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Abstract Euler’s formula for the buckling of an elastic column is widely used in engi-

neering design. However, only a handful of engineers will be familiar with Euler’s classic

paper De Curvis Elasticis in which the formula is derived. In addition to the Euler

Buckling Formula, De Curvis Elasticis classifies all the bent configurations of elastic rod—

a landmark in the development of a rational theory of continuum mechanics. As a historical

case study, Euler’s work on elastic rods offers an insight into some important concepts

which underlie mechanics. It sheds light on the search for unifying principles of mechanics

and the role of analysis. The connection between results obtained from theory and those

obtained from experiments on rods, highlights two different approaches to scientific dis-

covery, which can be traced back to Bacon, Descartes and Galileo. The bent rod also has an

analogy in dynamics, with a pendulum, which highlights the crucial distinctions between

initial value and boundary value problems and between linear and nonlinear differential

equations. In addition to benefiting from the overview which a historical study provides,

the particular problem of the elastica offers students of science and engineering a clear

elucidation of the connection between mathematics and real-world engineering, issues

which still have relevance today.

1 Introduction

Civil, structural and mechanical engineering students will, at some point in their under-

graduate studies, come across the name Euler (1707–1783). It tends to crop up in a number

of places: in mathematics, fluids and solid mechanics. For an extensive but by no means

exhaustive list of mathematical terms, theorems, functions and formulae bearing his name,

see Burckhardt (1983). But most likely, for an engineer, it is the Euler Buckling Formula

(EBF) for which his name is best remembered. This formula, one of the first examples of

the application of the calculus to engineering design, gives the critical value of the
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compressive end force required to buckle a long slender straight rod. The EBF first

appeared in 1744, in an Appendix to a treatise on the calculus of variations: Treatise on
Isoperimeters. The appendix has the title De Curvis Elasticis, which freely translates

‘‘Concerning Elastic Curves’’. This work has drawn the attention of a variety of scientists,

engineers and mathematicians. Structural engineers are interested in EBF for its application

to design. Dynamicists are curious in EBF as (perhaps the first) example of the analysis of a

phenomenon known as a bifurcation (from the Latin furca, to fork). Their curiosity may

also be aroused by the mathematical analogy between the problem of the elastica and the

dynamics of a pendulum. Historians of mathematics are interested in the analysis which

leads to EBF—for its association with the early foundations of the calculus of variations

and its connections with the development of elliptic functions. We can also mention that

the problem of determining the configuration of an elastic line under terminal forces, i.e.

the problem of the elastica, illuminates some important principles which underlie

mechanics and scientific methodology. In particular it sheds light on the search for unifying

principles of mechanics and its connection with experimental work. It follows that the

problem of the elastica presents enormous potential as an interesting historical case study

and can be viewed from a number of perspectives. Taken together, they also provide the

student with a rare overview of mechanics. Our aim is to examine these themes from a

unified perspective.

Anyone who bothers to open the pages of De Curvis Elasticis will quickly realise that

the derivation of EBF is not its central theme, but is encountered serendipitously. Euler

discovered it whilst engaged in the task of solving the equations of equilibrium which

describe the post-buckled configurations of elastica. Figure 1 shows a photograph of a

length of nickel–titanium alloy wire which has buckled from its natural stress-free straight

configuration by displacing the ends towards each other. But the variety of possible con-

figurations includes rods bent into a ‘‘U’’, a ring, a figure-of-eight, and a knot. Euler

proposes a classification scheme for these shapes some of which are shown in Fig. 2.

Before we continue, we note that the post-buckled rod is not simply a mathematical

curiosity, but finds wide applications in engineering and the physical sciences: in deep-sea

cable and pipe-laying operations (Coyne 1990), tangling in cable–buoy systems (Berteaux

1976), mechanism design (Sönmez 2006), the textile industry (Hearle 2000), and in many

areas of biology, notably as a model for the writhing of DNA (Balaeff et al. 2006; Travers

and Thompson 2004).

We have talked enough about applications and it is time to return to one of our central

themes: the connection between the theory of the elastica and experiments on ‘‘physical

rods’’. This connection can be portrayed as the link between the branch of engineering

analysis known as ‘‘strength of materials’’ and the branch of mathematics referred to as

elasticity theory. The former composes a body of knowledge assembled from a variety of
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Fig. 1 Photograph of a bent nickel–titanium alloy rod clamped at its ends. The rod is 1 mm diameter and
350 mm long. A coordinate system is superimposed, also showing the loading from an end force P and a
bending moment M. This configuration of elastica falls within Species 2 of Euler’s classification scheme
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sources, one of which is elasticity theory, but others may be empirical. The latter, however,

is a self contained rational theory. The development of elasticity theory was largely

achieved by finding the solution to some simple problems, at first isolated, but later linked

together to construct the general theory from which more complicated problems could be

solved. Euler’s De Curvis Elasticis is one of these simple problems. We pause here to

contemplate Love’s remark in the Historical Introduction to his classical work The
Mathematical Theory of Elasticity:

Most of the men by whose researches it [elasticity theory] has been founded and shaped

have been more interested in Natural Philosophy than in material progress, in trying to

understand the world than in trying to make it more comfortable. (Love 1927, p. 30)

This remark captures the motivation of Euler and that of his contemporaries as they

grappled with the task of unraveling the elastica problem. Euler was not, however, com-

pletely removed from the affairs of the real world: when he stumbled across EBF, he

suggests that it ‘‘can be put to use especially for wooden columns, since they are subject to

bending’’. The extent of its applicability to real-world engineering is an issue which has

concerned engineers since Euler’s time to the present:

The story of the column formula is a unique one with a continuity over a 239 period.

It needs retelling from time to time to revive attention to some lesser known facets

and to bring it up to date. At the same time it must be recognised that it concerns an

Species 4
c > a

Species 5 
c2/a2 = 0.82594

Species 7
 c2= 2a2

Species 6

0.82594 < c2/a2<1
Species 8  c2 > 2a2

Fig. 2 Euler’s drawings of some
of the nine ‘‘species’’ of elastica.
These are defined in terms of the
ratio c2

a2, a load parameter. Not
shown here are Species 1 which
is the straight rod with c

a ¼ 0,
Species 2 with 0 \ c2

a2 \1, (see
Fig. 1), Species 3 with a = c
which is the ‘‘rectangular
elastica’’, and Species 9 which is
a ring given by c

a ¼ 1 and where
the end force vanishes
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unattainable limit of ‘‘perfection’’ that does not exist for columns in real structures.

(Johnson 1983)

The connection between EBF and the design of real structures is a manifestation of two

different methods of scientific discovery—one mathematical, the other experimental. We

introduce Euler’s studies of the phenomenon of buckling in Sect. 2. Then in Sect. 3 we

take a look at the experimental approach to the problem. In Sect. 4 we draw attention to

some of the debates, which preceded Euler’s work, on how scientific enquiry should

proceed. By tracing the problem of the elastic curve back to the study of curves in general,

in Sects. 5 and 6, Euler’s De Curvis Elasticis is set firmly within the context of the

mathematical approach, the one so succinctly depicted by Love. The mathematical model

also has a curious static–dynamic analogy, which is the focus of Sect. 7. The significance

of Euler’s De Curvis Elasticis, as a corner stone in elasticity theory, and the quest for

unifying principles of mechanics is alluded to in Sect. 8. We remark here that some of

these topics may well lie on the margins of an undergraduate engineering programme of

study. Nevertheless, merely by bringing the main concepts to the attention of a student can

provide for a deeper appreciation of the subject area. Note though, it is not our intension to

review Euler’s De Curvis Elasticis. This has been done in detail elsewhere, see Frasier

(1991) and Truesdell (1960). In any case, it is worthwhile reading the translation of Euler’s

work (1744).

2 The Buckling Phenomenon

The EBF gives the critical load Pc at which a straight rod buckles:

Pc ¼ nk
p2B

L2
; ð1Þ

where L is the length of the rod, B is its flexural stiffness (sometimes referred to as rigidity)

and is a property of the cross section of the rod which accounts for both the material it is

made from and the geometry of its cross sectional, n is an integer which depicts the mode

of buckling, and the value of k depends on boundary conditions (the manner by which the

ends of the rod are fixed). As we mentioned above, Euler does not dwell for long in De
Curvis Elasticis to ponder the significance of (1), nevertheless something or someone must

have prompted him to revisit it. In 1757, thirteen years later, Euler wrote a paper titled On
the Strength of Columns, in which he refocuses attention on the EBF:

When I developed elastic curves in the supplement to my Treatise on Isoperimeters, I

drew from them a conclusion in regard to the strength of columns that strikes me as

very remarkable. It concerns the loads that a column can support without buckling.

(Euler 1947)

He continues with a contemplation of the phenomenon of buckling:

At first glance it would seem that such a force [the end force P], no matter how large,

would never cause the column to bend; because there would be no reason why the

column should bend in either one sense or another. (Euler 1947)

Buckling involves an exchange of stability: the trivial solution (the straight configuration)

loses stability and the rod moves to a new bent state which is stable. If we restrict our

analysis to deflection in the plane (a rod with a flat cross section will tend to only buckle in
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the plane) then the rod can bend in only two directions: either to the left or the right. Thus,

at Pc there is a bifurcation—two equilibrium states which are mirror images of each other

emerge from the point at which the straight configuration loses stability. A characteristic of

buckling is that it is sensitive to the presence of small imperfections. In the case of the rod,

an imperfection is often the factor which determines the direction a rod will buckle in. The

role of imperfections did not escape Euler’s perceptive mind:

But the slightest variation in the dimensions or in the slightest force applied, no

matter from what side, would furnish sufficient cause, to induce buckling in a special

direction. (Euler 1947)

But this raises a paradox: an end force applied laterally, no matter how small in magnitude,

causes a deflection, whereas for values P \ Pc, an end force applied axially causes no

defection whatsoever. Euler can only ‘‘explain’’ the paradox by appealing to mathematics,

for which he had absolute confidence:

… in order to explain this paradox, we have but to say that so long as the loads

supported by the column are less than the quantity ppEkk/aa [i.e. Pc], the bending is

imaginary, and it remains = 0, until the load attains this limit, and when this limit is

exceeded the bending becomes real and increases with force. Since this is in

agreement with the principle of calculus, which, being based on continuity, should

not result in anything that contradicts this principle, we are without question obliged

to accept this explanation; and we may conclude as a general principle, that the

results of mathematical analysis always furnish the most reliable rules, which we

must follow in our reasoning based on the principle of continuity. (Euler 1947)

Evidentally Euler is struck by the fact that each of the nine species he had described in De
Curvis Elasticis evolves smoothly from one species to the next, whereas in the case of a

straight rod nothing happens until the critical load is reached. That nothing happens is not

strictly intuitive and due to the likely presence of the aforementioned imperfections, is not

necessarily consistent with experience, though in a carefully controlled experiment it is

readily observable.

3 Experimental Investigations into Buckling

The starting point for an experimental investigation into the buckling of slender rods may well

proceed by first of all identifying the critical parameters. These can be listed as follows:

• The length of the rod,

• The material the rod is made of,

• The geometry of the cross section (e.g., circular, rectangular),

• The details of how the ends are fixed (e.g., sliding grips, hinged, clamped ends),

• The load—its direction and magnitude and the manner in which it is applied.

The next step would be to work out which of these parameters can be measured, which can

be controlled, and which can be held constant. A parameter which the experimentalist can

control could then be either assigned as an independent or a dependent variable. In an

experiment the value of the independent variable would be adjusted, the dependent vari-

able measured, and other parameters held constant. Once an experimental procedure has

subsequently been established a set of experimental data would be collected and a best-fit

line drawn between the data points, from which a rule could be derived which expresses
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quantitatively the dependence of one parameter upon another. Intriguingly, an experi-

mental procedure similar to that outlined above had already been followed some fifteen

years before the appearance of De Curvis Elasticis. In 1729 Pieter van Musschenbroek

(1693–1761), a Dutch professor based at the University of Utrecht and later Leiden, carried

out a systematic and accurate sets of experiments on a wide range of structural materials.

His apparatus was well designed and permitted proper control of parameters. However he

was not so complimentary of the tensile testing rig designed by the French physicist and

experimentalist Edmé Mariotte (1620–1684), remarking:

In this method I noticed the inconvenience that the feet of him who performs the

experiment are always exposed to danger of injury when the weight falls. (Quoted in

Truesdell 1960, p. 151)

Van Musschenbroek’s experiments were on long strips of wood of rectangular cross

section. His experimental data led him to deduce the following quantitative rule:

Parallelepipeds of the same wood…, compressed along their lengths, exert forces of

resistance which vary inversely as the square of the length, directly as the thickness

of the side that is not bent, and directly as the square of the side that is bent. [Van

Musschenbroek Physicae experimentales et geometricae 1729. (Quoted in Truesdell

1960, p. 153)

i.e.

Pc ¼
bd2

L2
; ð2Þ

which has the same dependence upon the length L as (1), though the correct dependence on

the geometry of the cross section is the second moment of area I. For a rectangular cross

section I ¼ bd3

12
, where d = depth and b = thickness. We note that Euler was also unsure of

the dependence of buckling on the geometry of the cross section. He may have realised that

his one-dimensional theory cannot directly give this dependence (the elastic curve strictly

has no cross section but has an overall flexural stiffness B) and in his ‘‘On the Strength of

Columns’’ he proposes an experimental programme for investigating this dependence:

In the meantime it would be desirable if we made numerous experiments with

various specimens, bending them by means of a force F in numerous directions, in

order to learn more exactly in what manner the stiffness moment [=bending stiffness]

is affected by the width as by the thickness. (Euler 1947)

Clearly Euler could see a positive role for experimental methodology, though not as a

substitute for mathematics, rather as a means for taking the research further once mathe-

matical methods were exhausted. Sometimes experimentation can achieve this role and

sometimes it is reversed. But in an experiment the nature of the research can also change.

So Van Musschenbroek did not see any problem with extending his experimental study to

fracture (which lies outside the domain of elastic behaviour). He was consequently able to

additionally conclude that the rod ‘‘breaks in the middle where it is bent the most’’.
Another contribution of Van Musschenbroek was to show that failure in compression is

entirely different to failure in tension. Bell says of him:

If a man of his excellence had been interested in pre-rupture constitutive equations,

the impact of experimental solid mechanics upon theory and interpretation might

have been considerable even in the mid-eighteenth century. (Bell 1973, p. 162)
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It is interesting though, that Van Musschenbroek did not share Euler’s confidence in

mathematics:

The doctrine of resistance [elasticity] is always too problematic for the insight of

mathematicians. [Van Musschenbroek Physicae experimentales et geometricae
1729. Quoted in (Benvenuto 1991, p. 282).]

Euler either did not know of Musschenbroek’s work, or simply chose to ignore it. We

suggest here that if he had made reference to Musschenbroek’s experimental result (2)

then, apart from not being able to claim to be the first to discover EBF, his work would

have attracted interest from beyond the realm of Natural Philosophers. Though the

Musschenbroek–Euler connection gradually became known, it was to be at least a century

before EBF found its way into undergraduate text books on the mechanics of materials.

That it took so long is probably because the structural materials in common use in Euler’s

time were stone, cast iron and wood. Of course, timber construction has thousands of years

of empirical wisdom to fall upon, so it is not surprising that EBF was not widely discussed

amongst eighteenth century structural engineers. Their attention was only really drawn to

Euler’s work when new materials started to be mass produced (mild steels around the

1850s, and structural aluminium alloys around the 1900s), and there emerged a growing

demand for guidelines for design against buckling.

In the year 1811, the French engineer A.J.C.B. Duleau (dates unknown but died in

1830), carried out a comprehensive set of experimental investigations into structures,

which included many buckling experiments. Their historical significance is noted by Bell:

the experiments of Duleau became the primary basis for discussion and criticism,

both with respect to matters of further experimentation and in the later development

of the linear theory of elasticity, throughout the entire first half of the 19th Century.

(Bell 1973, p. 196)

One of Duleau’s set of experiments involved varying the slenderness ratio L/r (where L is

the length and r is an average measure of the cross section (r = the radius in the case of a

rod with a circular cross section) from 200 to 24 and found an average ratio of 1.16 of

experimental to theoretical buckling load. He was not sure why his experiments on

buckling deviated from EBF but, as Bell remarks:

Duleau pointed out in those first definitive measurements what every modern

experimentalist knows too well, namely that friction and the manner of holding the

specimen make the experiments extremely difficult to perform. (Bell 1973, p. 202)

In a footnote Bell adds that Cauchy (1789–1857) and Poisson (1781–1840), two individ-

uals who played crucial roles in the development of elasticity theory during the nineteenth

century, studied Duleau’s results:

The two famous theorists thought that the difference also could be attributed to the

fact that Euler’s formula applied to the situation was in some sense an approximation

and suggested that the experiments indicated that it did indeed give too weak a result.

(Bell 1973, p. 202)

Engineers like formulae because they know they work, irrespective of whether they are

founded on sound mathematical principles or not. Consequently, when EBF did not give a

good match with experimental data, it wasn’t long before some engineers dismissed it out

of hand. For example, the experimentalist Peter Barlow (1776–1862) had this to say:
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[Euler’s works are] too delicate to operate successfully upon the materials to which

they have been applied; so that whilst they exhibit under the strongest point of view,

the immense resources of analysis, and the transcendent talents of their author, they

unfortunately furnish but little, very little, useful information. (An Essay on the
Strength and Stress of Timber (1817) Quoted in Timoshenko 1953, p. 99)

Later, in 1822, further criticism came from J. Robinson, who described Euler’s work as

follows:

… a dry mathematical discourse, proceeding on assumptions which (to speak

favourably) are extremely gratuitous … his theory of the strength of columns is one

of the strongest evidences of this wanton kind of proceedings … (Quoted in Tim-

oshenko 1953, p. 99)

It is evident that in the course of these early experimental investigations, engineers were

finding different results from those predicted by EBF, and were generally not very

impressed by it. In his definitive historical treatise on experimental mechanics (Bell 1973),

Bell draws attention to the basic difficulty encountered in experimental studies on the

buckling of rods:

Beginning from the early eighteenth century experimental studies of Van Muss-

chenbroek on the buckling of compressed struts and the classical theoretical studies

of Euler on the same subject, an enormous literature on experiment has grown which

has described the complex buckling of all manner of geometrical shapes. However

unlike the boundary value problems in the field of vibration, for which many precise

experiments in the 19th and 20th centuries led to truly striking correlations between

prediction and observation, the experimental data in the field of elastic stability has

been beset from the first small deformation measurements of Alphonse Duleau in

1812 to the present, with basic difficulties. The widely variable experimental data

have arisen from the fact that buckling behaviour is keenly sensitive to small details

in matters of load application, alignment, and local peculiarities in the specimens.

(Bell 1973, p. 4)

It was not until 1889 that the validity of EBF was established; at the Polytechnic Institute

of Munich by its first director Johann Bauschinger (1833–1893). He took great care to

avoid eccentricity in application of the load and to ensure that the end conditions were

satisfied (Timoshenko and Gere 1961). We note that nearly all experimental investigations

into the mechanics of rods concern the buckling phenomenon and the applicability of EBF.

This is obviously a consequence of the engineer’s requirement to avoid buckling when

designing structures. However, many physical problems also require a knowledge of

structures undergoing large deflections. For a study of post-buckling experiments see (Goss

et al. 2005).

4 Scientific Methodology

By the time Bauschinger performed his experiments, the experimental procedures, speci-

fications and the techniques of measurement had greatly improved since Musschenbroek’s

early experiments. It should also be pointed out that the notion that experimentation is a

reliable means of scientific discovery had become firmly established. This acceptance owes

much to the writings of the English lawyer Francis Bacon (1561–1626). Bacon advocated a
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completely new approach to scientific discovery, one based firmly on experience and

experiment. He was keen to outline a scientific method which would arrive at truth by

means of rational steps which were transparent and could be checked and reviewed on a

collective basis. He also considered that experiment was the most effective strategy for

eliminating false laws. This new approach was to replace what he saw as a corrupted

scientific methodology:

Natural Philosophy is not yet to be found sincere, but is infected and corrupted: in the

school of Aristotle by Logic; in the school of Plato, by Natural Theology; in the

second school of Plato, that of Proclus and others, by Mathematics, which ought to

limit natural Philosophy, and not generate or originate it. But from a Natural Phi-

losophy, pure and unmixed, better things are to be hoped. (Bacon 1620/1902, p. 285,

Novum Organum)

Bacon was also skeptical of a scientific methodology which starts out from a preconceived

premise and which is supported by insufficient evidence:

… in preparing the subject-matter of Philosophy, men either draw a great deal from a

few instances, or a little from a great number; so that, in either case, Philosophy is

founded on too narrow a basis of experience and natural history, and dogmatises on

too insufficient evidence. (Bacon 1620/1902, p. 265, Novum Organum)

For Bacon, knowledge and understanding of the natural world can be determined with

absolute conviction by pursuing a programme of careful observation combined with

cleverly devised experiments. It should be pointed out that experimentation was not a new

method of finding things out, either to Bacon or his contemporaries; it can be traced back to

the Classical Greeks. However, Bacon was writing at a time when astrology, alchemy and

mysticism were considered valid means of scientific enquiry and theology was upheld as a

source of absolute truth,

Nor is the fact to be passed by, that Natural Philosophy has in all ages found a

troublesome and difficult enemy: I mean superstition, and a blind and immoderate

zeal about religion. (Bacon 1620/1902, Novum Organum, p. 281)

By not appealing to the authority of theology, Bacon effectively separated religion from

science—at the time a radical and crucial step. Perhaps it was the Protestant influence

which declares that you do not have to be a monk or a priest in order to follow a devout and

religious life which made Bacon a keen advocate of the idea that science was something

which anyone could do. Just so long as the correct procedures were followed. Of signif-

icance too is Bacon’s belief that scientific knowledge should be put to good use—to

improve the material welfare of mankind. In coining the phrase ‘‘knowledge is power’’ he

captures England’s emerging industrial classes’ thirst for scientific knowledge as a means

for driving technological progress.

By the mid 1640s Bacon’s ideas on science were being widely discussed and it was not

to be long before the idea of a college with the sole purpose of promoting science along

Baconian lines was conceived. In 1662, with the declared aim of the ‘‘Improvement of

Natural Knowledge’’, and motto ‘‘Nullius in verba’’ (‘‘take nobody’s word for it’’ or

‘‘Nothing by mere authority’’), the Royal Society of London for Improving Natural

Knowledge was founded in London, later to be called The Royal Society. The founding

members of the Royal Society had fought on both sides of the English Civil war. But they

were united in the quest to establish a program of scientific discovery along Baconian lines.

The History of the Planar Elastica 1065

123



The first president of the Royal Society was Robert Boyle (1627–1691). Managing to

keep out of the Civil War, Boyle had devoted his life to the pursuit of scientific knowledge.

He was a keen experimentalist (Sargant 1989), but had also traveled across Europe as a boy

and studied the works of the Italian Galileo Galilei (1564–1642) and the Frenchman René

Descartes (1596–1650). In addition to his investigations into the behaviour of gases, for

which he is renowned, Boyle showed, for the first time, that a feather and a lump of lead

land together when released from the same height, which Galileo had asserted using

‘‘thought experiments’’. Boyle appointed Robert Hooke (1635–1703) as the Royal Soci-

ety’s Curator of Experiments. Born in the Isle of White and initially trained as an artist,

Hooke was a skilled draftsman, instrument maker, mathematician and experimentalist and

has been dubbed ‘‘London’s Leonardo’’ by (Bennett et al. 2003). He was also a keen

supporter of the notion that science be based on experimental evidence:

The truth is, the science of Nature has already been too long made only a work of the

brain and the fancy. It is now high time that it should return to the plainness and

soundness of observations on material and obvious things. (Hooke 1665/2006, p. 5,

Micrographia)

In 1676 Hooke reported on the results of an extensive experimental investigation into how

materials respond when loaded by a tensile force. He found that a wide variety of materials

‘‘whether metal, wood, stones, baked earth, hair, horns, silk, bones, sinews, glass and the

like’’ undergo extension according to a linear law. This law is known today as Hooke’s

Law. It is a constitutive relation, connecting the geometry of deformation of a material

with an applied load. We remark here that constitutive relations are of fundamental

importance in the theory of elasticity, but to this day they can only be determined from

experiments. Whilst Hooke’s Law describes a linear relationship, which greatly simplifies

the analysis, we note of course, that if the loads and strains are small enough, then any

nonlinear response can be approximated by a linear one.

The scientific methodology of Boyle and Hooke was very close to the scheme advocated

by Bacon: scientific enquiry should progress in an encyclopedic fashion, by the accumu-

lation of lots of facts based on observation and experimentation. However, a rather

different methodology in which logical argument takes precedence had been suggested in

the works of Descartes. Noting that things in Nature can change form (Descartes used the

example of a piece of wax which can melt when heated) he assumed that knowledge based

on the senses (seeing, hearing, smelling, tasting) is intrinsically unreliable. It seemed to

follow, therefore, that the process of discovery should proceed by a process of logic, not by

the senses. Whilst this approach was opposed by Bacon, there are significant similarities.

First of all we can mention that both shared an optimism with respect to discovery: they

were convinced that anyone can achieve certainty about the underlying workings of Nature

so long as their methodology is correct. They also sought to separate scientific study from

theology. Descartes argued that mind and matter are two separate substances and therefore

required separate treatment. Furthermore, even though they supported the idea that science

should be used for the common good, they also held the fundamental belief that the

ultimate aim of science should be to determine the causes of natural phenomena. It is at

this point that we introduce a rather different approach to scientific methodology, one

which was promoted by a contemporary of Descartes’ and which he criticised:

I find in general that [Galileo] philosophizes much better than common people

insofar as he avoids as much as possible the errors of the Scholastics, and attempts to

examine physical matters by means of mathematical reasons. In that I agree entirely
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with him, and hold that there is no other means to discover truth. But it seems to me

that he is greatly deficient in that he digresses continually and that he does not stop to

explain fully any subject; this shows that he has not examined any in orderly fashion,

and that he has sought for the reasons of some particular effects without having

considered the first causes of nature, and that thus, he has built without foundation.

But, to the extent that his method of philosophizing is closer to the true one, we can

more easily know his faults, in the same way that we can more easily recognize of

those who sometimes follow the right path that they have strayed away, than we can

of those who never follow the right path. (Quoted in Ariew 1986)

Rather than seek the underlying causes of observed natural phenomena, Galileo concen-

trated on the task of formulating a quantitative description of it. The first step in this

approach is to identify the significant physical parameters, and where possible to measure

them. The next step is to determine mathematical relationships, i.e, treat the parameters as

mathematical variables. Guided by careful observation and experimentation, Galileo was

above all else concerned to gain absolute certainty about the relationships between the

parameters involved.

In his early work Le Mechaniche, estimated to have been written in 1593, we find what

is essentially a text book for a course Galileo delivered on the mechanics of machines. He

delivered this course whilst employed at the University of Padua in the years 1597–1598.

Evidentally the course was delivered to engineers as well as to individuals (‘‘natural

philosophers’’) who were motivated by curiosity (Ceccarelli 2006). In his descriptions of

the kinematics of levers, pulleys, lathes, screws, and other machines, Galileo formulates

quantitative relationships and although he does not write any mathematical equations, he

was convinced that mathematics is the key to understanding how these machines work.

Galileo was to later extrapolate this idea to Nature, as can be seen from his famous

statement of 1610:

Philosophy [nature] is written in this enormous book which is continually open

before our eyes (I mean the universe), but it cannot be understood unless one first

understands the language and recognises the characters with which it is written. It is

written in a mathematical language, and its characters are triangles, circles, and other

geometric figures. Without knowledge of this medium it is impossible to understand

a single word of it; without this knowledge it is like wandering hopelessly through a

dark labyrinth. (Galilei 1623, p. 232)

Galileo’s knowledge of machines extended to the latest contemporary instruments of

observation: he invented a microscope and when he first heard of the telescope, he

immediately set about constructing one. His telescopic observations of the surface of the

Moon instilled in him the idea that Nature is not an immobile, unchanging, unalterable

place. Consequently, he turned his attention to the task of interpreting change and

movement on a grander scale than engineering machines. It was at this point that he caught

the unwelcome attention of the Catholic clergy. In 1633 he was placed under house arrest

for his advocacy of the Copernican theory (that the Sun is at the centre of the Solar System

rather than the Earth). During his time of incarceration Galileo pursued further studies into

mechanics (but not Solar System mechanics). These studies helped to establish a modern

scientific approach to discovery; one which describes natural phenomena by means of

quantities such as force, mass and acceleration—quantities which we do necessarily see,

but which are measurable and which can be abstracted from observations of the natural

world. Galileo’s methodology can be described as hypothetico-deductive: we deduce
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statements about how things must occur based on a hypothesis and then observations and

experiments can be used to test and confirm/disconfirm the hypothesis. This constituted a

new approach, and is the basis for modern scientific methodology. Its synthesis can be

found in the work of Isaac Newton (1642–1727), born the same year Galileo died and

following closely in his footsteps. Newton’s Principia and Optiks had respectively

established mathematics and experimentation at the forefront of scientific methodology:

Newton’s achievements as far as scientific method is concerned, then, was to identify

and use a method which gave scope for emphasis upon the use of mathematical

results, as in Principia, and for emphasis upon experimental evidence as in the

Opticks, but its essential features are the same in both treatises. (Gower 1997, p. 79)

Musschenbroek’s experiments and Euler’s De Curvis Elasticis are the legacy of Newton’s

pioneering work. They represent two parallel methods of scientific discovery, experi-

mentation and rational thought (through mathematics). We can think of these two

methodologies as experiments in two different worlds—the physical world and the

mathematical world. An experiment on a physical three-dimensional rod permits phe-

nomena to be explored which falls outside of the rules set out by the one-dimensional

mathematical model. For example, the dependence of buckling upon the variety of cross

sections, the nature of imperfections, the behaviour of materials with complex nonlinear

constitutive relations and the study of non-elastic behaviour may all be encountered during

the course of an experiment. On the other hand, in the mathematical world an ‘‘experi-

ment’’ on a rod will give exactly the same result today as it did yesterday. Since solutions

are not limited by the constraints of the physical world, they can be found over the entire

domain in which the independent variable is defined. So even though not all the species of

elastica depicted in Fig. 2 may be readily observable in the physical world, it does not

imply that they are impossible. The mathematical model can also guide us in which

experiments to carry out and the most effective experimental procedure. It follows that if

we wish to use the mathematical model for guidance then the specification for an exper-

iment should be as close a copy to the mathematical model as is physically possible. In fact

it was only when this approach was adopted, by Bauschinger, that EBF was finally

‘‘accepted’’ by engineers.

5 Flexible Curves and the Catenary

The formulation of the mathematical model for the elastica and its subsequent solution

constitutes a corner stone in our understanding of the mechanics of long slender struc-

tures, i.e. the development of rod theory. At the heart of rod theory is the concept of a

‘‘material point’’—just as in Euclidian geometry we find the concept of the geometric

point. A ‘‘rod’’ is an elastic line or curve consisting of a set of material points. In rod

theory a particular rod is characterised by its constitutive relations. For planar problems

these relations depict the response to a bending moment (flexural stiffness), to a shearing

force, (‘‘shearability’’) and to an axially applied end force (compressibility/extensibility),

which is Hooke’s Law. In the case of the elastica, the rod is inextensible, cannot suffer

shear, but bends in response to a bending moment M according to a law given by a linear

constitutive relation, i.e. M ¼ Bj, where B is the flexural stiffness and j is the curvature.

A rod which offers no resistance to bending is called a ‘‘string’’. It is completely flexible.

The string model finds applications in the study of long slender structural members such

as cables, where an external load dominates the mechanics and the rod’s flexural
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stiffness is negligible. For example, the problem of the catenary is to determine the shape

of a chain suspended between two points and sagging under its own weight. Other

classical problems are the suspension bridge problem (constant vertical loading intensity

per horizontal distance), the valeria or sail (where the force is a normal pressure of

constant intensity) and the linteria (where the normal pressure varies linearly with depth).

It is the problem of the catenary which is of interest to us here. But before we introduce

the catenary, we step back to reflect upon the concept of a ‘‘material curve’’—a concept

which underlies all rod theory. This concept emerged as a consequence of the injection

of analysis into geometry.

One of the important contributions of Descartes to the development of mathematics was

to connect algebra with geometry. He realised that every point on a piece of paper can be

located by means of two mutually perpendicular lines intersecting at that point. The

extension of this idea to the representation of a point by means of two numbers, marked

along these lines, led him to write a treatise on geometry, La Géométrie, in which geo-

metric curves are represented by algebraic equations. The study of curves was recognised

by the seventeenth and eighteenth century natural philosophers as being a particularly

worthwhile pursuit. For example, Kepler’s discovery that planetary orbits follow more

accurately the path of an ellipse than a circle, and Galileo’s discovery that the trajectory of

an arrow is approximately described by a parabola, were widely recognised as key steps in

revealing Nature’s hidden workings.

In La Géométrie, Descartes also discusses curves which he characterises as being

generated by ‘‘two separate movements whose relation does not admit of exact determi-

nation’’ (Descartes 1954, p. 44). For example, the cycloid is the curve traced out by a point

on the rim of a circle rolling along a straight line, see Fig. 3. Descartes neglected to study

these curves because he lacked the necessary mathematical tools. However, within

20 years of his death a new calculating method, the calculus, was invented, which partly

evolved from his own work. The calculus greatly simplifies the procedure for computing

tangents, normals, curvatures and stationary points along a curve and it was not long before

it was applied to the task of unraveling the mysteries of the curves which had eluded

Descartes.

Amongst the many varieties of curves which were probed by the calculus are those

exhibiting the property that a particular quantity is minimised (or maximised). The most

famous of these ‘‘extremum curves’’ is the cycloid, see Fig. 3. This curve is the solution to

the brachistochrone problem, which is to determine the curve down which a particle will

slide from one point to another in the quickest time. Some Natural Philosophers thought

that the extremum principle is intrinsic to the way that Nature works—a point we will

return to later. However, an extremum problem which is of particular interest here is that of

the catenary; which is to find the shape of a hanging chain, the extremum principle being

that the centre of gravity is lowest, see Fig. 4.

Perhaps Galileo was seeing parabolas everywhere, when in 1638, thinking that he had

solved the problem of the catenary, he wrote that the shape of the hanging chain is

parabolic (Galilei 1638/1988). However, in 1646, a few years after Galileo’s death, a

Fig. 3 Two important curves connected to the development of mathematics, the Cycloid (left) and the
Lemniscate of Bernoulli (right). The Cycloid is the curve traced by a point on a rolling circle
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17-year-old Dutchman, Huygens (1629–1695), proved that the parabola only arises for the

case that equal weights are suspended at equal horizontal intervals along the chain (the

suspension bridge problem). Huygens effectively placed the catenary back on the list of

unsolved problems. However it was not until 1690 that James Bernoulli (1654–1705), a

professor at the University of Basel in Switzerland, formally challenged the community of

Natural Philosophers to solve the problem. His challenge appeared in Acta Eruditorum, an

academic journal founded by Leibniz (1646–1716). The following year three solutions

were published; the authors being Huygens, Leibniz and James Bernoulli’s younger brother

John (1667–1748). Huygens, who never fully mastered the calculus, used a rather unwieldy

proof relying on geometry. His solution was cast into the shadows by those of the other two

authors, particularly John Bernoulli’s, where the problem was formulated as a differential

equation:

dy

dx
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ; ð3Þ

where a is a constant which equals the ratio of the weight per unit length to the horizontal

component of the tension T (this component remains constant along the entire length). This

was as far as John Bernoulli could take the solution, though today we recognise (3), upon

separation of variables, as being a standard integral leading to an inverse hyperbolic

function. John Bernoulli’s use of a differential equation as a mathematical model for

describing mechanical phenomena marks an important step away from a reliance upon

purely geometric proofs. Always proud of his discovery, John wrote later:

The efforts of my brother [James] were without success; for my part I was more

fortunate, for I found the skill (I say it without boasting, why should I conceal the

truth?) to solve it in full……. I ran to my brother, who was still struggling miserably

with this Gordian knot without getting anywhere, always thinking like Galileo that

the catenary was a parabola. Stop! Stop! I say to him, don’t torture yourself any more

to try to prove the identity of the catenary with the parabola, since it is entirely false.

The parabola indeed serves in the construction of the catenary, but the two curves are

so different that one is algebraic, the other is transcendental…. Letter to P. Remond

de Montmort 29/9/1718, quoted in Kline 1972, p. 473)

Nevertheless, in later years James Bernoulli presented an overview of the various

approaches to solving the problem. His studies culminated in the derivation of a set of

equilibrium equations for a string loaded by any distribution of tangential (Wt) and normal

(Wn) forces, see Benvenuto 1991. These equations can written as follows:

y

s

θ x

TFig. 4 The catenary, showing
the coordinates and the end
tension T
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dT

ds
¼ �Wt; Tj ¼ Wn: ð4Þ

Today, we recognise (4) as a first step towards the discovery of a more general system

of differential equations governing the equilibrium of long slender rods—both flexible rods

and elastic.

6 Elastic Curves, the Supreme Creator and Elliptic Integrals

In the same issue of Acta Eruditorum in which the solutions to the catenary appeared,

James Bernoulli posed ‘‘an equally interesting problem’’:

… [to determine] the inflection or of the curving of beams, of bows, or elastic

elements of every kind, because of their own weight or of a weight applied to them or

of any other acting force. (Quoted in Benvenuto 1991, p. 273)

Three years later he declared ‘‘…I cannot longer deny to the public the golden theorem…’’

and published his findings. As with the problem of the catenary, James Bernoulli derives a

differential equation for the rod’s curvature j, but he additionally equates j to some

function f of the bending moment M. These relations can be expressed as follows:

j ¼ � dh
ds
; and j ¼ f ðMÞ: ð5Þ

As with Hooke’s Law, (5) relates the geometry of deformation to an applied load. In this

case the load is a bending moment and the deformation is curvature. James Bernoulli

proceeds in his analysis to focus attention on the case of a rod which is bent into a U shape

such that the two ends of the rod are parallel, called the rectangular elastica. Using

cartesian coordinates, he derives the following equation:

dy ¼ x2dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a4 � x4
p ; ð6Þ

where a2 is a constant equal to the ratio of the applied force P to the bending rigidity B (i.e.

a2 ¼ B
P). James Bernoulli was unable to solve (6) and rather wearily remarked

I have heavy grounds to believe that the construction of our curve depends neither on

the quadrature nor on the rectification of any conic section…. (Quoted in Truesdell

1960, p. 95)

which prompted Huygens to remark:

And even now all he has found seems no use to me, but only such very beautiful and

subtle pastimes as one finds when one has nothing on which to employ mathematics

more fruitfully. (Quoted in Truesdell 1960, p. 97)

However, James Bernoulli did suggest that a way forwards was to expand the radical in (6)

as a series and proceed by integrating the resultant expression term by term. There was one

individual who was particulary gifted in the manipulation of infinite series, and that was

Leonard Euler, a pupil of James’ brother John. Euler was prompted into tackling the

problem of the elastica by John’s son, Daniel Bernoulli (1700–1782):
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I should like to know if your Worship could not solve the curvature of the elastic

band in the case that a band of given length be fixed at two points and that also the

tangents at these points be given… Since no one has perfected the isoperimetric

method as much as you, you will easily solve this problem of rendering
R

ds
r2 a

minimum. [r is the radius of curvature (Truesdell 1960) Letter from Daniel Bernoulli

to Euler dated 20th October 1742]

The ‘‘isoperimetric method’’ is the term used to describe what we now call the calculus of

variations. In this method, the integral of the product of mass, velocity and distance

traveled is set to an extreme (maximised or minimised) and an ‘‘optimal condition’’ is

obtained. The idea that Nature has a tendency to economise had been formulated into a

general principle, the Principle of Least Action, by the head of the Academy in Berlin,

Pierre Maupertuis (1698–1759) where Euler was employed (1741–1766). Maupertuis

propounded this principle for theological reasons (see Kline 1972, Chap. 24) and Euler,

also a devout Christian, set about formulating this as an exact dynamical theorem. His

work culminated in the treatise of which De Curvis Elasticis is an appendix, and where he

expounds his theological viewpoint in the opening paragraph:

For since the fabric of the universe is most perfect and the work of a wise Creator,

nothing at all takes place in the universe in which some rule of the maximum or

minimum does not appear. (Euler 1744, p. 2)

It is curious that Euler was keen to explain the causes for natural phenomena at a time

when Galileo’s and Newton’s work had received international acclaim. The Principle of

Least Action echoes the tradition passed down from the Ancient Greek philosophers, who

set the core task of natural philosophy to be the search for underlying causes for everyday

observed effects. It is interesting to note that whilst Galileo, Bacon, Descartes and Newton

had managed in their own ways to steer scientific enquiry along a route free from religious

dogma, they were themselves deeply religious people and many of the leading Natural

Philosophers who followed in their wake (including Musschenbroek) also held strong

religious convictions. This was certainly true of Euler, who was from a Calvinist back-

ground and firmly believed that Nature was a consequence of God’s design. Euler

denounced atheism in many of his philosophical works, though they were remarked upon

for not being in the same league as his science (see Fellmann 2007, p. 75)

In the case of the elastica the minimisation principle involves the bending strain energy,

supplied by Daniel Bernoulli. Euler expresses the problem as follows:

That among all curves of the same length, which not only pass through the points A

and B, [the ends of the rod] but also are tangent to given straight lines at these points,

that curve be determined in which the value
R

ds
r2 is a minimum. (Euler 1744, p. 79)

Following James Bernoulli’s advice, Euler uses the binomial theorem to expand the radical

in (6) as an infinite series and integrates the resultant expression term by term. This enables

him to sketch the elastica. His nine ‘‘Species’’ are obtained by varying a load parameter,

see Fig. 5, and for further details refer to Euler (1744), Frasier (1991), and Truesdell

(1960). Today we recognise (6) as an elliptic integral, a name attached to them due to their

connection with the arc length of an ellipse. The general form of an elliptic integral is
R

R½t;
ffiffiffiffiffiffiffiffi

pðtÞ
p

�dt;where R is a rational function and p is a third of fourth degree polynomial.

They cannot be evaluated in terms of the elementary functions (algebraic, trigonometric,

logarithmic of exponential), and it was to take many decades of research before they were

properly understood. However, it was in the course of their investigations into curves,
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including the elastica, that the eighteenth century natural philosophers took the first steps in

finding things out about them.

A major step towards our understanding of elliptic integrals is in connection with a

curve which is named in honour of James Bernoulli. The arc length of the Lemniscate of

Bernoulli, see Fig. 3, is given by an elliptic integral of the form
R x

0
dt=

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t4
p

, which

was recognised as being remarkably similar to that defining the inverse sine, i.e.

arcsin x ¼
R x

0
dt=

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

. There was strong sense that there was further work to be done

with respect to this integral. But no one knew how. That is, until in 1751, when Euler

came across the work of an amateur mathematician, Count Giulio Carlo de’ Toshi di

Fagnano (1682–1766). Euler immediately saw a connection between some addition

properties relating to the lemniscate’s arc length which Fagnano had discovered and the

elliptic integral. He used Fagnano’s results as the basis for some addition theorems

relating to elliptic integrals. These theorems constitute the platform for all later work on

elliptic integrals, see Kline (1972) and Stillwell (1989). The corresponding elliptic

functions (cn, dn sn) were later discovered to possess identities and addition theorems in

a similar manner to the trigonometric and hyperbolic functions. They were also found to

be doubly periodic and, when certain elliptic parameters are set to their extreme values,

to collapse into the trigonometric and hyperbolic functions. With respect to the planar

elastica, the case where the elliptic function degenerates into a trigonometric function

corresponds to Euler’s Species 1. It is from here that we derive EBF. At the other

extreme, where we obtain a hyperbolic function, the center point of the rod is ‘‘curved to

a knot’’ and the loose ends stretch out to infinity either side. This case is Species 7, see

Fig. 2, and has been used as the basis for the study of loop formation in cables and

pipelines, see for example (Coyne 1990). Euler expresses the shape of this curve by

means of the logarithmic function.

Fig. 5 Euler’s Species 2. Euler starts his analysis with an arc length AM, origin at A, and line of action of
the force P is along AD downwards. Consequently the bending moment vanishes at A, which is an inflection
point. The x axis is along AP and the y axis along AD. Noting that ‘‘if x and y are both made negative, the
form of the equation is not changed’’, Euler deduces that the curve on both sides of A has similar branches
AMC and amc. He finds humps (local maxima) at C, and therefore at c, from which he deduces that ‘‘the
whole curve will be contained between the extreme ordinates EC and ec’’. Beyond these humps, Euler uses a
translation of coordinates showing the periodicity of the elastica CNB and cnb
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7 Rods and Pendulums

One of the interesting properties of the elastica is symmetry, a property which is reflected

in the periodicity of elliptic functions. The symmetry can easily be seen with respect to cuts

from an infinitely long elastica, as depicted in Fig. 6. The cuts at ABCDEFGG0 represent

various boundary conditions: pinned, clamped, and free. Figure 6 also depicts the static–

dynamic analogy between the elastica and a pendulum. This analogy is obtained through

the mathematics. The period T of a simple pendulum (in polar coordinates) is given by the

following elliptic integral:

AB   welded-free 
BD   pinned-pinned 
A'D  welded-pinned 
AE   welded-welded 
A'G' welded-welded (inclined wrench)
BF   pinned-pinned (second mode)
AH  welded-welded (second mode)

Pendulum

θ

A'

B

A

C

D

E

F

GG'

θ

revolving pendulum 
(noninflectional elastica)

C

B

A,E

A'

κoscillating pendulum
(inflectional elastica)

unstable equilibrium
(knotted rod - Species 7)

θ

stable equilibrium
(straight rod - Species 1)

H
Elastica

separatrix

D

Fig. 6 The phase plane, which can be used to study both the statics of the planar elastica and the dynamics
of a pendulum. The diagram is symmetric about both the h and j axes and repeats with period 2p along the h
axis. The angle h denotes the angular position for a pendulum and in the case of the elastica it is the angle of
slope the rod makes with the line of action of the end force P. For a pendulum j is the derivative of h with
respect to time (the angular velocity) and for the elastica it is the derivative of h with respect to arc length s
(the curvature). The oval-like curve called the separatrix denotes the infinitely long period of a pendulum
which starts from and returns to the upside-down equilibrium state, which is unstable. This corresponds to
Euler’s Species7. Curves within the separatrix pass through j ¼ 0 signifying the existence of an inflection
point, e.g. at B and D, and correspond to an oscillating pendulum. Phase curves lying outside the separatrix
can never cross this axis and are called noninflectional (revolving pendulum)
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T ¼ l

g

Z p=2

0

d/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 /
p ð7Þ

where / and k are parameters and l is the pendulum length and g the acceleration due to

gravity. A curious feature of (7) is that if we substitute
ffiffiffiffiffiffiffiffiffi

B=P
p

for l/g then (7) gives the

length L of elastica. In other words the problem of the elastica is mathematically analogous

to that of the pendulum. In the dynamics problem the independent variable is time and in

the statics it is the arc length s.

In the dynamics problem, there are two states which deserve special attention. The first is

where the pendulum hangs vertically down and the second is the inverted state where it is

‘‘upside down’’, see Fig. 6. Both are equilibrium states. If left undisturbed, a pendulum will

remain in these positions for ever. But there is an important difference: give the upside-down

pendulum a small nudge and it will fall away from this position, never to return. However, for

the vertically down case, a small nudge only results in small oscillations about the equilibrium

state, and if there were friction present then these oscillations would, after some time, die

away and the pendulum would come back to rest in its equilibrium position. It follows that the

vertically down equilibrium state is stable and the vertically-up state is unstable. Furthermore,

two qualitatively different types of motion are observable in a moving pendulum. The first

type of motion involves oscillations to and fro about the stable equilibrium state. The second

type of motion involves revolutions in one direction or the other. A diagram called the phase

plane, where the angular velocity j is plotted against the angular position h, illustrates these

qualitatively different types of motion—revolutions and oscillations—in one picture, see

Fig. 6. The demarcation between them is given by the phase path called the separatrix. This

path is intimately connected with the unstable equilibrium position.

The phase plane also offers a straightforward illustration of a classification scheme for

the planar elastica, which can be traced to A.E.H. Love (1863–1940). In a section of his

definitive treatise The Mathematical Theory of Elasticity, under the heading Classification
of the forms of the elastica §263 (Love 1927), Love defines just two classes of elastica. The

first class encompasses all those configurations where ‘‘the flexural couple vanishes, so that

the rod can be held in the form of an inflectional elastica by terminal force alone’’ (Love

1927, p. 402). The inflectional elastica corresponds to an oscillating pendulum and

embraces Euler’s Species 1–7. The second class, the non-inflectional elastica, corresponds

to the revolving pendulum. It has no inflection points and is depicted by Euler’s Species 8,

depicted in Fig. 2 and Species 9, which is the case where the elastica is bent into a ring.

It is not entirely clear when the analogy between the pendulum and the elastica was

established, but certainly Gustav Kirchhoff (1824–1887) established the analogy within the

context of his study of a spinning top and a twisted rod (Kirchhoff 1859). The top and

twisted rod are respectively three-dimensional generalisations of the pendulum and elas-

tica, and do not concern us here.

The static–dynamic analogy highlights the important differences between an initial

value problem and a boundary value problem. In the former, the analyst need only specify

a set of appropriate initial conditions. These are usually stipulated at time zero and with

respect to the dynamics of a pendulum, the initial position h and angular velocity j are

specified. In the case of the elastica the boundary conditions specify the details of how the

ends of the rod are fixed and/or loaded. Typical conditions are welded, hinged and free. In

the case of the pendulum, for a given set of initial conditions, there is just one unique

solution. However, in the case of the elastica, there are an infinite number of solutions

which satisfy a given set of boundary conditions. So the question immediately arises as to
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what an infinite number of solutions means with respect to a bent rod. The first person to

address this question was Lagrange (1736–1813).

By restricting his analysis to the study of small deflections (a characteristically engi-

neering approach), Lagrange (1770) employs the approximation dx& ds and subsequently

obtains a linear second order differential equation:

Pyþ B
d2y

dx2
¼ 0: ð8Þ

Lagrange solves (8) for the case that the deflection and bending moment at the ends are

zero (i.e. the ends are hinged). The solution is given by

yðxÞ ¼ A sin

ffiffiffi

P

B

r

x

 !

; ð9Þ

where A is a constant representing the undetermined amplitude of the deflection at the mid

point. Equation (9) implies that the condition y(L) = 0 can be satisfied by either A = 0, in

which case the elastica is straight or by sin
ffiffiffi

P
B

q

L
� �

¼ 0, in which case
ffiffiffi

P
B

q

L ¼ np where

n = 0,1,2,3,…. Since n = 0 is also trivial, it follows that the condition for buckling is

given by Pc ¼ p2nB
L2 . Thus Lagrange showed the existence of a multiplicity of buckling

modes, or put another way, an infinite number of solutions to (9). In an uncharacteristic

departure from his generally figure-less publications, Lagrange included in his paper some

drawings of the buckled shapes for the cases n = 2 and n = 3 (see Fig. 7). The case n = 1

is the primary mode, discovered by Euler.

8 The Mathematisation of Nature

Lagrange first came to Euler’s attention in 1750; when at the age of nineteen he presented a

scheme for tackling isoperimetric problems. Lagrange’s scheme involved a systematic

Fig. 7 Lagrange’s Figures 3 and
4 of Lagrange (1770, p. 130),
showing the second and third
buckling modes of the planar
elastica with hinged ends
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procedure based on analytical techniques. It had the benefit that it could be applied to many

of the various problems being studied at that time. Lagrange was to later apply this

approach to mechanics. The search for unifying principles of mechanics and attempts to

unify the various problems in mechanics was a major concern for both Lagrange and Euler.

The general principles governing the mechanics of elastic materials were only laid

down when the concept of stress was formulated (mathematically) by Cauchy in 1822, (see

Truesdell 1968). This was 78 years before Euler’s De Curvis Elasticis. Euler was able to

solve the problem of the elastica without a concept of stress because the elastica is a one-
dimensional problem: the equilibrium of forces and moments take the role of the stress

equations. Nevertheless, in 1744 Euler did not have at his disposal a systematic method-

ology for tackling one-dimensional problems. In fact, the two important one-dimensional

problems which had been successfully solved were the catenary and the elastica, but these

were solved independently of each other. It was not clear to Euler, at least for most of his

life, what underlying principles unifies these two problems.

It is not difficult to see today that both the catenary and the elastica problems concern

long thin bodies i.e. they are both ‘‘rods’’. As mentioned above, the catenary problem

involves a special kind of rod—one which offers no resistance to bending. Some years

prior to De Curvis Elasticis, in 1728, Euler had shown how the catenary and the elastica

equations can be derived by the application of balance of moments (Truesdell 1968).

However, it bothered him that whilst the catenary can also be derived from equilibrium of

forces, this was not the case with the elastica. Evidentally this was a problem which he

grappled with for many years:

… he was unsatisfied with the statical foundation of the theory of the elastica and

sought for most of his lifetime, in repeated trials, to establish the equations of the

elastica, like those of the catenary, directly from the balance of forces acting on a

portion of the curve. That this is impossible, is one of the major pieces of evidence

that led him, finally, to perceive that the balance of moments is a mechanical law

independent, in general, of the balance of forces. (Truesdell 1968, p. 232)

At the age of 64 and having completely lost his eyesight, Euler took the crucial step which

unified the catenary with the elastica: he separated the constitutive relations from the

equilibrium equations. By subsequently decomposing the force vector into a shear force, N
and an axial force T, he established a set of differential equations which express the

balance of forces and the balance of moments M for a section of rod (in a plane):

dT

ds
þ N

dh
ds
¼ �Wt;

dN

ds
� T

dh
ds
¼ �Wn;

dM

ds
� N ¼ 0; ð10Þ

where h is the slope angle. Euler showed how all previous results involving elastic rods and

strings can be derived from (10), which constitute one-dimensional versions of the general

stress equations.

Euler’s unification of the elastica with the catenary was part of a grander scheme which

he had being pursuing all his working life. It is succinctly expressed in a footnote to a paper

on mechanics, Mechanica, which he wrote in 1736:

Firstly we will examine infinitesimal bodies, i.e. those that can regarded as points.

We will then deal with bodies having a finite size—those that are rigid, not allowing

their shape to be changed. Thirdly, we will discuss flexible bodies. Fourthly, we will

discuss bodies that allow of tension and compression. Fifthly, we will investigate the

motion of many separate bodies, one of which is preventing the others from
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executing motions in the way they are inclined to do. Sixthly, the flow of fluid bodies

will be examined. In relation to these bodies, we will not only examine how, left to

themselves, they continue to flow, but also investigate how external factors, i.e.,

forces, act on these bodies. (Quoted in Mikhailov and Stepanov 2007)

Euler’s Mechanica is recognised today as a landmark in the history of the development the

general principles and formal procedures for the analysis of problems in mechanics

(Truesdell 1968; Mikhailov and Stepanov 2007). It was also acknowledged as such by

Euler’s contemporaries John Bernoulli and Maupertuis. It was almost certainly an inspira-

tion for Lagrange’s quest to establish mechanics as a branch of analysis; a quest epitomised

in the often quoted introduction to his definitive work The Mechanique Analytique:

To reduce the theory of mechanics, and the art of solving the associated problems, to

general formulae, whose simple development provides all the equations necessary for

the solution of each problem… No diagrams will be found in this work. The methods

that I explain in it require neither constructions nor geometrical or mechanical argu-

ments, but only the algebraic operations inherent to a regular and uniform process.

Those who love Analysis will, with joy, see mechanics become a branch of it and will

be grateful to me for thus having extended its field. (Quoted in Dugas 1955, p. 333)

If for Euler the role of mathematics is a tool for modeling problems which arise in

mechanics (the models generally taking the form of ordinary and partial differential

equations); then for Lagrange it was something deeper. Lagrange was seeking to place the

whole of mechanics upon an axiomatic-deductive framework; an approach which follows

closely in Descartes’ footsteps. But we should not interpret this as an attempt to divorce

mechanics from its connection to the physical world. More likely, Lagrange was con-

vinced, like the Pythagorean brotherhood before him, that Nature was inherently

mathematical. Nevertheless, it would seem to be the case that other approaches to scientific

enquiry (in particular experimentation) do not, for Lagrange, play a fundamental role.

Lagrange also appears to have been more concerned with the formal procedures, the

codification of problems, than with solving new ones; whereas Euler’s works reveals that

he placed more value on physical principles than Lagrange. We note that by the time

Lagrange wrote Mechanique Analytique, elementary geometry had been completely un-

derpinned by the theory of equations (Stillwell 1989). With this in mind, Lagrange’s

Mechanique Analytique can be interpreted as extending this mathematisation to mechanics.

For this contribution Lagrange remains celebrated:

Lagrange’s advancement in the foundations of science can be hardly overemphas-

ised. In the history of science, the birth of Lagrange’s Mechanics constitutes a

milestone, as it was correctly perceived by subsequent scientists. Indeed, Lagrange’s

Mechanics started a new epoch for the history of the whole science; in this new

epoch, a whole field of scientific phenomena, such as mechanical phenomena, can be

managed in a synthetic and straightforward way. (Capechhi and Drago 2005)

Some historians of science and mechanics are less impressed. Clifford Truesdell (1919–

2000) writes scathingly of Lagrange’s The Mechanique Analytique

Unlike Newton’s Principia, it contains scarcely any examples, applications, inter-

pretations in physical contexts, or new results. It omits all problems not easily

amenable to Lagrange’s methods…… Its effect upon subsequent conceptions of the

history of mechanics was largely unfortunate, first because, concentrating upon facile
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algebra, it failed to mention the deepest work done in the eighteenth century, and

second because Lagrange included historical sketches which are so capriciously

lacunary as to lie in effect even if not in fact. (Truesdell 1984)

The quest to set mechanics upon an axiomatic basis continued into the twentieth Century.

In 1900, the mathematician David Hilbert (1862–1943) delivered a lecture at the Inter-

national Congress of Mathematicians in Paris. He presented a series of problems for

mathematicians to strive to solve. ‘‘Problem 6’’ was as follows:

To treat in the same manner, by means of axioms, those physical sciences in which

mathematics plays an important part; in the first rank are the theory of probabilities

and mechanics. (Hilbert 1900)

In 1957, Walter Noll (1925) in a series of papers, set out axioms of mechanics which have

been proclaimed as a ‘‘the true turning point in the history of the axiomatisation of

mechanics’’ (Benvenuto 1991). Noll’s approach was adopted by Truesdell and others who

founded a branch of mechanics called ‘‘rational mechanics’’. We remark here that Ant-

man’s treatise (1995) on rod theory is firmly identified with rational mechanics. The value

of this work, and others like it, to engineers is perhaps most widely felt with respect to

computational work, where correct problem formulation is important. Thus we find in

Antman (1995) a systematic codification of boundary value problems and mathematical

descriptions of a wide range of boundary conditions, such as welded, hinged, and ball and

socket joints: conditions which are of practical importance in engineering design.

9 Discussion

A ‘‘rod’’ is something of a hybrid—a mathematical curve made up of ‘‘material points’’. It

has no cross section, yet it has stiffness. It can weigh nothing or it can be heavy. We can

twist it, bend it, stretch it and shake it, but we cannot break it, it is completely elastic. Of

course, it is a mathematical object, and does not exist in the physical world; yet it finds

wide application in structural (and biological) mechanics: columns, struts, cables, thread,

and DNA have all been modeled with rod theory.

It is precisely its ability to transgress the realms of physical experience which provides the

elastica with its power and versatility. In this respect we can think of the mathematical model

as an experimental laboratory where we can perform experiments on an idealised Platonic

object. The physical objects which we observe in our everyday lives which resemble a rod

are therefore imperfect copies of the ‘‘real’’ thing. The planar elastica is essentially a simple

model: as well as being a one-dimensional representation of a three-dimensional object, it

additionally assumes that the rod is isotropic, homogeneous, and has a linearly elastic

response to end loads. It is also integrable. The benefit to engineers of this simple model lies

in its provision of a straightforward benchmark both for the study of more complex math-

ematical models and for experiments on ‘‘imperfect physical rods’’. The principles of

mechanics were for the most part forged by finding solutions to simple problems, such as the

catenary and elastica. As we have seen, these problems were solved in the absence of any

general scheme for one-dimensional elasticity, let alone the concept of stress. But the uni-

fication of the problems was a major step towards establishing the general theory.

In his lecture titled The Role of Experiments in Mechanics, K. Ravi-Chandar states that

‘‘The role of experiments is very clear: it has to do with discovery, characterisation, and

verification’’ (Ravi-Chandar 2005). Discovery starts with observation, though before we
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carry out an experiment we must be equipped with a theory, a notion of the underlying

principles and physics. Without this, we would be unable to recognise the significance of

what we observe. The process of characterisation involves qualitative and quantitative

descriptions of our observations. Ravi-Chandar defines verification as the determination of

the physical and mathematical limitations of the discovery. Engineering students, may well

follow similar steps during laboratory sessions. In addition to helping the student see how

knowledge is reached and verified, practical laboratory work provides an opportunity for

the student to acquire key experimental skills. These skills are useful because an experi-

ment can assist students to bridge the gap between the theories of engineering mechanics

and real-world engineering—a key learning outcome from an engineering undergraduate

course. This combination of experimentation and mathematical modeling constitutes the

basis of other similarly useful investigations into everyday phenomena, see for example

Lyons and Brader (2004). Sometimes everyday phenomena require complicated mathe-

matical models, and this is certainly the case for the large deflections of an elastic rod. A

related case involves the vibrations of a car antenna, which can be modeled as a beam and

leads us to construct a fourth order partial differential equation (Newburgh and Newburgh

2000). We may not expect a first year undergraduate student to be equipped with the

mathematical skills required for solving these problems, however there is much pedagogic

value to seeing the relationship between the everyday observation and the complicated

mathematical model and in following the steps taken towards formulating the model.

Many studies point to history as a means of encouraging students to think more deeply

about their discipline, to develop enquiring, critical minds and formulate innovative ideas

(Schecker 1992; Speiser 2003). The story of the elastica offers a number of different

avenues for exploring these themes. Perhaps the most important is the connections between

mathematics and engineering. Experience indicates that students of engineering and the

sciences often find it difficult to fully grasp the connections between mathematical analysis

and engineering practise. Engineering students are not usually attracted to engineering for

the reason of doing mathematics. On the contrary, mathematics is often something which

they do in a perfunctory manner. This attitude can prevent them from thinking deeply

about their subject matter. A closer look at rod theory, however, reveals a world of

underlying symmetry. The symmetry which one finds in the mathematics is mirrored in the

configuration of the elastica. Furthermore, since these configurations are equilibrium states

of minimal energy, we can establish an intimate connection with Euler’s isoperimetric

method and the calculus of variations. Concepts of perfect form, so essential in the arts, are

also important for engineers. That this appreciation of mathematics is often missed in the

sciences is at least partly a consequence of an education which emphasises mathematical

technique.

The related issues of equilibrium and stability, crucial in engineering practise, arise

within the context of both the statics of a straight rod and the dynamics of the inverted

pendulum. The latter case can only be encountered by studying the nonlinear mathematical

model. The use of computers makes it easier for the undergraduate engineering student to

learn about nonlinear mechanics, without the requirement to study a lot of new mathe-

matics (such as elliptic functions). The computer also permits an easy-enough examination

of the dynamic–static analogy by means of the phase plane, which has applications beyond

rod theory. It opens a door to a world which the engineering undergraduate rarely glimpses

and may not even know exists, even though the student may observe nonlinear dynamics/

post-buckling in the physical world. Mostly engineers are concerned to avoid any

deflections, hence small deflection linear models. However, large deflection problems are

not simply the focus of curiosity, but continue to find new applications in engineering and
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the physical sciences. The static–dynamic analogy also presents the student with a clear

means of understanding the difference between initial value and boundary value problems.

And we note that students engaged in a wide variety of engineering disciplines will come

across both the pendulum and buckling during the course of their studies. We have also

mentioned the analogy between a spinning top and three-dimensional configurations of a

twisted rod. It is unlikely that the student identifies a twisted bar with a gyroscope. But

knowledge of these concepts and the various associated classification schemes (e.g.,

Euler’s Species and Love’s inflectional/noninflectional forms) encourages the student to

identify further analogies (see Kipnis 2005), to synthesise and to seek order and simplicity.

It is common practise for students to learn the principles of mechanics by means of

mathematical analysis and by experiments in the laboratory—the same scientific meth-

odology established by Galileo and Newton. However, this can sometimes be denigrated to

the study of an arid desert of scientific ‘‘facts’’, laws, axioms, techniques and procedures.

These the student are expected to learn without question, to systematically apply to the

solution of various problems, and most importantly (for the student) to regurgitate a few

months later during a 3 h examination. Whilst this depressing picture is obviously an

exaggeration, unfortunately it is all too often the perceived view of what learning science

and engineering is all about. Furthermore, it has been pointed out that this idea of science

does not provide for real world scientific practise and does not reflect what goes on in

scientific research (Metz et al. 2007). It is no wonder though, against such a popular

misconception of engineering and science that it is the social sciences and the arts which

tend to attract the more critical and independent-minded students into their ranks. Nev-

ertheless, with increasing public awareness of the huge social responsibility which

engineers have with respect to the environment, it has become increasingly evident to

professional bodies and employers that engineers need to take account of the wider

implications of their activities. Historical studies can help to provide this awareness.
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