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COSMOLOGICAL MODELS WITH BIANCHI TYPE V METRIC 

E. V. Kuvshinova,1 O. V. Sandakova,2 and D. M. Yanishevsky1  UDC 530.12:531.551

Within the framework of General relativity, two cosmological models are constructed for type V metric 
according to the Bianchi classification. In the first model, an anisotropic liquid is used as the source of gravity. 
This model is non-stationary and non-rotating. In the second cosmological model, sources of gravity are 
anisotropic liquid and pure radiation. All kinematic parameters of the models have been found. Both models 
are examined for causality.
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INTRODUCTION 

Nowadays, small anisotropy of the Universe, including anisotropy caused by cosmological rotation, is not 
excluded; therefore, models in homogeneous but non-isotropic metrics are of interest related to the past of the Universe 
and the behavior of matter in the vicinity of a singular state. Thus, V. A. Korotkii [1] proposed two experiments to 
detect rotation of the homogeneous Universe with the geometry correct in the causal sense. Using the symmetry of the 
problem, he found the first integrals of the geodesics corresponding to isotropic vectors – trajectories of light beams in 
the geometric optics approximations. In the Bianchi type II metric considered in [1], these trajectories – null geodesics – 
are screw lines of constant radius and variable step passing through any observer and in some directions degenerating 
into circles. V. A. Korotkii noted that the presence of closed light rays passing through the observer could be the proof 
of global rotation. The matter is that if we assume that the closed light ray emitted by the observer’s home galaxy has 
not crossed anywhere other galaxies and in time T has returned back, two images of the initial galaxy, but T years 
younger, will be observed in opposite sides of the celestial sphere. It is the first proposed experiment. The second 
experiment consists in observation of a remote galaxy, light from which reaches the observer unhindered, along the 
closed index-zero geodesics from both sides. In this case, the observer will observe the remote galaxy images, the ages 
of which can be equal or significantly different, in opposite sides of the celestial sphere. The implementation of such 
experiment implies the study of the catalog of galaxy images to elucidate opposite directions of their observations and 
to identity their shapes and sizes [1].  

The Bianchi type V metric was successfully used by different authors in a number of works to elucidate 
relationships between relic radiation and isotropic cosmological model parameters [2], to construct a model with the 
dynamics similar to the Friedman one [3], to consider spinor fields in cosmology to study the corresponding 
cosmological modes [4], and for some other reasons [5]. Here we construct the cosmological models with and without 
rotation.  
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MODEL WITHOUT ROTATION 

The metric of Bianchi type V has the form 

2 , , 0,3ds  
       ,  (1)

where ηαβ are elements of the diagonal Lorentz matrix and θα are the orthonormalized 1-forms expressed as follows: 

   0 ,  ,   , , ,  ,0,0 ,  1,2,3A A A
A A A Adt R e RK e K a b c d A          . (2) 

The 1-forms of eA are 
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For metrics (1)–(3), we are looking for a solution of the Einstein equations 

1

2ik ik ikR Rg T  . (4) 

Here c = 1, ħ = 1, and 8πG = 1, where G is Newton’s gravitational constant. We are looking for solution of Eq. (4) in 
the tetrad formalism. In this case, the gravitation source is the anisotropic liquid which describes the dark energy.  

The energy-momentum tensor of the anisotropic liquid has the form 

  ( )ik i k i k ikT p u u p p        , (5) 

where 0
i

iu    is the 4-velocity vector of the anisotropic liquid projected onto the tetrad,  0,1,0,0i   is the 

anisotropy vector,   is the liquid energy density, and ,p   are the anisotropic pressure components. From Eq. (4) for 

metrics (1)–(3), we obtain the system of equations: 
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 (6) 

System (6) has the non-static solution:  
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0
HtR R e ,  (7) 
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2 2 2 2 2
0 0

3( ) 4 3
Ht Ht

a d H Hd

a a R e a R e


    ,  (8)  

2 2 2

2 2 2 2 2
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3( ) 4 1
Ht Ht

a d H Hd

a a R e a R e


     , (9) 

2 2 2

2 2 2 2 2
0 0

3( ) 2 1
Ht Ht

a d H Hd
p

a a R e a R e


    . (10) 

The energy of the anisotropic liquid is positive when the conditions 2 2a d  and 
2 2

0 2 2

2 9 5

3( )

d a d
HR

a d

 



 are 

satisfied, and at greater times, its asymptotic izotropization takes place, and the state equations become vacuum-like. 
Determine whether the non-static model with metrics defined by conditions (1)–(3) is causal. For this purpose, 

we assume the existence of closed time-like curves with the point on each curve satisfying to the condition / 0dt ds  , 

whereas 0u u
   due to time similarity. To satisfy to these two conditions, the quadratic form comprising 

components of the tangent vector with the matrix of the coefficients of spatial metric tensor components should be 
positively defined. The matrix of the spatial component of the examined metric has the form 

  

2 2 2

2 2 2
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( ) 0 0

0 0

0 0

x

x

d a R

b e R

c e R

 
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 
   

.  (11) 

The form of this matrix, taking into account the positive energy density, implies the non-positively defined quadratic 
form. Thus, the contradiction arises with the hypothesis on the existence of closed time-like lines; hence, the examined 

model is causal. Here the expansion parameter 
3R

R
 


, acceleration 

dR
A

aR



, rotation, and shift are absent. 

MODEL WITH ROTATION 

Let the Bianchi type V metric has the same form as Eq. (1), but the orthonormalized 1-forms can now be 
written as 

   0 ,  ,   , , ,  , ,0 ,  1,2,3A A A
A A A Adt R e RK e K a b b d d A          . (12) 

Gravitation sources for this model are the anisotropic liquid and pure radiation. The energy-momentum tensor of the 
anisotropic liquid is 

 (1) ( ) ( )i k i k i k ikikT p u u p p p               , (13) 
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where , , andp    are the anisotropic liquid pressure components,   is the anisotropic liquid energy density, 

{0,0,1,0}i   and {0,0,0,1}i   are the anisotropy vectors, and 0
i iu    is the 4-velocity vector of the 

accompanying anisotropic liquid. The pure radiation field with the energy-momentum tensor 

(2)
0 1 1,,( 0),  { , , ,0}i k iikT wk k w k k k k    (14) 

is also among the material sources. In system of Einstein equations (4), we accept that  

(1) (2)
ik ik ikT T T  . (15) 

Then the system of the Einstein equations takes the form 
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From Eq. (16) we obtain the equation for the scale factor 

24 ( ) 4 ( ) 2 1
a b

a a b R a a b RR dR
b

      
 

     (17) 

and the parameters of matter 



247

    

 

2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2

2 2 2

3 12 4 4 2 4 2 2 3

4

8 2
,

4

d b d b adR ab d b d a b d R

a b R

d ab a d b d RR

a b R

       
 

 


 


  (18)   
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 
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If a b , using replacement ( )R y R , we reduce Eq. (17) to  
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where 4 ( )a a b    and 
 a b d

b
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Designating 
2
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 
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2

2 2
y
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 

, we can rewrite Eq. (24) in the form 

2 21
1 2 2

2

ln ln ( )( ) ln ln
( )

y y
R y y y y A

y y

 
    
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Then we obtain that the functions 1 1 2ln ( )( )z y y y y    and 1
2 2

2

ln
y y

z
y y




  
 increase for 1y y . 

Since we are interested in the expansion, we restrict ourselves to the requirement that 1y y ; in this case, 1z

and 2z  increase. In addition, 1 2 1

2 2

1 1
y y y y

y y y y

 
  

 
 for any 0y  . Then taking into account that 0R  , under the 

condition that 
2 2

2 21 1
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                      
 at large times, we approximately obtain 0

HtR R e

and H = A. In this case, we obtain the following parameters:  
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The matrix of the spatial component of the metric  
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is negatively defined provided that 2 2a d , what entails the space-time causality. 

The dark energy (anisotropic liquid) kinematic parameters are the expansion parameter 
3R

R
 


, the 
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
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d
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2

d
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At large times, 
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 2 2 2 2 2 2

2 2

3 ( )H a b d a b

a b

 
 , 

 2 2 2 2 2 2

2 2

3 ( )H d a b a b
p

a b

 
 ,  

 2 2 2 2 2 2

2 2

3 ( )H d a b a b

a b

 
 , 

 2 2 2 2 2 2

2 2

3 ( )H d a b a b

a b

 
 . 

Thus, the liquid undergoes asymptotic izotropization at large t and also becomes vacuum-like.  
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