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Abstract It is often argued that smaller/younger firms
are more innovative than older/larger firms—the latter
may be “too big to succeed.” We show in the context
of a simple industry model with consumer search fric-
tions why evidence suggesting that smaller or younger
firms are more successful at innovation may be subject
to sample selection bias. Specifically, smaller more
recent entrants may appear to innovate more success-
fully simply because unsuccessful larger incumbent
firms’ size advantage enables them to survive when
unsuccessful smaller ones cannot—they may be “too
big to fail.”
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1 Introduction

Arguably one of the most important questions in
industrial organization is: what is the effect of market
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structure on innovation? Schumpeter (1934) initially
suggested that small entrepreneurial firms were the
source of most innovation but subsequently (Schum-
peter 1942) argued that, to the contrary, large estab-
lished firms were the force behind technological
progress. Economists have subsequently offered an
array of conflicting theoretical arguments and predic-
tions about the effects of different market structures
on innovation.

Arrow (1962) famously argued that because of the
“replacement effect,” a firm operating in a competi-
tive market has a greater incentive to innovate than a
monopoly. Specifically, since an incumbent monop-
olist’s return from innovation is only the increment
above the monopoly rents it already earns, while a firm
operating in a competitive market could realize the full
return on its investment, the latter has a greater incen-
tive to invest in R&D. Gilbert and Newbery (1982), by
contrast, argue that a monopoly firm facing the loss
of its monopoly to an innovating entrant has an incen-
tive to invest in innovation more aggressively than a
prospective entrant. On the other hand, Reinganum
(1982) showed that this result may reverse once the
uncertainty of the outcome of the R&D process is
considered.

A very large and somewhat bewilderingly diverse
literature has arisen to address the relationship
between firm size and innovation. Important surveys
of this literature include Cohen (2010), Baker (2007),
and Shapiro (2011). Several theoretical arguments
have been advanced to justify a positive effect of firm
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size on investment in innovation. One claim is that
capital market imperfections confer an advantage on
large firms in securing finance for risky R&D. Addi-
tional arguments are that there are scale economies
in R&D and that there are complementarities between
R&D and other nonmanufacturing activities such as
marketing. Empirically, the consensus is that R&D
activity does indeed increase with firm size, but only
proportionately (Cohen 2010). This finding suggests
that, contrary to Schumpeter (1942), large size offers
no advantage in the conduct of R&D since, hold-
ing industry sales constant, the same amount of R&D
will be conducted whether an industry is composed of
large firms or a greater number of smaller firms.

Turning from R&D inputs to innovative output,
Scherer (1965), Acs and Audretsch (1988, 1990,
1991), and Geroski (1995a) present evidence that
R&D productivity (i.e., innovations per unit of R&D)
tends to decline with firm size, while Pavitt et al.
(1987) suggest a U-shaped relationship, with very
large firms displaying relatively high R&D produc-
tivity. More recently, Lerner (2006) finds that smaller
firms account for a disproportionate share of financial
service innovations. However, (Huergo and Jauman-
dreu 2004) find a negative association between inno-
vation and small size, but that entering firms (which
tend to be relatively small) have a high probability of
innovating, suggesting that the probability of innova-
tion may be more related to a firm’s age rather than
size per se. Recently, Block et al. (2017), bring into
the question the view of small entrepreneurial firms
as engines of innovation and economic growth. Sum-
marizing evidence from over 100 published empirical
studies, they show that growth is mostly generated by
a very small number of innovative high growth ven-
tures, whereas the vast majority of new ventures only
experience moderate growth. Firm size may also affect
the type of innovation that firms pursue. Specifically,
it has been found that larger incumbent firms tend
to pursue relatively more incremental and relatively
more process innovation than smaller firms, which
tend to pursue more radical innovation (Cohen 2010).

One interpretation of the apparent decline in R&D
productivity with firm size is that smaller firms are
more capable of innovating than larger firms, as the
established firms’ greater experience with older tech-
nologies may hobble their ability to exploit new tech-
nology, relative to newer, more aggressive firms. In
this vein, Henderson (1993) suggests that larger firms’

greater experience confers an advantage with respect
to incremental innovation which is an extension of
existing knowledge, but that this same knowledge and
experience can disadvantage them when innovation is
radical and renders previous processes and procedures
obsolete. A contrasting view is advanced by Cohen
and Klepper (1996), who argue that observed lower
R&D productivity of larger firms may not be evi-
dence of a relative inefficiency of larger firms with
respect to R&D productivity but rather may reflect
the larger firms’ superior ability to profit from their
fixed R&D costs due their cost spreading advantage.
In particular, larger firms will realize lower average
innovative output per unit of R&D because they can
profitably undertake projects further down the dimin-
ishing marginal productivity of R&D schedule than
smaller firms, yielding a higher expected return per
R&D dollar.

While the above literature considers the relation-
ship between innovation and firm size, taking the
latter as given, another literature attempts to account
for size differences between firms. Lucas (1978) pro-
posed an early model of firm size distribution, based
on the idea that firms leverage (heterogeneous) man-
agerial talent. Jovanovic (1982) presented a model in
which firms enter without knowing their true effi-
ciency type, and learn about their type as they pro-
duce in the industry. Over time, more efficient firms
learn their type and expand output accordingly while
less efficient firms contract, and may eventually exit.
Hopenhayn (1992) presents a model of a steady state
size distribution in which firms are subject to repeated
productivity shocks which are correlated over time.
Efficient firms grow more efficient, on average, over
time, and expand while less efficient firms grow less
efficient, contract and eventually exit. While the pre-
ceding models assume competitive markets, Fishman
and Rob (2003) present a model of a steady state firm
size distribution for imperfectly competitive markets
characterized by consumer search frictions. Frictions
keep consumers “locked in” with firms and conse-
quently new entrants start off with a small customer
base which expands over time, resulting in a firm size
distribution in which size is correlated with the time
of entry (age).

This paper introduces an opportunity to innovate
into an equilibrium model of firm size distribution
which is consistent with “stylized facts” about entry
and firm survival. In particular, survival is positively

812



Too big to succeed or too big to fail?

correlated with firm size and age, and firm size at the
time of entry is typically below the average size in
the industry (Geroski 1995b; Agarwal and Audretsch
2001; Klapper and Richmond 2011). Moreover, the
correlation between firm size and survival is espe-
cially pronounced when innovative activity plays an
important role (Audretsch 1995). In this setting, we
argue that evidence that smaller or newer entrants
innovate more successfully than incumbents may be
subject to sample selection bias. Specifically, in the
model there are two entry periods and because of
search frictions, second period entrants only have
access to new, as yet unaffiliated consumers and
are therefore smaller than incumbents (first period
entrants). Once the firm size distribution is deter-
mined, an opportunity to innovate by investing in a
new technology arises and firms who fail to inno-
vate are candidates for exit. Incumbents’ size advan-
tage constitutes an endogenous first mover advan-
tage1 which enables incumbents which fail to innovate
to survive when smaller entrants which fail cannot.
Therefore, the exit rate of non innovating incum-
bents is lower than that of non innovating entrants
and, hence the proportion of surviving incumbents
which fail to innovate is smaller than the correspond-
ing proportion of entrants. Thus, failure to account for
past exit may erroneously suggest that incumbency
or, equivalently, large size, hobbles innovation when
in fact successful innovation is unrelated to firm age
or size or even if successful innovation is positively
correlated with firm size/age.2

The rest of the paper is organized as follows. The
basic model is introduced in Section 2. In Section 3,
the model is expanded to include R&D expenditures.

1 Lieberman and Montgomery (1988) identify three mecha-
nisms which may lead to first mover advantage: (i) technolog-
ical leadership, (ii) preemption of scarce resources, and (iii)
switching costs. The first mover advantage in this paper, due the
fact that it is costly for consumers to switch firms, falls under
the third category.
2Bound et al. (1982) argue that sample selection bias may arise
for a different reason, namely that small firms might appear in
the data set only if they have successful R&D programs and
hence some patent applications. This may be because a small
firm is included in the sample only if it “commands sufficient
investor interest”, and one likely cause of interest is a success-
ful R&D program and patent applications. In that case only
successful small firms are observed whereas almost all large
firms are publicly traded, and will thus appear in the sample
whether or not they have been particularly successful in research
or innovation.

Section 4 includes further discussion and avenues for
future research. The proofs of the main propositions
are relegated to the Appendix.

2 The model

Consider a market for an homogenous product which
lasts for three periods. The product is launched at
period 1 and at that period W1 identical consumers
(early adopters) enter the market. At period 2, W2

new customers (late adopters), otherwise identical to
period 1 customers, enter the market. No new con-
sumers enter at period 3.

Firms There is a continuum of identical potential
firms, and the measure of firms which actually enter
the market is determined endogenously. Any firm can
enter the market at any period. At any period, a firm
must pay a fixed cost F > 0 to be operative, a cost
which it can save by exiting (exit is costless). After
paying, the fixed cost it can produce any number of
units at a constant unit cost which, as described below,
may vary over time and across firms. We denote by Nt

the measure of firms which enter at period t.

Consumers Each consumer demands one unit per
period, for which she is willing to pay up to p. At
any period, it is costly for consumers to learn firms’
prices. Specifically, upon entering the market, a new
consumer is randomly matched with a firm and cost-
lessly observes its price. The consumer can either buy
from that first firm, or search by sequentially and ran-
domly sampling the prices of other firms at random
at a cost of s > 0 per firm. At subsequent periods, a
consumer costlessly learns the price of the firm from
which she bought at the preceding period, but must
incur search costs to find a new firm.

Technology At periods 1 and 2, the only available
technology is the “high cost” technology, under which
the unit cost is ch < p. At period 3, a new “low
cost” technology becomes available which reduces
unit costs to cl < ch. In this section, we assume
for simplicity that it is costless to adopt the new
technology but that successful adoption is uncertain.3

3In Section 3 we expand the analysis to the case in which
successful adoption depends on investment in R&D.

813



A. Fishman et al.

Specifically, at period 3, a firm successfully adopts
the low cost technology with exogenous probability
σ < 1, which is independent of firm size or age,
and with probability 1 − σ its unit cost continues to
be ch. For computational convenience, only we set
σ = 0.5 but nothing of substance depends on this. A
firm learns its realized unit cost at the beginning of
period 3, before paying the fixed cost. To economize
on notation, we assume that the firms’ discount factor
is 1. This assumption has no meaningful effect on the
analysis.

Equilibrium At each period, a strategy for a firm is
whether or not to exit, and what price to charge. As
a tie breaking rule, we assume that a firm exits if
and only if its profit from remaining in the market
is strictly negative and a consumer buys as long as
her utility is non-negative. A strategy for a consumer
is a search rule specifying which prices to accept
and which to reject in favor of search. In equilib-
rium, firms’ entry/exit and pricing strategies maximize
their expected discounted profits given the strategies
of all other firms and consumers’ search rule, and
consumers’ search rule maximizes their utility given
firms’ strategies. Let Vt be the discounted expected
equilibrium profit from entry at period t . Free entry
implies that the expected equilibrium profit of any
entrant is zero. Thus, Vt ≤ 0 at every period and Vt =
0 if there is entry at period t . In equilibrium, N1 > 0
since otherwise a single firm could monopolize the
market at period 1 and earn positive profit.4

Analysis The following lemma, proved by Fishman
and Rob (2003), is a straightforward application of the
“Diamond paradox” (Diamond 1971) to our dynamic
setting.

Lemma 2.1 a. At each period t, t = 1,2,3 the unique
equilibrium price is p. A consumer accepts this
price at her first period and returns to buy from
the same firm at subsequent periods.

b. If a consumer’s first firm exits at any period, the
consumer exits the market at that period as well.

4As shown below, the profit of a period 1 entrant at period 1 is
−F + W1

N1
which is positive for sufficiently small and positive

N1.

Thus, consumers patronize their first firm until it
exits.5 We refer to those “locked-in” consumers as the
firm’s “customer base.”

Let πh = p − ch and πl = p − cl be the profit per
customer when the unit cost is ch and cl , respectively.
We normalize πh = 1 and, thus πl > 1. Consider a
period 1 entrant. At period 1, its profit is −F + W1

N1
. At

period 2, if it does not exit, it retains its customer base
from period 1, and in addition gets an equal share of
the W2 new consumers (which divide equally between
firms). Thus, if it is operative at period 2, its profit at
that period is −F + W1

N1
+ W2

N1+N2
. If it is operative at

period 3, it has the same customer base as at period 2
and, thus its profit that period is: −F + W1

N1
+ W2

N1+N2

if it is high cost, and −F + πl

(
W1
N1

+ W2
N1+N2

)
if it is

low cost. Thus, a period 1 entrant’s expected profit is:

V1=−F+ W1

N1
+max

{
0,−F+ W1

N1
+ W2

N1+N2

+1

2
max

{
0,−F + W1

N1
+ W2

N1 + N2

}

+1

2
max

{
0,−F+πl

(
W1

N1
+ W2

N1 + N2

)}}

(1)

where the “0” in the max operators refer to the exit
options at periods 2 and 3, respectively.

Lemma 2.2 No period 1 entrants exit at period 2 and
no low-cost period 1 entrants exit at period 3.

Proof If any period 1 entrants exit at period 2, then
−F + W1

N1
+ W2

N1+N2
< 0, which implies that V1 < 0 , a

contradiction. Similarly, if low-cost period 1 entrants
exit at period 3, it implies V1 < 0, a contradiction.

Now consider a period 2 entrant. Analogously to
the above, its expected profit is:

V2 = −F + W2

N1 + N2
+ 1

2
max

{
0, −F + W2

N1 + N2

}

+ 1

2
max

{
0, −F + πl

W2

N1 + N2

}
(2)

where V2 > 0 if there is entry at period 2 and V2 ≤ 0
otherwise. As was noted above, in equilibrium N1 >

0. However, it is possible that there is no entry at

5The feature that consumers exit when their first firm exits
greatly simplifies the analysis but is inessential. In our working
paper we show that the main features of the analysis extend to a
richer but more complicated setting in which consumers switch
to new firms when their ‘old’ firm exits.
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period 2 so that N2 = 0. Instead, our focus is on
equilibria in which N2 > 0.

Lemma 2.3 Suppose N2 > 0. Then if there is entry at
period 2, all high-cost period 2 entrants exit at period
3 and no low-cost firms exit at period 3.

Proof If any high-cost period 2 entrants do not exit at
period 3, then −F + W2

N1+N2
≥ 0 implying that V2 >

0, a contradiction. Similarly, if any low-cost period 2
entrants exit at period 3, then −F + πl

W2
N1+N2

≤ 0,
implying that V2 < 0.

The preceding lemmas establish that no low-cost
firms exit and that if there is entry at both periods,
high-cost period 2 entrants exit at period 3. The pos-
sibility that high-cost period 1 entrants exit has not
been ruled out. The following proposition establishes
parameter values corresponding to which there is a
unique equilibrium, in which there is entry at both
periods, all high-cost period 2 entrants exit at period
3, and no period 1 entrants exit.

Proposition 1 If 1 < πl < 2.37 and W2 <
W1(5+πl)

1+πl

then there is a unique equilibrium in which there is
entry at both periods 1 and 2, all high-cost period 2
entrants exit at period 3 and no period 1 entrants exit
at period 3.

Under the conditions of the preceding proposition,
high-cost period 1 entrants do not exit at period 3,
while high-cost period 2 entrants do. The survival of
the former is due to their size advantage over the
latter which results from their earlier entry into the
industry. However, it is important to note that period
1 entrants enjoy a first-mover advantage only in the
ex post sense. Ex ante, firms are indifferent between
entering at period 1 or period 2 since expected profit
from entry is zero in any case; the positive expected
profit period 1 entrants enjoy at period 3 is offset
by the losses they bear at period 1. This contrasts
with the usual sense of “first-mover advantage” which
refers to situations in which a firm gains first-mover
opportunities through some combination of superior
proficiency and luck (Lieberman and Montgomery
1988). Thus, corresponding to the parameter values
for which proposition 1 obtains, at period 3 all the
younger/smaller firms are low cost while only half the
larger/older firms are low cost. Failure to account for

past exit may suggest that smaller more recent entrants
are more likely to innovate than incumbents, even if
in fact, as is the case in our example, proficiency at
innovation is actually unrelated to size or age.

3 Investing in innovation

In this section, we extend the model to a setting in
which firms must invest in R&D in order to innovate.
We show that the main features of the analysis of the
preceding section extend to this setting as well. In fact,
the potential selection bias is now even greater. In partic-
ular, it will be the case that period 1 entrants invest more
than smaller period 2 entrants and therefore now the pro-
portion of period 1 entrants which innovate successfully
is greater than the corresponding proportion of period 2
entrants. Nevertheless, the percentage of surviving
period 2 entrants which innovate is higher than that of
surviving incumbents, which may lead to the biased
inference that smaller firms innovate more successfully.

The sequence of events, model assumptions, and
notation at periods 1 and 2 are now the same as in the
preceding section. What is different is that at period
3 the probability with which a firm innovates depends
on how much it invests in R&D. Specifically, at period
3, the probability that a firm innovates successfully
and increases its profit per consumer from 1 to πl > 1
is given by σ(H) where we assume that σ(H) > 0,
σ ′′(H) < 0, σ(0) = 0 and limH→∞ σ(H) = 1. As in
the previous section, it is obvious that N1 > 0, while
N2 may be zero. Again, we are interested in equilibria
in which there is entry at both periods, i.e., N2 > 0,
and such that high-cost period 1 entrants do not exit
while high-cost period 2 entrants do. Let H1 and H2

denote the equilibrium amount invested by a period 1
entrant and a period 2 entrant, respectively. Then:

V1 = W1

N1
− F + W1

N1
+ W2

N1 + N2
− F

+max

{
0,−H1+(1−σ(H1))max

{
0,

W1

N1
+ W2

N1 + N2
−F

}

+ σ(H1)

(
πl(

W1

N1
+ W2

N1 + N2
) − F

)}

V2 = W2

N1 + N2
− F

+max

{
0,−H2+(1−σ(H2))max

{
0,

W2

N1 + N2
− F

}

+ σ(H2)

(
πl

W2

N1 + N2
− F

)}
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The above formulation implicitly assumes that suc-
cessful innovators cannot or do not preclude rivals
from innovating successfully by means of patents.
And indeed, empirically, patents seem to be impor-
tant in only a relatively small number of industries
(Lieberman and Montgomery 1988). However, inno-
vation is assumed to be appropriable in the sense that
a firm’s success at innovation does not spill over to
competitors; that is, successful innovation by a com-
petitor does not affect the probability with which a
firm innovates successfully.

Proposition 2 In any equilibrium H1 > H2.

The logic here is similar to that in Cohen and
Klepper (1996). Incumbents invest more than entrants
because their investment cost is spread over a greater
number of units. Note that the incumbents’ expected
return from innovation is greater than that of period
2 entrants. To see this, note that if incumbents
and entrants invest the same amount, and thus suc-
ceed with the same probability, incumbents’ expected
return from innovation is greater than that of entrants
since the formers’ higher profit per customer applies
to a larger number of customers. Therefore, the fact
that they optimally invest more implies that incum-
bents enjoy a higher expected return from innovation
a fortiori.

It is also interesting that in equilibrium, invest-
ment by period 1 entrants, H1, is negatively correlated
with the number of period 2 entrants, N2.6 The rea-
son is that investment is a fixed cost and therefore
the expected return from investment is higher the
more customers a firm has. And since period 2 con-
sumers divide equally between all firms, the number
of customers per incumbent firm decreases with N2.

The above proposition characterizes equilibrium
properties for any concave investment function. Prov-
ing existence of the type of equilibria in which we
are interested is much more complicated than in the
simpler model of the previous section. To accomplish
this, the following proposition specifies a particular
investment function.

Proposition 3 Let σ(H) = 1 − 1/(1 + H) and let
πl = 2. For any value of F, 1 < F < 8.267 and

6This is implied by the first order condition in Eq. 25 in the
appendix.

W1 > 0, there is W0 = f (F, W1) > 0 such that for
any W2 > W0, there is a unique equilibrium such that
there is entry at both periods 1 and 2, period 2 entrants
invest H2 in R&D, period 1 entrants invest H1 > H2,
all high cost period 2 entrants exit at period 3 and no
period 1 entrants exit.

The above analysis has assumed that large and
small firms face the same investment function. That is,
large and small firms which invest the same amount
innovate with the same probability. Actually, one
might suppose that a larger firm, given its larger
resources in terms of R&D personnel and ownership
of relevant patents, might innovate with higher prob-
ability. In that case, the sampling bias would be even
more pronounced. Not only do larger firms invest
more, but dollar for dollar innovate with higher prob-
ability, which further increases the success rate of
larger firms relative to smaller ones. And nevertheless,
a higher proportion of surviving small firms will be
observed to innovate.

Conversely, one might suppose that recent entrants
are more dynamic, idea driven and unencumbered
by bureaucracy, and therefore innovate with higher
probability per dollar than larger incumbents. In that
case, it might be the case that a higher proportion of
smaller firms innovate and the inference that innova-
tion decreases with size might be correct. In that case,
the direction of the size effect on innovation might be
unbiased, but failure to account for past exit would
exaggerate the size of small firms’ advantage.

4 Summary and contribution to the literature

This paper contributes to the literature on the effect of
firm size on innovation by showing, in the context of
a simple industry model, that evidence implying that
smaller entrants are more successful at innovation than
larger incumbents may be subject to sample selection
bias. In particular, even if incumbents in fact innovate
more successfully, smaller entrants may appear to be
more innovative simply because unsuccessful incum-
bent firms’ size advantage enables them to survive
when unsuccessful entrants cannot. In other words,
because of their size advantage, —incumbents may
be “too big to fail.” Thus, inferring the effect of firm
size on innovation from the proportions of large and
small innovators may be misleading if smaller non

816



Too big to succeed or too big to fail?

innovators exit at a higher rate than larger ones. Our
analysis thus suggests that an empirically valid anal-
ysis of size effects should account not only for inno-
vative activity of contemporary firms but must also
account for innovation by contemporaneous entrants
firms which have previously exited.

Our analysis is also related to the literature on
firm size distribution. While the focus of that liter-
ature, summarized in the introduction, is to account
for the evolution of firm size over time or the steady
state distribution of firm size, we analyze the effect of
introducing an opportunity to innovate after the equi-
librium firm size distribution is established, where the
equilibrium level of entry during the industry’s growth
stage accounts for the likelihood of successful future
innovation. For concreteness, our analysis is framed in
a much simplified (two period) version of the model
of (Fishman and Rob 2003), but qualitatively similar
results would also seem to apply in the context of alter-
native models of firm size distribution discussed in the
introduction.

An implicit assumption of our model is that inno-
vation is incremental. Specifically, as is established
by Lemma 2.1, the assumption of sequential search
with unit demand implies that the equilibrium price is
independent of firms’ production costs and, thus the
lower cost attained by innovating firms cannot price
non innovators out of the market. In other words, with
unit demand, innovation is never “drastic” in Arrow’s
sense.7 Alternatively, consider an analogous model
in which consumers have identical downward slop-
ing demand for the product. In that case, as shown
by Reinganum (1979), the low-cost firms’ equilibrium
price, pl , is lower than the high-cost firms’ equilib-
rium price, ph, ph > pl , where the difference between
those prices is increasing in consumers’ search costs.
Thus, if the cost difference between innovators and
non innovators is sufficiently large, and if consumer
search costs are low enough, then ph < ch, and non
innovators are priced out of the market. This suggests
that the selection bias that we have identified is more
likely to be an issue when innovation is incremental
than if it is drastic.

While in our model, the “consumer lock-in” effect
confers an endogenous first-mover advantage on ear-
lier entrants, new entry of smaller competitors is

7Arrow (1962) defined an innovation as drastic if the old
technology is no longer a viable substitute.

nevertheless viable because the latter are able to attract
new consumers, who choose a firm at random. This
feature of random consumer search seems appropri-
ate for industries in which there are no prominent
recognized industry leaders. By contrast, in industries
with universally recognized leaders, such as Apple,
Google, and Facebook, new consumers will naturally
gravitate to those leading firms, especially given the
importance of network effects in those industries. In
such cases, new entry can be viable only if entrants
develop a significant technological advantage over
incumbents prior to entry and a somewhat different
selection bias may arise. In particular, since only the
most innovative entrants will make it into the data,
potential entrants which are less successful at innova-
tion are not observed as they do not enter the industry
in the first place.

Finally, our analysis considered process innova-
tions. As these do not change demand, failure to
innovate does not affect incumbents’ size advantage.
By contrast, successful product innovation increases
demand facing innovators at the expense of non inno-
vators and analysis of this case could lead to different
conclusions.

Appendix

Proof of Proposition 1 We first show that correspond-
ing to these parameter values such an equilibrium
exists and then show that it is unique. By (1) and
Lemma 2.2,

V1 = −F + W1

N1
− F + W1

N1
+ W2

N1 + N2

+1

2
max

{
0, −F + W1

N1
+ W2

N1 + N2

}

+1

2
max

{
0, −F + πl

(
W1

N1
+ W2

N1 + N2

)}
(3)

If there is entry at period 2, V2 = 0 , and thus by
(2) and Lemma 2.3,

V2 = −F + W2

N1 + N2
+ 1

2

(
−F + πlW2

N1 + N2

)
(4)

High-cost period 1 entrants do not exit at period 3 if
and only if

− F + W1

N1
+ W2

N1 + N2
≥ 0. (5)
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In that case, (3) becomes

V1 = −F + W1

N1
− F + W1

N1
+ W2

N1 + N2

+1

2

(
−F + W1

N1
+ W2

N1 + N2

)

+1

2

(
−F + πl

(
W1

N1
+ W2

N1 + N2

))

= 0. (6)

Solving (4) and (6) gives

N1 = W1(5 + πl)(2 + πl)

3F(1 + πl)
(7)

and

N2 = (2 + πl)(W2(1 + πl) − W1(5 + πl))

3F(1 + πl)
, (8)

implies that N2 > 0 if and only if

W2 >
W1(5 + πl)

1 + πl

. (9)

Substituting (7) and (9) into (5) yields the inequality

π2
l + πl − 8 ≤ 0, (10)

which obtains if πl ≤ 2.37. Thus, if 1 < πl ≤ 2.37
and (9) obtains, there exists an equilibrium with entry
at both periods in which all high-cost period 2 entrants
exit and no high-cost period 1 entrants exit.

The preceding shows that if there is entry at both
periods then in equilibrium high-cost period 1 entrants
do not exit at period 3. To complete the proof of
uniqueness, it remains to show that if 1 < πl ≤
2.37 and (9) obtains, then N2 > 0. Suppose by
contradiction that N2 = 0. Since in equilibrium
V2 ≤ 0,

− F + W2

N1 + N2
+ 1

2

(
−F + πlW2

N1 + N2

)
≤ 0, (11)

and −F + W2
N1

< 0.
Suppose as before that high-cost period 1 entrants

do not exit, namely, −F + W2
N1+N2

≥ 0. Since in
equilibrium V1 = 0, (1) implies:

N1 = W1(5 + πl) + W2(3 + πl)

6F
. (12)

Substituting (12) in (11) yields:

W2 ≤ W1(5 + πl)

1 + πl

(13)

If high-cost period 1 entrants do exit, we get

N1 = W1(4 + πl) + W2(2 + πl)

5F
, (14)

and thus,

W2 ≤ W1(12 + 3πl)

4 + 2πl

(15)

Thus, an equilibrium in whichN2 = 0 can only exist if
(13) or (15) is satisfied. Since W1(5+πl)

1+πl
≥ W1(12+3πl)

4+2πl
,

(13) should be satisfied but this contradicts (9).

Before proving propositions 2 and 3, we present
several lemmas which are instrumental in the proofs
of both propositions. Recall that the parameters W1,
W2 and F are positive and πl is greater than 1. Equi-
librium is a tuple (N1, N2, H1, H2), all variables are
greater than or equal zero, that satisfies one of the
following two combinations:

1. maxH1 V1 = 0, N1 > 0, and maxH2 V2 = 0.
2. maxH1 V1 = 0, N1 > 0, maxH2 V2 < 0 and N2 =

0.

Throughout the proofs’ section, we will use the term
“type-1 equilibrium” and “type-2 equilibrium” when
referring to these two types of equilibria.

Lemma 5.1 In any equilibrium

2
W1

N1
+ W2

N1 + N2
− 2F ≤ 0 (16)

W2

N1 + N2
− F ≤ 0 (17)

Proof In equilibrium maxV1 = 0 and maxV2 = 0
(or maxV2 < 0). However, it is easy to check that if
the first inequality is violated then maxV1 is strictly
positive and if the second one is violated then maxV2

is strictly positive.

Corollary 1 In equilibrium

V2= W2

N1 + N2
−F −H2+ σ(H2)(πl

W2

N1 + N2
−F).

(18)

We proceed further to find the value of the variables
in the different equilibria. It turns out that variables’
values depend on the following condition:

W1

N1
+ W2

N1 + N2
− F ≥ 0. (19)
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The implication of inequality (19) is that period 1
entrants do not exit in the third period even if they did
not innovate. The following lemma presents the values
of N1 and N2 which depend on inequality (19).

Lemma 5.2 In type-1 equilibrium, if (19) is satisfied

N1 = 3W1

F +
(
H1 − σ(H1)

σ ′(H1)

)
− 2

(
H2 − σ(H2)

σ ′(H2)

) , (20)

and if (19) is not satisfied

N1 = 2W1

F +
(
H1 − σ(H1)

σ ′(H1)

)
−

(
H2 − σ(H2)

σ ′(H2)

) . (21)

In both cases

N2 = W2

F + H2 − σ(H2)
σ ′(H2)

− N1, (22)

where N1 is defined by either (20) or (21).

Proof Assume first that (19) is satisfied. Hence,

V1 = W1

N1
− F + W1

N1
+ W2

N1 + N2
− F − H1

+(1 − σ(H1))

(
W1

N1
+ W2

N1 + N2
− F

)

+σ(H1)

(
πl

[
W1

N1
+ W2

N1 + N2

]
− F

)
, (23)

and we look for the value of H1 that maximizes V1,

H1= argmax
H

(
−H +(1−σ(H))

(
W1

N1
+ W2

N1+N2
−F

)

+ σ(H)

(
πl

[
W1

N1
+ W2

N1 + N2

]
− F

))
. (24)

The first-order condition is

σ ′(H1) =
[(

W1

N1
+ W2

N1 + N2

)
(πl − 1)

]−1

. (25)

From Corollary (1)

V2 = W2

N1 + N2
− F − H2 + σ(H2)

[
πl

W2

N1 + N2
− F

]
,

(26)

and we would like to find the value of H2 that maxi-
mizes V2,

H2=argmax
H

(
−H +σ(H)

[
πl

W2

N1 + N2
−F

)])
. (27)

Here, the first-order condition is

σ ′(H2) =
[

W2

N1 + N2
πl − F

]−1

. (28)

Plugging (25) into V1 in (23) yields

W1

N1
− F + 2

(
W1

N1
+ W2

N1 + N2
− F

)

− H1 + σ(H1)

σ ′(H1)
= 0, (29)

and plugging (28) into V2 in (26) yields

W2

N1 + N2
− F − H2 + σ(H2)

σ ′(H2)
= 0. (30)

Solving for (29) and (30), we get the desired result,
namely, (20) and (22).

Now assume that (19) is not satisfied and therefore

V1 = W1

N1
− F + W1

N1
+ W2

N1 + N2
− F − H1

+σ(H1)

(
πl

[
W1

N1
+ W2

N1 + N2

]
− F

)
, (31)

we would like to find the value of H1 that maximizes
V1,

H1=argmax
H

(
−H +σ(H)

(
πl

[
W1

N1
+ W2

N1 + N2

]
− F

))
.

(32)

The first-order condition now is

σ ′(H1) =
[
(
W1

N1
+ W2

N1 + N2
)πl − F

]−1

. (33)

Plugging (33) into V1 in (31) yields

W1

N1
− F +

(
W1

N1
+ W2

N1 + N2
− F

)

− H1 + σ(H1)

σ ′(H1)
= 0. (34)

Solving for (34) and (30), we get the desired result,
namely, (21) and (22).

We turn now to prove proposition 2.

Proof of Proposition 2 We divide all possible equilib-
ria into three cases:

1. Type 1 equilibrium where (19) is satisfied.
2. Type 1 equilibrium where (19) is not satisfied.
3. Type-2 equilibrium in which V2 < 0.
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Case 1. Following the second inequality of lemma
(5.1), the denominator in the right-hand side of (25)
satisfies

(
W1

N1
+ W2

N1 + N2

)
(πl − 1)

= πl

W1

N1
+ πl

W2

N1 + N2
− W1

N1
− F − (

W2

N1 + N2
− F)

≥ πl

W1

N1
+ πl

W2

N1 + N2
− W1

N1
− F, (35)

which is strictly greater than the denominator of
the right-hand side of (28). That implies σ ′(H1) <

σ ′(H2) or H1 > H2.
Case 2. It follows from (33) and (28) that σ ′(H1) <

σ ′(H2) or H1 > H2.
Case 3. It is clear that in this case, H2 equals zero

and therefore H1 > H2.

Now we turn to proposition (3). From now on, we
assume σ(H) = 1−1/(1+H) = H/(1+H) implying
σ ′(H) = 1/(1+ H)2. In addition, we assume πl = 2.

Lemma 5.3 If 1 < F ≤ 9, W1 > 0 and W2 is
big enough, there is an equilibrium in which (19) is
satisfied and W2

N1+N2
− F < 0.

Proof We start by rewriting the relevant equations and
inequalities after substituting σ and πl in the first-
order conditions, namely, (25) and (28), and in N1 and
N2 of (20) and (22). We get the following equations:

(1 + H1)
2 = W1

N1
+ W2

N1 + N2
(36)

(1 + H2)
2 = 2

W2

N1 + N2
− F (37)

N1 = 3W1

F − H 2
1 + 2H 2

2

(38)

N2 = W2

F − H 2
2

− N1 (39)

Substituting (38) and (39) into (37) yields

(1 + H2)
2 = F − 2H 2

2 . (40)

Substituting (38) and (39) into (36) yields

(1 + H1)
2 = 4F − H 2

1 − H 2
2

3
. (41)

Now, using (38) and (39), (19) can be rewritten

F − H 2
1 + 2H 2

2

3
+ F − H 2

2 − F ≥ 0

F − H 2
1 − H 2

2 ≥ 0 (42)

And we have to find parameters’ values for which
(40), (41) and (42) are satisfied. Solving (40) under
the assumptions that F > 0 (and H2 > 0), we get

H2 = (3F − 2)1/2

3
− 1

3
, (43)

and H2 > 0 implies F > 1. Solving (41) under the
assumption that F > 0, H1 > 0 and H2 > 0 yields

H1 = (132F + 8(3F − 2)1/2 − 23)1/2

12
− 3

4
, (44)

and F should satisfy F > 0.7564. Therefore, F > 1
guarantees that H1 and H2 are positive. To see that
(42) is satisfied, we first plugging (44) and (43) into
(42) to get a function of F. It turns out that the first
derivative of that function is positive as F gets closer
to 1 (from above) and the second derivative is nega-
tive. Moreover, as F goes to 1, the value of the function
goes to a positive number (0.151). Therefore, the func-
tion crosses zero at most once in the range of F > 1.
Indeed, this happens at 45.57. We conclude that for
F ∈ (1, 45.57), (42) is satisfied.

Up to now, we have shown that when F is between
1 and 9, there is a solution for (43) and (44) in which
H1 and H2 are positive and in which condition (19) is
satisfied. It is left to show that in the relevant range of
F, there are values of W1 and W2 for which N1 and N2

are positive. Specifically, we show that for any value
of F > 1 and W1 > 0, type-1 equilibrium exists if W2

is big enough.
Since the values of H1 and H2 are determined

uniquely by F , F > 1 implies that H1 and H2 are
positive. It turns out that when F > 1, the condition
for N1 and N2 to be positive depends only on W2/W1.
Although the condition on W2/W1 is a function of F,
it is nicer and shorter to write it as a function of H1
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and H2 (which are determined by F). From Eqs. 38
and 39, we derive the following condition:

W2

W1
>

3
(
F − H 2

2

)

F − H 2
1 + 2H 2

2

= W0 (45)

The nominator and the denominator are positive and,
therefore W0 > 0. Hence, whenever (45) is satisfied,
W2 > W1 W0, and N1 and N2 are strictly positive.

Lemma 5.4 For any set of parameters, there is at
most one type of equilibrium, either a type-1 equilib-
rium or a type-2 equilibrium.

Proof Given a set of parameters, we have to show that
if one type of equilibrium exists, the other type of
equilibrium does not exist.

Consider first that a type-1 equilibrium exists and
N2 = 0. Then, by definition, maxV1 and maxV2 are
zero. Since the function V1 decreases with N1 for any
value of H1, maxH1V1 decreases with N1 as well.
Now, assume by contradiction that for the same set
of parameters type-2 equilibrium exists. Recall that
in type-2 equilibrium, maxV2 is negative. The only
variable that could have been changed and caused
maxV2 to become negative is N1. In fact, in order for
maxV2 to become negative N1 in the second equilib-
rium should be larger than N1 of the first equilibrium.
But if the new N1 is larger, the new maxV1 becomes
negative, a contradiction.

Now, assume a type-1 equilibrium in whichN1 = x

and N2 = y for some x, y > 0. Again, assume by
contradiction that there exists a type-2 equilibrium,
with the same set of parameters. By definition, in both
equilibria maxV1 = 0, and in the type-2 equilibrium
N2 = 0. Since maxV1 increases when N2 decreases
(for any value of W1, W2, F , and N1), in order for
maxV1 to be zero in the second equilibrium, one of the
variables must change. The only endogenous variable
is N1. Denote the value of N1 in the second equilib-
rium by z (recall that N1 of the first equilibrium is x

and N2 of the first equilibrium is y). It is easy to see
from (23) and (31) that if z = x + y then maxV1 < 0.
Therefore, it must be that z < x + y. But if z < x + y,
then from (1) and from the fact that the parameters did
not change maxV2 > 0, in contradiction.

Lemma 5.5 In any type-1 equilibrium, if 1 < F <

8.267 then (19) is satisfied.

Proof Rewriting the relevant equations and inequali-
ties after substituting σ(H) = 1 − 1/(1 + H) and
πl = 2 in the first order conditions, namely, (33) and
(28), andN1 andN2 as appear in Eqs. 21 and 22, to get

(1 + H1)
2 = 2

(
W1

N1
+ W2

N1 + N2

)
− F, (46)

(1 + H2)
2 = 2

W2

N1 + N2
− F, (47)

N1 = 2W1

F − H 2
1 − H 2

2

, (48)

and

N2 = W2

F − H 2
2

− N1. (49)

Substituting (48) and (49) into (47) yields

(1 + H2)
2 = F − 2H 2

2 , (50)

and substituting (48) and (49) into (46) yields

(1 + H1)
2 = 2F − H 2

1 − 3H 2
2 . (51)

Recall that if (19) is not satisfied then

W1

N1
+ W2

N1 + N2
− F < 0. (52)

Now, substituting (48) and (49) into (52), we get

F − H 2
1 − H 2

2

2
+ F − H 2

2 − F < 0

F − H 2
1 − 3H 2

2 < 0. (53)

It is left to find out for which parameters (50), (51) and
(53) are satisfied. Solving (50) under the assumptions
that F > 0 and H2 > 0, we get

H2 = (3F − 2)1/2

3
− 1

3
, (54)

and H2 > 0 implies F > 1. Solving (51) under the
assumption that F > 0, H1 > 0 and H2 > 0 yields

H1 =
(
2F + 4(3F−2)1/2

3 − 1
3

)1/2

2
− 1

2
(55)

And F should satisfy F > 2/3. Therefore, F > 1
guarantees that H1 and H2 are positive. Now, we have
to check for which range of values of F, inequality
(53), or,

F < H 2
1 + 3H 2

2 (56)
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is satisfied. Substituting (54) and (55) into the right-
hand side of (56) and solve for F we get F > 8.267.8

Hence, whenever F < 8.267 there is no equilibrium
in which condition (19) is not satisfied.

Proof of Proposition 3 Follows directly from Lemmas (5.3),
(5.4), and (5.5).
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