic progression

matched with the terms of a geometric progression:

Logarithms in A:P: a aþ d aþ 2d . . . aþ nd
Numbers in G:P: c cr cr2 . . . crn

The correspondence crn $ a ? nd = log (crn) shows that in the definition of a loga-

rithmic system there are two degrees of freedom. If the logarithms of c and cr are given,

then one may find the logarithms of all the terms of the geometric progression. So, de

Sarasa considers that the solution of Mersenne’s problem depends from the existence of a

geometric progression that would contain the three arbitrary numbers. If this happens and

A = crk, B = crm and C = crn are the three numbers and log A = K, log B = M the two

known logarithms, then the logarithm of third number log C = N can be calculated.

Indeed, from K = a ? kx, M = a ? mx and N = a ? nx we take:

N �M

M � K
¼ n� m

m� k
;

from which we may find N as a function of the known n, m, k, K, M.

But, is it possible to find a geometric progression containing three given numbers
among the host of geometric progressions containing any two of them? Unfortunately, it is
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not certain that any given three numbers are terms of a geometric progression. Johannes

Kepler (1571–1630) had already given in his Chiliades Logarithmorum (Marburg, 1624)

an example of a triple (8, 13, 18), which does not belong to any geometric progression—

another nice exercise for our students. Of course there is also the possibility of making

denser a geometric progression containing two of the given numbers by repeated insertion

of geometric means and by this limiting process to obtain the desired geometric pro-

gression. But such a solution would not be acceptable. The term geometrically in the

statement of the problem, as de Sarasa also conceives it, has two senses: geometric con-
struction and geometric rigour. In the last paragraph of the preamble of his book writes

(Burn 2001: 9):

In order to deal with the problem with geometric rigour, we will repeat here the most

important teaching from Part 4 of Book [6] de Hyperbola from Opus Geometricum of

Gregory of St-Vincent. The foundations of the teaching embracing logarithms are

contained there.

To this end he restates as proposition 3 the basic Proposition of Opus Geometricum, that

we have already mentioned, as follows: ‘‘If Ox is divided so that the segments OK, OL,
OM, ON are consecutive terms of a geometric progression, then the areas (ABLK),
(ACMK), (ADNK) are consecutive terms of an arithmetic progression and conversely’’.

This is what de Sarasa derives from Gregory. Thus, he establishes a correspondence

between the terms of the two progressions (Table 5).

This correspondence is the basic principle for each logarithmic system. But in this case

logarithms have a natural meaning: they express the areas of certain geometric figures.

This discovery has been variously attributed to Gregory and to de Sarasa (Burn 2001: 1, 15;

Coolidge 1950).

In propositions 6–8, de Sarasa determines precisely when there exists a geometric

progression containing among its terms three given line segments; this can be done if and

only if the corresponding hyperbolic areas are commensurable. In other words: the seg-

ments OK, OL and ON (Fig. 3) belong to a geometric progression (without to be con-

secutive terms necessarily) if and only if the areas (ABLK) and (BDNL) are

commensurable. After that de Sarasa adds (Burn 2001: 12):

Consequently it is obvious that the problem of Mersenne isn’t properly formulated;

that which is sought is clearly contrary to the nature of logarithms, and cannot always

be solved.

Clearly, for de Sarasa ‘the nature of logarithms’ was discrete and an answer to the problem

depended on the existence of a geometric progression containing the three numbers. We

naturally think that he should have adopted a continuous image of the logarithms, given

that Napier had already considered a continuous model in his definition of logarithms.

However, the recognition of hyperbola-area as a model of the logarithmic function was a

richly suggestive idea, both in practice and in theory. In practice, the new model changed

the structure on which the numerical calculations were made. In theory, it led to the

definition of the logarithm of any positive number.

Table 5 The two natural progressions of Gregory

0 (ABLK) (ACMK) (ADNK)

OK OL OM ON
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At first sight this area redefinition seemed merely to convert a difficult analytical

concept into an equally difficult one of hyperbola area. Is the numerical computation of
areas under a hyperbola any simpler than a Naperian calculation? It is this question,

defined and solved with increasing precision from the early 1650’s on, which finally, with

the aid of integration techniques, triggered the elementary infinite sum-series developments

for the logarithm in the late 1660’s.

Perhaps the first attempt to calculate hyperbola-areas systematically was formulated by

William Brouncker (1620–1684) and Pietro Mengoli (1626–1686) some time in the mid-

1650’s (e.g., Whiteside 1960–1962: 222–225). Their methods are, in practice, laborious

and unwieldy but an interesting conceptual development arises from Mengoli’s method in

his attempt to create an analytical theory of the logarithm, inspired by the model of

hyperbola-area but independent of the geometrical form (ibid.: 224). Well into the 1660’s it

remained the ideal of many mathematicians to construct methods which, based on the

model of hyperbola-area for their justification, would give a close approximation without

undue computation. However, the problem of an adequate analytical definition of the

logarithmic function was resolved with the aid of integration techniques by several sum-

series expansions.

The first published account of the development was given by Nicholas Mercator

(1620–1687) in his Logarithmotechnica (London 1668), though several people developed

the method independently. Mercator studies the area under the curve xy = 1 over the

interval [1, 1 ? x]. The real significance of the investigation comes from the fact that he

writes the equation of the hyperbola in the form y = 1/(1 ? x), which enables him to start

from 0. He computes by long division the geometric series:

y ¼ 1

1þ x
¼ 1� xþ x2 � . . . ð4Þ

Mercator gives a crude explanation of the process which he followed to compute the area

under this curve over the interval [0, x]. In fact, he used some results of John Wallis

(1616–1703) for the area under the curves y = xm over the interval from 0 to x (m a non

negative integer) but worked out only some examples for particular values of x (x = 0.1

and x = 0.21). He does not write down the general result of this integration. A much

clearer exposition was published in the same year by Wallis (e.g., Coolidge 1950), who

was the first to state Mercator’s famous formula in general symbols (Cajori 1913); a result

that today we express in the form:

lnð1þ xÞ ¼ x� x2

2
þ x3

3
� x4

4
þ � � � ; jxj\1 ð5Þ

But should any area under the hyperbola and over the interval [0, x] be a logarithm? For

Mercator the answer it seems to be affirmative. Probably using the results reached by

Gregory and de Sarasa, Mercator connects his own results with logarithms and ends his

Logarithmotechnica with the claim that: ‘‘From the above, it is also obvious how Mers-
enne’s problem could be solved, if not geometrically, at least numerically, to any desired
degree of accuracy’’ (cited in Boyé 2006: 226). In a note by Mercator in the Philosophical
Transactions of 1668, the areas determined under a hyperbola are referred to as natural
logarithms.

At the end of seventeenth century the computations of logarithms by infinite series had

been accepted by the mathematicians. The reference to the hyperbola soon disappeared.

Edmund Halley (1656–1743), in the Philosophical Transactions of 1695, gave the first
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derivation of infinite series for the computation of logarithms without any regard to

hyperbola (e.g., Whiteside 1960–1962: 230–231). The significance of the infinite series

became clear, adding both a further conceptual tool to mathematics and a means of cal-

culating logarithmic values. Jacob Bernoulli (1654–1705) and Johan Bernoulli

(1667–1748) did a great deal of work with series for the purposes of obtaining areas under

curves between 1689 and 1704. Wallis (1995) obtained from Mercator’s series the next

one:

ln
1þ x

1� x
¼ 2 xþ x3

3
þ x5

5
þ � � �

� �
ð1\x\1Þ ð6Þ

We note that any positive real number can be written as (1 ? x)/(1 - x) for some x [ (-1,

1); then by (6) we can approximate the natural logarithm of any positive real number.

Setting x = 1/3 in (6) gives rise to the rapidly converging series:

ln 2 ¼ 2
1

3
þ 1

3 � 33
þ 1

5 � 35
þ 1

7 � 37
þ 1

9 � 39
þ � � �

� �
ð7Þ

The sum of the first seven terms of this series gives the approximation ln

2 & 0.693147170, which is correct to seven places.

Once we have a method of approximating ln 2 as accurately as desired, it is possible to

outline an algorithm for approximating the natural logarithm of any number. Indeed, if we

replace x by 1/(2 m ? 1), m [ N, in (6), we obtain:

ln mþ 1ð Þ � ln m ¼ 2
1

2mþ 1
þ 1

3ð2mþ 1Þ3
þ 1

5ð2mþ 1Þ5
þ � � �

( )

ð8Þ

Thus, knowing ln2, we can approximate inductively by (8) the natural logarithm of any

positive integer. Moreover, the partial sums of the foregoing examples are easily computed

on a calculator and can quickly be compared with the values obtained by the calculator’s

natural logarithm button. It certainly should help the students to demystify what the cal-
culator does ‘behind the curtains’ and as well to become aware of the limitations of a
calculator or a computer.

While the previous investigations and many others similar to them led to greatly

improved methods of computing logarithms by infinite series, no modification of the

logarithmic concept resulted from these researches. However, in the 1660’s, we can say

that areas under the hyperbola have been generally considered having the logarithmic

property. Isaac Newton (1642–1727) wrote in his Waste Book in 1664–1665 (Whiteside

1967–1976: 457):

In ye Hyperbola ye area of it bears ye same respect to its Asymptote wch a logarithme
dot[h its] number.

Newton, in a manuscript probably written in 1667, obtained equation (5) from (4) by

simple term by term integration (Coolidge 1950; Whiteside 1967–1976, vol. II: 184–189).

It is fair to say that although Newton gives Mercator’s formula, he gives it as the area under

the hyperbola, with no mention of Mercator or of logarithms, and writes A (1 ? x) instead

of log (1 ? x) for the area under the hyperbola y = 1/(1 ? x) and over the interval [0, x]

(or the negative of this area over the interval [x, 0] if -1 \ x \ 0). Although Newton does

not refer to A(1 ? x) as a logarithm, he asserts that:
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A 1þ xð Þ 1þ yð Þð Þ ¼ A 1þ xð Þ þ A 1þ yð Þ;

A
1þ x

1þ y

� �
¼ A 1þ xð Þ � A 1þ yð Þ; x; y [ � 1ð Þ

ð9Þ

In other words he asserts that all the hyperbolic-areas have the same properties as the
logarithms. On the basis of these formulas he proceeds to calculate a small table of

logarithms of integers to 57 decimal places! To check the accuracy of his computations,

Newton calculates A (0.9984) in two different ways: first by (5) and then by the formulas

(9). He finds that the two results agree to more than 50 decimal places (Edwards 1979:

160). A result, quite convincing for the validity of the relations (9)!

Charles-René Reyneau (1656–1728) is the author of L’ Analyse démontrée, ou la
mèthode de rèsoudre facilement des problèmes et d’apprendre facilement ces sciences
(Paris, 1708). Reyneau considers the Fig. 3 with the abscissas in geometric progression

with a = OK = 1 and ‘‘whose ratio differs from the unit by an infinitely small quantity’’

(note 1 ? e this ratio). In addition, the author does not doubt that ‘‘one can conceive all the
numbers in this progression’’ (cited in Lubet 2006: 237). The logarithms then are defined

as in Table 5 where the entries in the second row are the numbers (1 ? e)n, n [ N. Cer-

tainly, Reyneau should have clarified some issues like the following:

Can all the numbers be reached by a geometric progression of ratio (1 ? e)? To

what numbers is he referring? Which is the role of infinity in Analysis?

From a theoretical viewpoint, the model of hyperbola-area made visible the end of the

road in the search for a denser and denser geometric progression. Thus, to attain the

densest geometric progression we have to leave the realm of the geometric progressions.

The densest geometric progression ‘‘is’’ the continuum; logarithms have to be defined on

the continuum. It is necessary to adopt log 1 = 0. This determines the place from which

areas are measured and guarantees that log AB = log A ? log B. But, which is the base,
if there is at all, of the logarithmic system defined by this densest geometric progression?

The base of the logarithms is determined by the hyperbola, which will be taken as y = 1/

x, with no other justification at the moment than its simplicity. It is known that different

hyperbolic curves illustrate different logarithmic systems; the hyperbola y = 1/(ln

R)x gives logarithms to the base R – later on, that could be the object of another activity.

The definition log xj j ¼
R x

1
1
t dt; given in some modern textbooks, is the result of the

above analysis.

It took a further seventy years or so for the union of the logarithmic and exponential

concepts. By the end of the seventeenth century it was recognized that logarithms could be

defined as exponents. However, we find the definition and the first systematic exposition of

logarithms as exponents in the introduction to William Gardiner’s Tables of Logarithms
(London, 1742). According to Cajori (1913, p.46), the presentation is due to William Jones

(1675–1749). The one whose influence was greatest in emphasising the new view was

Euler, who, in his Introductio in analysin infinitorum (Berlin 1748), introduced the loga-

rithm of x with base a as that exponent y such that ay = x (Euler 1748/1990: Book I, Ch.

VI). In Ch. VII Euler develops the infinite series expansions for the exponential and

logarithmic functions. One can interpret these calculations, which are presented for

example by Edwards (1979: 272–274), to make them close to the text of Reyneau: a

geometric progression of ratio (1 ? ke) is associated to an arithmetic progression of

common difference e, the number x is a term in this progression, he holds the ‘rank’ N,

namely x = Ne. Euler writes:
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ax ¼ ð1þ keÞN ¼ 1þ k
x

N

� �N

; loga ð1þ keÞN
� �

¼ x

But Euler does not use the terminology of progressions, and he does not need to specify, as

did Reyneau, that all numbers are contained among the terms of a sequence. The binomial

formula plays a key role. Its use for any exponent realizes a mild passage from discrete to

continuous. In addition, the calculation is independent of any geometric representation.

The track inaugurated by Euler translates into analytical terms the ‘densification’ of a

geometric progression. The legitimacy of Euler’s calculations is quickly called into

question when one considers them in details. But the fundamental idea that underlies them

remains fertile. When the properties of convergence and continuity are cleared up, they are

nicely adjusting to the approach followed by Euler in his Introduction and yield (with

k = 1), the well-known results:

ex ¼ lim
n!þ1

1þ x

n

� �n

and ex ¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ � � �

The wider adoption of the definition of logarithms as exponents, in school books, was due

largely to the influence of Euler, who gave it in his Complete Introduction of Algebra (Sect. 1).

Next, we present a part of the standard material about logarithms. The discussion in this

section (Sect. 2.4) will be used to motivate the students, explain the origin of basic

propositions and definitions and design some interesting activities for the students.

3 Formal Presentation of Theory

3.1 Natural Logarithms

We begin with that historical proposition of Gregory of St. Vincent in which he actually

proved the logarithmic property of hyperbola (Sect. 2.4). Here we formulate the propo-

sition in an equivalent way that is used more effectively in what follows.

Proposition of Gregory of St.Vincent For 0 \ a \ b let Ea,b be the area enclosed by
the hyperbola y = 1/x, the straight lines x = a, x = b and the x-axis (Fig. 4). Then for any
k [ 0:

Eka;kb ¼ Ea;b

Proof Intuitively it seems right that the area remains the same when we move along the

x-axis and under the curve, provided that we stretch the length to the same ratio with the

one we contract the height.

In order to compare analytically the two areas, we divide each interval [a, b] and [ka,

kb] into n subintervals of equal length and will approach each area with rectangles (Fig. 4).

Let Ta,b and Tka,kb be the areas of the figures consisting of the rectangles belonging to the

two intervals. Each rectangle in Ta,b has width (b – a)/n and each one in Tka,kb has width (kb
– ka)/n = k(b – a)/n. We now compare rectangle for rectangle. The first one from the left

in Ta,b has height 1
aþðb�aÞ=n; hence it has area

b� a

n

1

aþ ðb� aÞ=n
ð10Þ
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The corresponding first one from the left in Tka,kb has height 1
kaþkðb�aÞ=n; hence it has area

kðb� aÞ
n

1

kaþ kðb� aÞ=n
ð11Þ

Consequently, from (10) and (11), the two rectangles have the same area. This continues to

be true for all the n rectangles. And it follows that Ta,b = Tka,kb, and, as n increases,

Ea,b = Eka,kb. (Note: We have treated the limits intuitively since at the level of 11th graders

the concept of limit and its properties has not yet been introduced in a rigorous way).

Corollary If the segments OK, OL, OM, ON are consecutive terms of a geometric

progression, then the areas (ABLK), (ACMK), (ADNK) are consecutive terms of an arith-

metic progression (Fig. 3).

Proof Suppose that OK = 1, OL = r, OM = r2, ON = r3 and apply Gregory’s

proposition.

All our discussion until now justifies the next definition of the natural logarithm

(Fig. 5).

Definition

ln x ¼
E1;x; if x [ 1

0; if x ¼ 1

�Ex;1; if 0\x\1

8
<

:

We prove the basic property of the logarithmic function that is the property of turning
the multiplication into addition.

Proposition If x, y [ 0, then ln(x y) = ln x ? ln y

Proof Let 1 \ x B y.

Then xy [ x and xy [ y (Fig. 6). Therefore:

ln xyð Þ ¼ E1;xy ¼ E1;y þ Ey;xy ¼ ln yþ Ey;xy ð12Þ

However, from Gregory’s proposition we have that:

Ey;xy ¼ E1;x ð13Þ

Fig. 4 The area under the hyperbola and between a, b is equal to that between ka and kb (1 \ a \ b)
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From the above Eqs. 12 and 13 we take

ln(xy) = ln x ? ln y
The other cases 0 \ x B y B 1 and 0 \ x B 1 B y are proved similarly.

Corollary

(i) If x [ 0 and r is a rational number, then ln (xr) = r ln x.

(ii) If x, y [ 0, then ln (x/y) = ln x – ln y

Proof is left to the reader.

The graph of the logarithmic function It follows from the definition that: the loga-

rithmic function y = ln x is strictly increasing and 1 – 1, ln1 = 0, ln x [ 0 if x [ 1 and ln

x \ 0 if 0 \ x \ 1.

We observe also that ln (2n) = n ln 2 and ln (2-n) = -n ln 2 for each natural number

n. Since ln 2 [ ln 1 = 0, this means that there exist arbitrarily large and small logarithmic

values. Consequently, as x becomes large or as we say tends to ??, ln x grows also to

??. Respectively, when x becomes small tending to 0, ln x also becomes small tending

to -?.

x

y
y=1/x

x 1

(a) 

x

y

y=1/x

1 x

(b) 

Fig. 5 The definition of the natural logarithm

Fig. 6 ln(xy) = ln x ? ln y
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To obtain a better image, we will illustrate the calculation of ln 2, that is the area

between x = 1 and x = 2, and so we will give also an idea for the calculation of logarithms

via calculating areas. An application of the composite trapezoidal rule for n = 3 (e.g.,

Atkinson 1989: 253) gives 0.7 as an upper estimate for ln 2. Similarly, applying the

composite midpoint rule for n = 3 (idem.: 269) we obtain 0.689 as a lower approximation

for the ln2. Hence 0.689 \ ln 2 \ 0.7 and consequently 0.7 approximates ln 2 with

error \ 0.011.

Taking ln 2 = 0.7 and drawing certain points with the help of the relation ln 2n = n ln 2

we find the graph of y = ln x (Fig. 7). Since the logarithmic function is strictly increasing,

it is explicit from the figure that the graph cuts each horizontal line y = y0 in precisely one

point. Consequently for any given number y0, there exists precisely one number x0 such

that ln x0 = y0.

Definition of the number e It follows from the paragraph above that there exists for

y = 1 only one number whose logarithm is equal to 1. This number should be the base of

the natural logarithms. It seems that Euler was the first one to recognize the importance of

this number and used the special symbol e for its notation around 1730 (e.g., Kline 1972:

258). Therefore, e is the number for which ln e = 1, that is to say the area E1,e is equal to 1

(Fig. 8).

An initial estimate for the number e can be obtained as follows: It is known from the

previous discussion that ln 2 \ 1 and it is easy to see that ln 3 [ 1 (apply the midpoint rule

for f (x) = 1/x, over the interval [1, 3]). Thus:

2\e\3

Textbooks usually introduce e as the limit of the sequence an = (1 ? 1/n)n, n [ N*,

which appears through a study of compound interest. Next, they inform students that the

mysterious number e is particularly important and, used as a base, gives rise to a partic-

ularly important class of logarithms (e.g., Brown 1992: 187, 193). The students, unable to

see any connection of that number with logarithms, feel that the whole system is artificial.

This unmotivated development disturbs students and it is particularly harmful to mathe-

matics teaching.

Fig. 7 The graph of y = ln x
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The presentation followed in this paper leads to a quite reasonable explanation of the

equality:

e ¼ lim
n!þ1

1þ 1

n

� �n

From the definition, e is a number such that E1,e = 1. We divide the interval [1, e] into n

subintervals and approach the area E1,e with rectangles (Fig. 9, for n = 4). The ends of the

subintervals are determined by the points {1, r, r2, …, rn = e}, which are in geometric

progression with common ratio r ¼
ffiffiffi
en
p
: The considered rectangles have their top left

corners on the graph of 1/x. Consequently, their heights are: 1, 1/r, 1/r2, …, 1/rn-1. Then,

we calculate easily that the area of the figure consisting of the sum of all the rectangles is

En = n (r - 1), that is En ¼ nð
ffiffiffi
en
p
� 1Þ:

As n becomes very large we can consider that: En & E1,e. In other words, En & 1

or nð
ffiffiffiffiffiffiffiffiffiffiffi
e� 1n
p

Þ ffi 1

or
ffiffiffi
en
p
� 1 ffi 1=n

or
ffiffiffi
en
p
ffi 1þ 1=n

or e ffi ð1þ 1=nÞn

and from this we can conclude that:

e ¼ lim
n!þ1

ð1þ 1=nÞn:

Now we can compute a more accurate value of e though the convergence of the

sequence is too slow. Euler gave an approximation for e to 18 decimal places:

e = 2.718281828459045235. Note that we can easily remember the first 9 decimal digits,

but never right on the board e = 2.718281828 since the students tend to think that e is

rational.

We shall not enter into a discussion of logarithms to any base a (a [ 0 and a = 1).

There are certain basic propositions that we encounter in the curriculum of 12th grade (as

they are the basic limit: lim
x!1

ln x=ðx� 1Þ ¼ 1, the continuity and differentiability of the

logarithmic function) and are usually omitted in most school books, with the remark that

they are beyond the possibilities of the students. However, with the new definition of the

1 e

E=1

y=1/x

Fig. 8 The definition of e
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logarithm these proofs become simple and comprehensible. We shall give only the proof of

the basic limit.

Basic inequality:
x� 1

x
� ln x� x� 1 for any x [ 0:

Proof The shaded area is between the rectangles that have as base the interval [1, x] and

heights 1/x and 1 respectively (Fig 10). Hence (x – 1)/x \ ln x \ (x – 1) � 1. Thus we have

proved the inequality for x [ 1. The case for 0 \ x \ 1 is proved similarly and the case

x = 1 is trivial.

Basic limit: lim
x!1

ln x

x� 1
¼ 1

Proof The previous inequality for x [ 1 becomes 1
x � ln x

x�1
� 1; and therefore lim

x!1þ
ln x
x�1
¼ 1:

We proceed in a similar way for x \ 1.

3.2 The Exponential Function ex

The exponential function will be defined as the inverse function of ln x. Usually, the

concept of the inverse of a function has not yet been taught at the level of 11th grade. It is

possible to avoid any mention to the inverse functions by working as follows: First we ask

the students to check that the points (n, n) and (n, n) are symmetrical about the line

y = x in the first quadrant. Then we ask them to construct the symmetrical of the graph of

the function y = ln x about this line and we help them notice that the result must be the

graph of some function f since any straight line vertical to the axis of abscissas cuts it at

most to one point (Fig. 11).

This function f will be called the exponential function (the reason for this name will be

apparent shortly) and it is defined by the equivalence:

y ¼ f xð Þ , ln y ¼ x; x; y 2 R and y [ 0 ð14Þ
From the definition it results immediately that:

y=1/x

1 r r2 r3 r4=e

Fig. 9 e is the limit of the sequence (1 ? 1/n)n, n [ N
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ið Þ f ln xð Þ ¼ x; x [ 0 iið Þ ln f xð Þ ¼ x; x 2 R iiið Þ f 0ð Þ ¼ 1; f 1ð Þ ¼ e

Next we prove the function f coincides with y = ex in the domain of rational numbers.

First, from the logarithmic property ln (ab) = ln a ? ln b we get easily that f has the

next basic property for any real numbers x, y:

f xþ yð Þ ¼ f xð Þ � f yð Þ

Repeated applications of this last property give, at least for integral n, m,

f nð Þ ¼ en and f 1=mð Þ ¼ e1=m

It follows that f (n/m) = f (n(1/m)) = en/m. So, the function f coincides with ex in the

domain of rational numbers:

Fig. 10 (x-1)/x \ ln x \ x-1

Fig. 11 The exponential function is the inverse of the logarithmic
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f rð Þ ¼ er;

where r is any rational number. In view of that, we define also ex for irrational numbers by

the equality:

ex ¼ f ðxÞ for any real number x:

Therefore the equivalence (14) is written:

y ¼ ex , ln y ¼ x; x; y 2 R and y [ 0 ð15Þ

Now the exponential law ex � ey = ex?y for all real numbers x, y, is nothing but a

restatement of the property f (x ? y) = f (x) � f (y). The other exponential properties are

also easily derived from the logarithmic properties. The function y = f (x) will be sym-

bolized from now on by y = ex. The name ‘‘exponential function’’ is now very clear.

We have not yet defined ax, if a = e. A reasonable way to do this is to change the base

a for e, provided that a [ 0. From property (i) above, we know that a = eln a. Hence

ax = (eln a)x = exln a. The requirement a [ 0 is necessary, in order that ln a be defined.

As we noted earlier (Sect. 2.2) it was surprising that logarithms were invented long

before exponents. But, as Cajori (1913: 174) remarks, another surprise follows. Namely,

every interpretation of the general power ab, where a, b are complex numbers, involves

previously proved results on logarithms (e.g., Churchill et al. 1974: 68). Thus, it seems that

the logarithmic concept is the more primitive.

4 Conclusions

The value of history of mathematics in teaching has been pointed out for many years.

Fauvel (1991) for example mentions at least fifteen reasons for applying the history to

teaching and learning mathematics. The interest among teachers in the application of

history to mathematics education is growing as is evident from the growing number of

books and articles of historical content and from the growing number of research groups in

this field (e.g., Fauvel and van Maanen 2000; Gulikers and Blom 2001). The positive

contribution of history of mathematics to the teaching of mathematics is located mainly in

the next three arguments (idem.):

• History of mathematics can help students understand better the mathematical concepts,

methods and proofs showing them how they were discovered and developed.

• History of mathematics can help students realize that mathematics is a human and

dynamic activity influenced by social and cultural factors and is shaped according to

the utilitarian and intellectual needs of each era.

• History of mathematics can help stimulate students’ interest for learning and improve

their perceptions of mathematics and attitudes towards it.

However the previous arguments are not taken into consideration in the most school books.

These never describe the efforts and the failures that led to the concepts they describe. The

presentation in the form Definition–Theorem–Proof–Corollary can be elegant and can save

time but the students remain with the query: How did the idea for these definitions and

theorems come? According to Freudenthal (1973: 107):

the basic definitions should not appear in the beginning of an exploration, because in

order to define something one should know what this is and also in what it is useful.
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Then, what we can do for them? We can make them see why and how we have found what

they are taught today. The procedure that originally led to a mathematical result is

considered indispensable for its understanding; there is a connection between student’s

mistakes, cognitive obstacles, and problems in the historical development of mathematics

(e.g., Brousseau 1997: 87–88; Hadamard 1954: 104). This process includes important

aspects of doing mathematics, such as the role of intuitions, heuristics, misconceptions,

contradictions, refutations, alternative approaches, and as well as the motivation and the

problems for which a mathematical concept was created (e.g., Lakatos 1976: Introduction

and Appendices). It also conveys to our students the basic attributes of mathematics as a

part of human culture (e.g., Bishop 1991). However, we have made it clear in Sect. 2.4 that

this does not imply that the learning of mathematics should be dictated by an ontogeny
recapitulates phylogeny argument. Thus, it turns out that using history in the teaching of

mathematics is not (only) a matter of content but it is a matter of attitude and a problem of

image of the mathematical science.

Answering the question why we should apply the history of mathematics in its teaching

is one thing; how to do so is another thing. The lack of supporting teaching material such as

didactical guidelines and empirical descriptions for teachers on how to use available

historical material in their lessons is one of the difficulties that have been raised in inte-

grating history in the teaching of mathematics (e.g. Fauvel 1991; Fauvel and van Maanen

2000: 212; Fowler 1992; Gulikers and Blom 2001: 231). Nevertheless, the amount of

general articles outnumbers the practical essays which contain suggestions for resources or

lessons.

The present article focuses on converting the history of logarithms into material

appropriate for teaching students of 11th grade. It is unquestionable that the abstract

definition of the logarithmic function as the inverse of the exponential function has a

certain practical value into the stifling analytic program; it allows the easy and direct proof

of the logarithmic properties from the properties of powers. But, this gives the impression

that mathematics were created ready made. As Klein (1945: 146) has put it:

this is despicable utilitarianism which is scornful of every higher principle of

instruction, and which we must surely and severely condemn.

Students will begin to recognize the significance of logarithms through the various ways

of recapturing their history. Teaching the theory of logarithms by following the historical

development in its basic lines presents the following specific advantages:

(a1) It justifies what is ‘natural’ in the natural logarithms as well as their relation with

number e.

(a2) It justifies the origin of the term logarithm. Also, the consideration of the

trigonometric numbers as lengths, and not as ratios, allows the explanation of the origin

of the words sine, cosine, tangent and secant (e.g., Smith 1923/1958: 618–623).

(a3) It allows the proof of important properties of the logarithmic function with the help

of a geometric model. The current studies on visualization (e.g., Dreyfus 1991a) leave

little doubt as to the effectiveness of graphical representations in the learning of abstract

subjects. Once again we employ geometry to support the science of computation; we

should remember that the Greeks gave numerical computations a geometrical

interpretation (e.g., Heath 1956).

(a4) It connects creatively the new unit with the previous one, that of the progressions.

(a5) It offers a first class opportunity to stress the usefulness of trigonometric formulas

that they convert products into sums in the discussion of the method of prosthaphaeresis.
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This example has much more value than the barren use of formulas in the solution of

routine exercises because it really contributes in enlarging students’ understanding of

trigonometry and increases their estimate to this course.

(a6) It connects the new unit with the study and the graphic representation of the

function y = 1/x.

(a7) It makes worthy the knowledge about the conic sections.

(a8) It ensures a unique foundation that can support later the teaching of integral

calculus.

Moreover, the topic is useful for drawing attention to some general characteristics of

mathematics, which would help students better understand the nature and potential of what

they are studying.

(b1) It helps students to realize that mathematics is not a given system of results, by

emphasizing the existence of a motivation for the introduction of a new concept and the

construction of knowledge out of the activity of problem solving. Epistemologist

Bachelard (1938/1983: 14) has written:

All knowledge is a response to a question. If there had not been any questions, it would

not have been possible to have scientific knowledge.

(b2) It reveals the evolutionary nature of mathematics in its form. Advances in form have

often made it easier to learn mathematics (although they can also give rise to difficulties

that can bar the way to effective understanding).

In the case of logarithms, students may appreciate the power of a good notation for the

advancement of mathematics. Difficulty in developing facility with the meaning and use of

symbols is one of the major obstacles to the learning of algebra in school. It is still an

important goal of mathematics education to show the merit of suitable symbolism. A

beneficial activity could be here a project for the development of notation, in particular of

the exponential, from the time of Chuquet until the middle of eighteenth century (e.g.,

Cajori 1913, pp. 13, 35–37; Kline 1972, pp. 259–263).

(b3) It reveals the evolutionary nature of mathematics in its content. In this way, students

can gain a feeling for the nature, growth processes, and aliveness of mathematics.

Logarithms are a good and accessible example of something fundamentally changing

its conceptual role within mathematics. The initial usefulness of logarithms in the

simplification of numerical calculations has diminished in importance, whereas the use of

logarithmic function as an intrinsic ingredient in the solution of problems continues to

increase. A device for easing the activity of calculating turns out to be a function of

immense power.

Comparison of our present-day mathematics with older techniques enables us to

determine the value of our modern mathematics, and to point out this value to our students.

One can prepare a worksheet where students will have to multiply two many-digits

numbers in three different ways—by means of prosthaphaeresis, logarithms and a pocket

calculator—and pose the questions: Which method is simpler? How many distinct opera-
tions are required to compute products by the prosthaphaeretic rule? How many are
required by using logarithms? A project would also be given about the evolution of

calculating devices and machines from early seventeenth century to 1942; for example:

Napier’s rods, slide rule—Pascal’s or Leibniz’s machines—Babbage’s difference and

analytical engines (Cajori 1994; Smith 1929/1959, 1923/1958; Swade 1991). Instruments

as Napier’s rods and the slide rule can be introduced in the mathematics classroom.
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(b4) It provides opportunities to unfold and emphasize important pedagogical issues.

It is known that the variety of equivalent formulations of a concept is a source of

richness and power. The concept of logarithm, defined as area and as an exponent, let this

idea to be understood, not as an artificial construction but as a response to problems and

inquiries within the practice of mathematics. The importance to have many representations

of a concept and the process of switching representations is discussed by Dreyfus (1991b:

32–33).

Moreover, the proposed presentation offers students a good opportunity to get the

experience of changing their perspective while solving problems, because of the variety of

methods from various periods that have been applied to solve the original problem of

performing calculations with large numbers. This is the flexibility component of creative

mathematical thinking that refers to a learner’s ability to propose a variety of approaches to

a specific problem. The core features of creativity (fluency, flexibility, elaboration and

originality) can also be used to improve mathematical teaching and learning (e.g., Silver

1997; Sternberg 1988).

(b5) It also suggests that different mathematical domains reinforce each other.

The historical development of the logarithmic ideas pulls together ideas from different

areas of mathematics such as arithmetic, algebra, trigonometry, conic sections and

calculus. So, it helps to prevent the view of mathematics as a subject divided into non-

overlapping compartments. This belief is unproductive in the teaching and learning

process, adversely influencing the attitudes of students.

(b6) It presents the development of mathematics as a human activity influenced by the

social and cultural milieu and being related to other disciplines.

Mathematics is a body of knowledge that is constantly evolving in response to societal

conditions and, as they change, so does the nature of the mathematics that serves them.

Logarithms came out as a response to needs that are both material and intellectual.

Especially suitable projects to display the cultural and scientific setting in which the

development of logarithms took place should be assigned around the question: who needed

big numbers anyway? Examples of such projects could be: ‘‘The navigational problems of
seafarers of the fifteenth century, considered from the mathematical stand point’’, and ‘‘The
cartographers’ problems of course plotting and of determining the most efficient paths to
navigate, studied from the mathematical viewpoint’’ (e.g., Resnikoff and Wells 1984). The

historical treatment of logarithms provides also examples with discussions about

ideological concepts and value judgments about the structure of society. One may give

as homework assignments: ‘‘Why did the emergence of mercantile capitalism in forteenth
century Italy spawn a mathematical Renaissance’’? (Swetz 1987), and ‘‘Why did Columbus
sail under the Spanish flag rather than the Portuguese’’? (e.g., Resnikoff and Wells 1984:

175–176).

(b7) It helps to develop a multicultural approach in the classroom and give rise to the

consolidation of a scientific world view.

Many questions which arise in today’s courses were considered by other peoples years

ago. What does differ is the approach. Take for example the number systems of the

Egyptians and the Babylonians and compare these systems with ours. One can design some

activities around the following issues: How did Egyptians multiply numbers? How did
Babylonians multiply numbers? How did our modern algorithms for the basic operations
evolve? Students might appreciate the crucial role representations play and the contrast of
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our own numeration system with other systems can be effective for a better understanding

of its particular features (e.g., Heiede 2000; Ofir and Arcavi 1992; Smith 1923/1958; Swetz

1984, 1995).

Depending on the available time, it is beneficial but also enjoyable to play around with

the Babylonian hexadecimal system. For the students, who have a certain experience with

investigations of the law (model, pattern) that shapes a sequence of numbers, there exist

interesting examples in the plate Plimpton 322 (e.g., Buck 1980; Polya 1954/1990).

(b8) It promotes positive students’ affective outcomes toward mathematics.

Attitudes are central to the educative process both as ends and as means. One technique

that has been suggested as a means to improve students’ affective outcomes toward

mathematics and that has been endorsed by the National Council of Teachers of Mathe-

matics (Hallenberg 1969/1989) is that of incorporating the history of mathematics into

classroom discussions of mathematical topics. From the historical development of loga-

rithms in this paper we may infer that history may influence positively the students’ affect

toward mathematics in several ways, some of which are the following:

• It helps to increase students’ interest for learning by exposing our students to the

affective aspect of doing mathematics. If in teaching we give students only the rigorous

part of mathematics, we give them the wrong image of mathematics as a boring and

finished subject. History can induce us to create a classroom climate of search and

investigation and not just of conveying information. Reconstructing relationships is

often considered among the most effective ways for students to learn mathematics (e.g.,

Dreyfus 1991b: 40). This effectiveness may be attributed to the psychological aspects

of the process of discovery: the personal involvement, the intensity of attention, the

feeling of achievement and success, the pure joy of discovery.

• It helps to increase students’ appreciation of the importance, usefulness and value of

mathematics and motivate them for studying mathematics. Knowing the origin of

problems, concepts and proofs, how ideas were perceived, refined, and developed into

useful theories and realizing that they were invented as answers to concrete questions

posed by human beings has a motivational effect. Teaching mathematics as a ‘‘dull

drill’’ subject will produce students who perceive mathematics as an incomprehensible

collection of rules and formulas that land on the blackboard. These students build

psychological barriers to true mathematical understanding and develop anxieties about

the learning and use of mathematics.

• It helps to increase students’ confidence and perseverance and decrease anxiety.

Mathematics is not only for the geniuses. Mathematical results are the fruition of

centuries of thought and development, and on the way to final achievement there are

bound to be doubts, mistakes and failures. Students derive comfort from realizing that

they are not the only ones with problems so that they get less discouraged by their own

misunderstandings and mistakes. And finally,

• It helps us to interject human interest, a factor of affect improvement, in mathematics

lessons from which such aspect is often absent. There is no question that biographical

material enlivens classroom teaching. They are full of emotion and possess all the

facets of human life that capture the imagination and perpetuate interest: successes,

failures, perseverance, adventures, ingenuity, social and sex discriminations, foible,

disputations, unfairnesses, intrigues, scandals and so on. The story of Napier’s

perseverance for years in trying to shorten the labor of tedious calculations is

educationally enlightening. This is also an example of success but we have to give our
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students some feeling for the pains of failure in mathematics: Gregory St. Vincent was

one of the great mathematicians who made repeated unsuccessful attempts to solve the

problem of squaring the circle. It also provides motivation seeing mathematics as a part

of the social and cultural milieu (see above b6 and b7).

A lot of favorable testimony has been accumulated about the use of history in mathe-

matics teaching. This opinion, which is common to the majority of the cases, usually

comes from subjective impressions and not from regular and systemic studies of the

outputs. We have also undertaken the proposed teaching sequence for the concept of

logarithms in two high school classrooms. Our experience was positive. More importantly,

students responded positively with a good and real feeling that they had been engaged in an

actual mathematical investigation to tackle a problem. There are, however, some systemic

case studies that emphasise the positive effect the history of mathematics had on the

learning of mathematics and attitudes toward mathematics (Fauvel and van Maanen 2000:

Sects. 5.2–5.3; Gulikers and Blom 2001: 233–235; McBride and Rollins 1977).

Felix Klein has proposed the use of the following equality:

Za

1

dx

x
¼
Zca

c

dx

x

for the definition of logarithms. He himself (Klein 1945: 156) added:

I wish very much that some one would give this plan a practical test in the schools.

Just how it should be carried out in detail must, of course, be decided by the

experienced school man.

The proposition of Gregory of St Vincent is precisely the translation of this integral

relation to the level of 11th graders. The present paper is our attempt to apply Klein’s

recommendation. During the teaching sequence we have proposed a lot of interesting

activities broadly dispersed within classroom drills and homework assignments. Certainly

a single teacher could not do all these activities but one may choose among them the most

appropriate for her/his class. There is a reasonable amount of information in the article so

that one can get acquainted with the subject and feel comfortable while teaching it.
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Histoire de Logarithmes (pp. 233–268).Commission Inter-IREM, Paris: Ellipses.
McBride, C. C., & Rollins, J. H. (1977). The effects of history of mathematics on attitudes toward math-

ematics of college algebra students. Journal for Research in Mathematics Education, 8(1), 57–61.
Menghini, M. (2000). On potentialities, limits and risks. In J. Fauvel & J. Van Maanen (Eds.), History in

mathematics education, The ICMI Study (pp. 86–90). Dordrecht: Kluwer.
Ofir, R., & Arcavi, A. (1992). Word problems and equations: An historical activity for the algebra class-

room. The Mathematical Gazette, 76(475), 69–84.
Pierce, R. C. (1977). Sixteenth-century astronomers had prosthaphaeresis. The Mathematics Teacher, 70,

613–614.
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