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CONSTRUCTION OF A TWO-DIMENSIONAL DISCRETE 

DISLOCATION MODEL TO DESCRIBE THE PLASTIC 

DEFORMATION PROCESS OF A SINGLE CRYSTAL 

N. A. Knyazev and P. S. Volegov UDC 539.3 

The paper considers the development and numerical implementation of a two-dimensional discrete dislocation 
model to describe the inelastic deformation of a hexagonal close-packed (HCP) single crystal, taking into 
account long-range and short-range dislocation interactions. The analytical results are obtained for image 
fields using the Fourier series for cases of dislocation approaching the crystal boundaries. The model 
adequacy tests are carried out, and the evolution of the dislocation structure is illustrated with the gradual 
inclusion of the mechanisms of dislocation annihilation, dislocation pinning at obstacles, and dislocation 
nucleation by the Frank-Read sources. 
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INTRODUCTION 

Metal products with the desired shape and required physical and mechanical properties are manufactured by 
various methods of metal processing, including metal forming. The key factor in the metal forming application is the 
implementation of the plastic deformation process, which results in a change in the internal structure of the material and 
consequently, its physical and mechanical properties. The continuous emergence of new materials, the development of 
special metalworking regimes, and the high production quality requirements for the manufactured products are the main 
reasons to study the plasticity phenomenon and understand the nature of plastic deformation. 

The dislocation motion in metals and alloys is currently the main mechanism of plastic deformation [1]. 
Already at the initial stage of plasticity, there is a qualitative change in the momentum transfer mechanism due to the 
dislocation movement in the elastic stress fields [2]. Further interaction of dislocations with each other and with other 
defects of the crystal lattice largely depends on the prescribed deformation conditions and the crystalline material 
structure and plays a decisive role in establishing its mechanical response.  

To analyze the dislocation structures, a pattern of the appearance of material regions with high and low 
dislocation densities that have a relatively clear periodicity in the micrometer range (cells, subgrains, walls, channels, 
etc.) is often used [3]. To distinguish the inhomogeneity of distributions of dislocations of different types in a material, 
a classification of dislocation structures is used. In [4, 5], the following dislocation structure types were considered: 
random dislocation distribution, pile-ups, tangles, networks, slip bands, cells, and fragments. In the plastic deformation 
process, the predominance of some plasticity mechanisms over others can cause a change in the dislocation structure 
type. For example, an initially homogenous dislocation structure with low stacking fault energy (SFE) can be 
transformed into a structure with pile-ups. When activating multiple slip systems, another transition to the dislocation 
network structure is possible.  

It was noted in [6] that high-temperature deformation leads to the formation of low-energy cellular structures, 
which was confirmed experimentally [7]. This is due to the intensive work of thermally activated dislocation climb and 
cross-slip mechanisms, as a result of which the total dislocation density decreases due to the dislocation annihilation 
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process. A decrease in the dislocation density at elevated temperatures promotes the formation of low-angle cell or 
subgrain boundaries. An important role in the dislocation self-organization processes is played by the stacking fault 
energy. It is well known that in metals and alloys with a low SFE, flat dislocation pile-ups are usually formed, which 
transform into a dislocation network structure in multislip conditions [8]. In turn, the dislocation structure of materials 
with high SFE is most often tangled and cellular. When cyclic loads occur, the dislocation structure is transformed into 
low-energy, stable configurations. Researchers observe the formation of multiple prismatic loops that turn into 
persistent slip bands under intense inelastic deformation at a low cyclic deformation amplitude [9]. High deformation 
amplitude leads to the appearance of dislocation walls in the material structure.  

Thus, there are patterns of dislocation structure formation in a material that need to be investigated. The main 
problem with experimental studies is that the location of dislocations in the material is obtained only after sample 
loading. In addition, in most experimental works, information about the dislocation dynamics or the evolution of the 
dislocation structure during plastic deformation is lacking. An effective way to study the dislocation structure dynamics 
is to develop mathematical models. Recently, discrete dislocation models have become widespread. The main feature of 
the discrete dislocation approach is the explicit consideration of the dislocation motion and interaction (annihilation, 
nucleation by Frank–Read sources, formation of junctions and dipoles, cross-slip, etc.) to describe the evolution of the 
dislocation structure of the material.  

In this work, we construct a two-dimensional discrete dislocation dynamics model to describe the inelastic 
deformation of an HCP single crystal, which makes it possible to study the evolution of the dislocation structure and 
takes into account the influence of the free surface. A review of two-dimensional models showed their successful 
applicability to describe the processes of plastic deformation [10], nano- and microindentation [11, 12], and fracture of 
single crystals and polycrystals [13, 14]. It should be noted that three-dimensional discrete models consider more 
complex mechanisms of the curved dislocation interaction (cross-slip, formation of junctions, kinks, jogs, etc.) [15], but 
this is a more resource-intensive task.  

MODEL DESCRIPTION 

To describe the dislocation structure evolution of a single crystal, we introduce the hypothesis of considering 
pure edge dislocations of different signs in the two-dimensional case. Dislocation slip is the main mechanism of 
dislocation motion. The dislocation climbing mechanism is not included in the consideration due to the slow and low-
temperature deformation of the crystal. If we compare the plane in which dislocations move with the basal plane of the 
hexagonal close-packed (HCP) titanium lattice, then the dislocation movement can go in six different directions 
(Fig. 1a). These directions correspond to the three prismatic slip systems of HCP titanium, which are primary and 
dominant in the material. Thus, there are only six types of edge dislocations in the model (Fig. 1b). 

At the initial time, dislocations are uniformly distributed throughout the crystal, and then they begin to slide 
according to the equations [9]: 

 

Fig. 1. Schematic representation of the dislocation movement in six different directions (a) 
and six types of dislocation gliding in prismatic slip systems of HCP titanium (b). 
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where  and i ib l  are the Burgers vector and the unit vector tangent to the dislocation line, iV  is the dislocation velocity 

vector, i  is the total stress field acting on the ith dislocation, B is the phonon drag coefficient, i
eff  is the effective 

shear stress, τ fr  is the lattice friction (Peierls) stress, and H is the Heaviside function. When the acting shear stresses 

exceed the Peierls stress, the dislocation begins to move in the corresponding slip direction, which depends on the 
dislocation type. 

To calculate the total stress field, it is necessary to consider the internal dislocation stresses and the externally 
applied stresses. In order to achieve this, based on work [16], we divide the total stress, displacement, and deformation 
fields into two components: 

 ˆˆ ˆ, ,u u u            . (1) 

The components , , andu     are superpositions of the corresponding dislocation fields. The field of stresses, 

displacements, and deformations for a single edge dislocation located in an infinitely large isotropic elastic medium has 
the form [17]: 
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 (2) 

where G is the shear modulus, v is the Poisson ratio, b is the Burgers vector length, and ,x y   are the point coordinates 

in the Cartesian coordinate system constructed as follows: the abscissa axis is directed along the dislocation Burgers 
vector, and the ordinate axis lies in the direction of the normal to the slip plane.  
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The solution above cannot be applied in the dislocation core region since in this place the stress, displacement, 
and deformation fields begin to increase infinitely. To solve the problem of the singularity of these fields near the 
dislocation core, the cutoff radius 2r a  (a is the lattice parameter) is introduced, which forms the circular area where 
relations (2) are modified. It is proposed to modify these relations using the results presented in work [18], where the 
authors obtained the nonsingular solution for the stress field of an infinite edge dislocation.  

Dislocations create a stress field at the boundaries of a single crystal with a finite volume, since analytical 
solution (2) was obtained in an infinite medium. The image fields ˆˆ ˆ, , andu    in relation (1) allow getting rid of 

additional dislocation perturbations at the boundaries and ensure preserving the actual boundary conditions. To find 
image fields, the boundary value problem: 
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must be solved, where t and u are the actual surface loads and displacements, and D is the elasticity tensor. Thus, the 
total stress field   is sensitive to a change in the dislocation structure of the material and includes the internal 
dislocation stresses. In this case, the actual boundary conditions are preserved due to the image field introduction.  

In addition to long-range interactions, the model includes short-range dislocation interactions: dislocation 
annihilation, dislocation pinning at obstacles, and dislocation nucleation by the Frank–Read sources. The annihilation of 
two dislocations with opposite signs and the Burgers vectors occur at the critical distance Le = 6b [10, 12, 13]. Obstacles 
are modeled as fixed points with a given density obs  in the crystal volume. The dislocation capture occurs at the 

critical distance obsr , after which the pinned dislocation can overcome obstacles only if the force acting on the 

dislocation exceeds the threshold value (or i
eff obs   ). The Frank–Read sources are also fixed points with a density

nuc . In the case when the effective shear stress in the source area exceeds the critical value ( eff nuc   ), a dislocation 

pair is generated during the period of time tnuc. To prevent the process of dislocation annihilation in a pair, it is 
necessary to arrange dislocations at a sufficient distance, not less than Lnuc [10]. 

PROBLEM OF DETERMINING THE IMAGE FIELDS  

Works [19, 20] were aimed at solving the problem of using the finite element method (FEM) when a curved 
dislocation intersects a free surface. It was noted that the method could not efficiently calculate image fields in this case. 
So, when using a uniform mesh, the total number of nodes becomes impractically large before numerical convergence is 
achieved. In turn, the use of an adaptive mesh is also a difficult task: the mesh construction must be carried out at each 
time step and for many dislocations, which leads to high computational loads. In this paper, a boundary layer is 
introduced for each boundary to solve the problem. When dislocations enter the boundary layer, the procedure for 
image field calculation includes not only the FEM application, but also explicit modeling of image dislocations. For 
this, we considered various cases of dislocation location relative to the free boundary. 

Consider the case of an edge dislocation location, the orientation of which is determined by the angle  , near 
the right boundary. The image dislocation is located relative to the original dislocation, as shown in Fig. 2. The 
components (0, ) and (0, )xx yyy y   of the stress field superposition of the initial dislocation and the image dislocation 
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at the boundary have zero values. The component (0, )xy y  at the boundary is not vanishing, and the expression for it 

takes the form: 
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Therefore, the task is to find an additional stress field add , such that (0, ) (0, ) and (0, ) 0add add
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Function (3) is not absolutely integrable, so we write the solution for the Airy stress function ( , )x y  on the 

interval [–T, T] as a trigonometric series: 
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Taking the boundary conditions 
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we obtain: 
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Fig. 2. Edge dislocation (left) and its corresponding 
image dislocation (right) near the free surface. 
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Expression (4) is the Fourier series with coefficients 0 , , andA A B  : 
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Using these coefficients, we obtain the general form of the Airy stress function and components of the 

additional stress field add  near the right boundary: 
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Additional stress field components near the left, upper, and lower boundaries are calculated similarly (using 
expressions (5), (6), and (7), respectively): 
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Thus, the stress field superposition of the initial dislocation, image dislocation, and additional stress field 
results in zero shear and normal stresses at the boundaries of the single crystal.  

RESULTS 

The simulated single crystal had a square shape with side lengths of m  (5000 nm) in the two-dimensional 

case. The loading conditions corresponded to uniaxial compression of the titanium sample with a given stress vector t 
directed along the X axis (Fig. 1a). The lower boundary was rigidly fixed, and the upper boundary was free. So, the 
boundary conditions on the surface Г1, Г2, Г3, and Г4 take the form: 
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  (8) 

To verify that the method for determining the image fields works correctly when dislocations enter the 
boundary layer, a numerical experiment was conducted. For this purpose, several dislocations of different types were 
placed in the boundary layer near the upper free boundary (Fig. 3a). The component 22  on the upper boundary takes 

a zero value due to the fields of image dislocations located in a special way on the other side of the boundary. To 

eliminate the shear component 12 , we discussed the issue of introducing an additional stress field add  in the 

previous chapter. The shear component distributions of the dislocation stress field (superposition of the initial and 
image dislocation fields) and the additional stress field are plotted in Fig. 3b. As a result, the total stress field has zero 
normal and shear components at the upper boundary. 

In further numerical experiments, the following values of the model parameters were used: 300t   MPа, 

39.5G   GPа [13], 0.33v   [13], 0.32b   nm [13], 410 Pa sB    [13, 14], 19.72fr   MPa [9], 6eL b  [10, 13], 

70obsr b , 9 23 10 cmobs
   , 8 25 10 cmnuc

   , 228obs   MPa [10], 76nuc   MPa [10], 125nucL b  [10], and 

10nuct   ns. The values of most parameters were taken from the known discrete dislocation models, and some 

parameters (such as obstacles and density of sources) were set independently. Initial dislocation distribution in the 
single crystal was uniform, the single crystal loading scheme and the crystal sizes remained unchanged.  

The distributions of the dislocation stress field components, image stress field, and total stress field on the left, 
right, and upper single crystal boundaries are plotted in Fig. 4. It can be seen that the normal stresses on the left and 
right boundaries coincide in magnitude with the compressive load value t, while the upper boundary remains free from 
stresses. 
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Fig. 3. Illustration of the dislocation distribution in the boundary layer (a) and distributions of the 

12  components of the dislocation and additional stress fields at the upper boundary (b). 

 

Fig. 4. Components of the dislocation stress field, image stress field, and total stress field 
on the boundaries. 

 
Finally, Figs. 5, 6, and 7 illustrate the evolution of the dislocation structure with the gradual inclusion of the 

mechanisms of dislocation annihilation, dislocation pinning at obstacles, and dislocation nucleation by sources. In the 
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absence of obstacles and dislocation sources in the model, the vast majority of dislocations reach the boundaries, as 
a result of which the total dislocation density in the single crystal decreases sharply. The appearance of obstacles in the 
model does not really change the dislocation pattern, although under these conditions, the total dislocation density 
increases due to the mechanism of dislocation pinning at obstacles. An interesting result is observed in the case of the 
additional inclusion of the mechanism of dislocation nucleation by sources. In this case, dislocation pile-ups are formed 
in the lower part of the crystal in several slip planes (the dislocation network structure). It should be noted that the 
annihilation mechanism in all three experiments is weak, which is very typical for low-temperature deformation. 
 

 

Fig 5. Dislocation structure at the initial time (a) and in 50 ns (b). The dislocation annihilation 
mechanism is activated. 

 

Fig. 6. Dislocation structure at the initial time (a) and in 50 ns (b). The mechanisms of dislocation 
annihilation and dislocation pinning at obstacles (indicated by orange points) are activated. 
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CONCLUSIONS 

The paper presents the structure and ratios of the two-dimensional discrete dislocation dynamics model. 
An analytical derivation of the image field components has been performed in the case of dislocation approaching the 
boundaries. When the mechanisms of dislocation annihilation, pinning at obstacles, and nucleation by sources are 
activated, the network dislocation structure is formed in the lower part of the titanium single crystal. The model 
adequacy tests demonstrated the correctness of the obtained analytical solution for the image fields and the preservation 
of the actual boundary conditions at each moment of time.  
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