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PHYSICAL AND MECHANICAL BEHAVIOR OF ICE UNDER 

DYNAMIC LOADING 

A. I. Potekaev, G. N. Parvatov, V. V. Skripnyak, and V. A. Skripnyak  UDC 539.2:621.311.25 

The physical and mechanical behavior of ice is studied by the example of the Ih ice phase using the method of 
numerical simulation in a computational model of damaged medium in order to describe the common factors of 
deformation and fracture of ice under dynamic loading. The development of inelastic strains and the evolution 
of damage accumulation under high-rate loading are described by the Johnson–Holmquist (JH2) damage 
model. The computations are performed in a 3D formulation using an explicit second-order accuracy 
difference scheme. The computational model is calibrated with respect to the experimental data obtained in 
a wide range of strain rates using the Kolsky method and in the experiments on ice loading with plane shock 
waves. It is shown that the proposed physical-mechanical concepts and the model of ice behavior under 
dynamic loading proposed in this study provide both qualitative and quantitative agreement of the results of 
mechanical behavior of Ih ice with the available experimental data in a range of pressures from 0 to 150 MPa, 
at the temperatures from 193 to 273 K, and a range of strain rates from 0 to 2000 1/s. This evidences of the 
validity of the concepts used and allows predicting the ice behavior under dynamic loads. 
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INTRODUCTION 

The physical and mechanical behavior of ice under loading (especially dynamic) is very important for applied 
problems, therefore the physical and mechanical properties of solid water phases have been studied since early 20th 
century. The experimental studies demonstrated that Ih freshwater ice at the pressures of up to 2 GPa is found in 
17 different crystallographic phases characterized by different specific volumes, temperatures and values of internal 
heat of melting [1]. The uttermost interest is caused by the mechanical behavior of a water ice modification in a stable 
hexagonal phase Ih, which persists at a pressure of up to 150 MPa in a temperature range from 193 to 273 K [1–11]. 

The elaboration of physical-mechanical concepts and models aimed at a description of the mechanical behavior 
of Ih water ice under dynamic impact in recent years have been pursued in several directions [2–14]. There are 
phenomenological macromechanical models developed for the description of ice response to dynamic impacts, using 
classical dynamic fracture criteria [2, 3]. There has been an active development of a model of mechanical behavior of 
ice within the frame of the continuum damage mechanics [4]. The experimental research has shown that the mechanical 
behavior of Ih ice, including its fracture modes, is strain rate dependent [2–9]. In view of this fact, in order to get 
an insight into the mechanical behavior of ice and to predict it under dynamic impacts, the concepts are being developed 
which include into consideration its viscoplasticity and fracture as a result of crack nucleation and growth [5, 10–12]. 
The multi-level models developed at present include the crystallite size and the characteristic ice structure at the 
mesoscopic level [13,14]. Despite the active development of the concepts and models of mechanical behavior of Ih ice 
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under dynamic impacts, the understanding of processes of high-rate strain and fracture dynamics is far from the level 
necessary for making a proper forecast. 

Of critical importance is the necessity of understanding, describing and predicting the ice behavior under 
dynamic loading in the temperature range of 193–273 K, which appears in the prediction of high-rate interaction of ice 
particles with the aerospace structures, land and water transport systems, gas turbine blades of aircraft engines and 
engine superchargers, etc.  

The purpose of this work is to study the mechanical behavior of ice to shock-pulse impact by simulating it in 
a continuum damage model using Ih ice as an example. 

MODEL APPROXIMATIONS AND METHODS  

The mechanical behavior of ice under dynamic loading is studied by the example of the Ih ice phase using the 
method of numerical simulation in an approximation of a damaged medium. The mechanical behavior of ice under 
dynamic loading is described within the frame of the Johnson–Holmquist approach [15]. 

For this purpose, we constructed a computational model of mechanical behavior of Ih under dynamic impacts. 
To refine the numerical parameter values of the mechanical behavior of ice, considered as a damage medium 
(*MAT_110) [16], we used the experimental data in the constitutive equation [6].  

The simulated ice sample was shaped as a cylinder (Fig. 1) with a diameter of 2r = 20 mm and a thickness of 
h = 10 mm, which corresponded to the geometrical characteristics of the sample in the experiment [6]. 

The finite-element model of the sample (Fig. 1) consisted of 54 000 hexahedral Lagrange elements 
corresponding to the ELFORM1 elements in the LS DYNA package (ANSYS Inc.) [16]. The contact between the 
surfaces of interacting fragments, formed in the course of the model sample fracture, was set using the 
*ERODING_SINGLE_SURFACE model [16]. In the model, the sample was placed between two rigid walls, one of 
which was thought to be immobile in space, which is described by the boundary conditions in *RIGID_WALL_ 
GEOMETRIC_FLAT. The second wall was mobile, the options of its boundary conditions were set by 
*RIGID_WALL_GEOMETRIC_FLAT_MOTION. Free boundary conditions were set on the lateral surface of the 
sample. 

The shape and amplitude of the exciting pulse were selected in accordance with the experimental data [6]. 
When the wall was moving along the OZ direction (Fig. 1) at a rate corresponding to the compressive pulse, the model 
sample volume was compressed and fragmented as a result of damage nucleation and growth. 

The elastic behavior of polycrystalline Ih water ice is characterized by moderate anisotropy [15], therefore the 
ice was treated as an isotropic damageable medium. The dependence of elastic moduli of Ih ice on temperature in the 
temperature range from 193 to 273 K was described by the phenomenological relations [17–19] 

 ( )Tm E mE E k T T   , ( )Tm G mG G k T T   , ( )Tm mk T T   , (1) 

 

Fig. 1. Simulated sample (computational domain) of water ice. 
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where ν is the Poisson’s ratio, E is the Young modulus, E0 ≈ 10 GPa is the phenomenological constant for Ih ice, ETm = 
8.93 GPa, kE = 0.012 GPa K–1, Tm is the ice melting temperature, G is the shear modulus, GTm = 3.31 GPa, 
kG = 0.0045 GPa K–1, νTm = 0.308, kν = 7 10–5 K–1. At the temperatures close to the ice melting temperature of 273 K, 

the Young modulus is 8.93 GPa. These numerical values of the coefficients were obtained by approximating the 
experimental data by other authors [12–14] using formulas (1). 

The mechanical response of Ih ice on the intense pulse action in the pressure range before the phase transition 
[2, 20–22] 

 2 3
1 2 3p k k k      during compression, 

 1p k   during tension,  (2) 

where p = –(1/3)σkk is the pressure, σij are the stress tensor components, 0/ 1   , ρ is the mass density, ρ0 is the 

mass density of ice at a temperature close to the melting temperature. 
Numerical values of the coefficients 1 3k k  in the equations of state (2) were determined by approximating the 

experimental shock adiabat [16]. The values of the Hugoniot elastic limit (HEL), pressure (PHEL) and yield stress HEL
at the HEL can be derived using the following formulas [16, 21]: 

 2 3
1 HEL 2 HEL 3 HEL HEL HELHEL (4 / 3) [ /(1 )]k k k G          , (3) 

 2 3
HEL 1 HEL 2 HEL 3 HELP k k k      , HEL HEL1.5(HEL )P   ,  

where HEL HEL 0/ 1     , ρHEL is the mass density at the Hugoniot elastic limit and G is the shear modulus. 

The equivalent stress eq  in the case of inelastic deformation of Ih ice would be determined within the frame 

of the model by the expression [17] 

  * * *
eq i i fD     , (4) 

where 2 1/ 2
eq [(3/ 2) (3 ) ]ij ij p      is the equivalent stress, D is the ice damage parameter, 

* ( * *) (1 ln *)n
i a p t c      is the ice flow stress in the undamaged state, *

max( *) (1 ln *)m
f b p c SF      is the 

strain resistance of local volumes of fractured ice under compression, HEL HEL* / , * /t T P p p P  , a, b, m, n, c are 

the material constants, T is the maximum tensile strength, * is the normalized rate of inelastic deformation, maxSF  is 

the constant characterizing the maximum stress of the local volumes of the fractured medium. Relation (4) includes the 
effect of ice damage within the frame of the approach of the continuum damage mechanics [23–25]. The medium is 
damaged as a result of distributed cracking inside the loaded ice volume under dynamic impact, which is consistent with 
the experimental observations [2]. 

The ice damage parameter D is determined by the following relation [15]: 

 
p

p
f

D





 , (5) 

where Δεp is the increment of the equivalent inelastic strain in a 3D-mesh element, 1 2( * *)p
f d p t d   , d1 and d2 are 

the constants for ice, which characterize the processes of structure damage nucleation and accumulation in the mesh 
element.  
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The simulations were carried out using the solver of the LS DYNA software code (ANSYS Inc.) [16]. 

RESULTS AND DISCUSSION 

Numerical values of the coefficients in equations (2)–(4) were found by two methods: by a direct 
approximation of the available experimental [20–22] and from the condition of achieving an agreement of the 
calculation with the experiment on the macroscopic parameters of the sample response to dynamic actions. РThe results 
of simulation of high-rate compression of a cylindrical ice sample using the LS-DYNA solver [16] were compared with 
the experimental data [6]. As a result, the numerical parameter values were found, which provided an agreement of the 
simulation results with the experiment 

 

2 3
0

1
0 max HEL

1 2 1 2 3

8 10 kg m , 3.5 GPa, 0.88, 0.1, 0.0001, 0.25, 0.258,

1.0 s , 0.0089 GPa , 999, HEL 0.3 GPa , 0.25 GPa,

0.35, 0.5, 8.9 GPa, 0 GPa, 0 GPa, 0.15.

G a b c m n

T SF P

d d k k k FS





         

     

     

  

Since the focus is on the mechanical behavior of ice under dynamic loading, we calculated the damage 

parameters of ice D and the equivalent stress distributions 2 1/ 2
eq [(3/ 2) (3 ) ]ij ij p      as a function of the loading 

duration. The calculations were performed for the model samples (see Fig. 1) using the above-cited consistent 
parameters under pulsed loading along the Z axis at a rate of 20 m/s. The results of calculations of the spatial-temporal 
distributions of D and eq  are presented in Fig. 2 for three time points 20, 50 and 75 µs from the onset of loading the 

sample. The intensity of sample coloring clearly demonstrates the evolution of the spatial distribution of the damage 
parameter D and the equivalent stresses eq  under vertical compression. In particular, as the time of sample 

compression increases, an increase is observed in the compressive stresses in the loading direction and in the tensile 
stresses in the radial direction. These stresses ensure the formation of a fully fractured ice zone and radial cracks in the 
central part of the sample. It is seen that as the time of dynamic compression increases, the number and depth of radial 
cracks increase. For the compression times 50 and 75 µs, there is a clear tendency towards formation of a synchronous 
bimodal (two-peak) spatial distribution of the damage parameter D and the equivalent stress eq . The zone of 

volumetric damage, where the characteristic size of the fragments did not exceed that of the computational grid step, 
was formed on the contact surface between the sample and the mobile rigid wall. The propagation of this zone inwards 
the sample was accompanied by an increase in the characteristic fragment size and a formation of radial cracks. 

Thus, the fracture in the sample loading conditions under study develops from the center towards the rear 
surface.  

Let us look at the time variations of the stress of dynamic compression of ice, since these relationships play 
a decisive role in the applied field. 

In the course of dynamic loading of the sample, the values of engineering strain 1eng  were calculated from the 

changes in the sample height calculated from the displacement of the mobile rigid wall  

 1 eng
0 0

1
( )

t

v t dt
h

   , (6) 

where h0 is the initial sample height and ( )v t  is the mobile wall velocity.  
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Considering the derived values of the engineering strain variation 1eng , let us find the variation of the integral 

force of sample compression in time, which are recorded on the immobile wall, and the true strain variation in time in 
the form of 

 2
1true 1eng( ( ) / )(1 )F t r     , (7) 

where 1true  is the true strain, F(t) is the force at the boundary with the immobile wall, and r is the sample radius at the 

boundary with the immobile wall. 
The resulting numerical values of true strains in the course of deformation of a cylindrical sample under the 

conditions of high-rate axial compression are given in Fig. 3 in the form of a true strain versus time dependence in 
comparison with the experimental data [6, 26]. The values of true strain of Ih ice at a high strain rate (2000 s–1) are in 
good qualitative and quantitative agreement. The absence of oscillations in the calculated true strain versus time curve 
is due to the use of the concepts of the surface erosion model [16, 27]. The fracture criterion is equivalent to condition 
(5). When the maximum equivalent inelastic deformation reaches its limit value in the mesh elements, these elements 
are thought to be fractured and are removed from the computational domain. 

The calculated value of the specific absorbed energy under the assumed loading conditions was found to be 
273.9 J/kg, while the experimentally obtained value was ~292.1 J/kg. The difference between the calculated and 
experimentally obtained values is less than 10%, which validates the adequacy of the model of high-rate deformation of 
Ih ice in the range of strain rates from 0.1 to 2000 s–1. 

To sum up, the proposed model and the physical-mechanical concepts of ice behavior under dynamic loading, 
discussed in this study ensure both qualitative and quantitative agreement of the results of mechanical behavior of Ih ice 
with the available experimental data and can be used to predict the results of high-velocity interaction of ice bodies and 
hail with the aircraft and structure elements of transport systems. 

 

Fig. 2. Results of a numerical simulation of dynamic compression of ice: damage parameter 
D (a–c), equivalent stresses (d–f). 
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CONCLUSIONS 

The mechanical behavior of ice under dynamic loading has been studied using Ih ice as an example. 
A computational model of the mechanical behavior of Ih ice under high-velocity impacts has been constructed. The 
mechanical behavior of ice under dynamic loading was described within the frame of the Johnson–Holmquist approach. 
The numerical values of model parameters of the mechanical behavior of ice were refined using the experimental data. 

It has been shown that the proposed physical-mechanical concepts and the model ensure both qualitative and 
quantitative agreement of the results of mechanical behavior of Ih ice obtained in this study with the available 
experimental data in the range of pressures from 0 to 150 MPa at the temperatures from 193 to 273 K in the strain rate 
interval from 0 to 2000 1/s. This indicates the validity of the concepts used and allows predicting ice behavior under 
different dynamic loads. 

This study was partially supported by the RFBR, Project No. 19-08-01152, and the Mendeleev Fund of the 
Tomsk State University. 
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