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ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY 

EINSTEIN-MAXWELL EQUATIONS FOR HOMOGENEOUS 
SPACES 

V. V. Obukhov1 and D. V. Kartashov2  UDC 530.1 

The paper studies the energy-momentum tensor components for admissible electromagnetic fields in 
a nonholonomic system given by the group operation in homogeneous spaces. Compact expressions are 
obtained for Maxwell field equations. 
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INTRODUCTION 

Gravitational, electromagnetic and other physical fields, in which equations of motion admit linear and 
quadratic integrals of motion, are rather interesting for gravitation and relativistic quantum theories, since the study of 
motion based on these integrals, allows to receive important information about both fields and field processes. Today, 
the classification of space-time metrics and admissible electromagnetic fields invariant with respect to the motion group 
Gr (N), where r  4, acting on the hypersurface V4, is complete. This allows to formulate a new classification problem, 
i.e., enumeration of all non-equivalent solutions of Einstein–Maxwell equations matching these symmetries. This
problem is preceded by already solved problem of classifying Maxwell vacuum equations in works [1–3], which give 
all non-equivalent solutions of Maxwell vacuum equations for homogeneous spaces and admissible electromagnetic 
fields. According to [4], admissible fields are invariant with respect to the motion group G3(N) for homogeneous space.  

The purpose of this work is in the form convenient for further application, study the energy-momentum tensor 
for the electromagnetic field and derive Maxwell vacuum equations for the admissible electromagnetic field in 
homogeneous space. Tetrad reference vectors used in semi-geodesic holonomic coordinates, are defined by operators of 
the group G3(N). 

Note that the problem of studying spaces with a full set of Killing vector fields, is still relevant to the 
gravitation theory and cosmology. There is a large number of papers [5–34], in which the symmetry of these fields is 
used to solve various problems in the gravitation theory and cosmology and in the relativistic quantum theory. 

TETRAD COMPONENTS OF ENERGY-MOMENTUM TENSOR 

Let us consider a four-dimensional pseudo-Riemannian manifold g with the space-like hypersurface V3 under 
a simply transitive action of the group G3(N). The Bianchi classification is used for such homogeneous spaces of the 
type N. In the semi-geodesic coordinate system {ui}, the metric on the homogeneous space takes the form: 

1Tomsk State Pedagogical University, Tomsk, Russia, e-mail: obukhov@tspu.edu.ru; 2Tomsk State University 
of Control Systems and Radioelectronics, Tomsk, Russia, e-mail: dekar@tspu.edu.ru. Original article submitted
February 1, 2024. 

1064-8887/24/6702-0193 © 2024 Springer Nature Switzerland AG 

DOI 10.1007/s11182-024-03108-1



 194

 
22 0 0 a b

a bds du u e e du du , (1) 

 ,0, , , 0,a a
a a ae X X C X e e e . (2) 

Coordinate indices of tensor quantities in the semi-geodesic coordinate system are indicated by small letters i, j, 
k, l = 0 to 3 and a, b = 1 to 3. Indices in the nonholonomic frame of the reference on V3 hypersurface are indicated by 
Greek letters , , , ,  = 1 to 3. Repeated upper and lower indices are summarized within the change range. The V3 

hypersurface geometry is given by reference vectors of the nonholonomic triad ae  and nonholonomic components of 

the metric tensor . The reference vector tetrad in V4 hypersurface is written as 0,i i i
je e . 

The admissible electromagnetic potential components in holonomic coordinates can be represented by 
0

0 0, a aA A e a u . Tetrad components of the electromagnetic field tensor are as follows: 

 1 23 2 31 3 12a b
abf e e F C a . (3) 

Here 

 1 2 3
23 31 12, , .a C a C a . 

Let us find nonholonomic components of the energy-momentum tensor 16
i i
j jT T : 

 4i i ij k
j j ij i jkT d F F F F . 

Using Eq. (3), functions f f f f  can be obtained from 

 2 , detf f f f . (4) 

Let us introduce functions 0 0a a
a af e F e a . The dot denotes a derivative with respect to the 

variable u0. Tetrad components of the energy-momentum tensor i i l
j j le e T  can thus be written as follows: 

 12 2 2 , (5) 

 0 0
0

14 , 2 . 

MAXWELL FIELD EQUATIONS 

Let us obtain Maxwell equations in the chosen nonholonomic tetrad. Thus, the function j  is obtained for this 
purpose: 
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 1 , detj j i
abge F g gig

. (6) 

Let 2 2
0 0, where det det , ,, a

ag eee e e e f e f a , then the function  is as follows: 

 0 0,0 ,00 0

1 1a a
aa

e
f e e e e C f C f e

e e e
. (7) 

Using Eq. (3), we get 

 1 2 3
0 23 31 122,00 0

1 1 , , ,e c c C c C c C
e e

. (8) 

The function 0  is defined by 

 0
,

a
a

e
e C

e
. (9) 

Thus, Maxwell's vacuum equations take the form 

 0 0 0, , 0e e C C . (10) 

Tetrad components of the Ricci curvature tensor are given in [35]. Equating them to tetrad components of the 
energy-momentum tensor (Eq. (5)), remaining equations are derived from the system of Einstein-Maxwell equations. 
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