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NEW APPROACH TO CALCULATING THE DOUBLE COAXIAL 

RESONATOR WITH A SHORTENING CAPACITANCE 

V. N. Egorov and Le Quang Tuyen  UDC 621.317.335 

The double coaxial resonator with a shortening capacitance is calculated by the partial volume method. The 
double resonator is represented by two single coaxial resonators with the same resonant frequencies equal to 
the frequency of the double resonator. The convergence of the calculated resonant frequency is investigated for 
different numbers of eigenmodes. The accuracy of calculating the resonant frequency is estimated compared to 
the experimental resonant frequency of the double coaxial resonator with exact internal sizes including the 
capacitive gap size.  
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eigenmodes. 

 
 
The coaxial resonator with a shortening capacitance (CRSC) belongs to the class of quasi-stationary resonators 

(Fig. 1а) also called toroidal resonators. In the decimeter wavelength range, it has compact sizes compared to a hollow-
volume resonator and is widely used, in particular, for dielectric measurements [1, 2]. The CRSC is called single if its 
capacitive (shortening) gap is placed between faces of the plane metal resonator and the central electrode (Fig. 1b). The 
gap in the double CRSC is in the central electrode gap (Fig. 1а) [3]. To solve experimental problems with CRSC 
application, its resonant frequency and other characteristics should be calculated, and the accuracy of the calculation 
model should be estimated.  

In calculations based on the quasi-stationary approximation, the CRSC gap is considered to be a capacitor [3]. 
This approach is simple, but does not provide the accuracy required for the CRSC application for measurements. In 
a more strict electrodynamic approach – the partial volume (PV) method – the resonant volume is subdivided into sub-
volumes, and the PV field is described by the spectrum of its eigenmodes with boundary conditions imposed on the 
conductive resonator walls and the boundaries of the introduced PVs. The given approach was developed in [1, 4–7]. 
A number of investigations were carried out by numerical methods [8, 9].  

Common for the exact electrodynamic CRSC models in different approaches is the need for field representation 
by a large number of eigenmodes that leads to the occurrence of the high dimensional matrix determinant. Elucidation 
and attraction of additional physical conditions imposed on the field behavior in the resonator, in particular, inside the 
gap volume, can concretize the eigenfunctions and limit their number without loss of accuracy. To estimate the 
accuracy of the CRSC model, the exact internal sizes of a real resonator are required. The shortening gap height most 
strongly affects the resonant frequency. Its exact measurement inside of the assembled resonator is a separate problem. 

In the present work, a new approach to calculation of the resonant frequency of the double CRSC (Fig. 1а) is 
proposed by reducing it to two single resonators with different shortening gaps, the same resonant frequencies equal to 
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the double CRSC frequency, and the total height of the gaps of the single resonators equal to the height of the gap of the 
double CRSC (Fig. 1b). The PV method was used for calculation. The sizes of the experimental double CRSCs were 
measured, including the shortening gap sizes, and the calculated and experimental resonant frequencies were compared.  

In the first stage of CRSC calculations, the quasi-stationary approach considerably reduced the volume of 
calculations and the number of iterations. In this approach, the double CRSC is represented by two single CRSC in the 
coordinates , ,r z  (Fig. 1). Coaxial line segments with lengths of dL  and uL  and the TEM mode short-circuited at 

one end and opened at the other end are separated by the gap of height t . In the approximation of the ideal conductivity 
of the resonator walls, the input impedances of the lower and upper coaxial segments of the resonator in planes dz L  

and dz L t   are  tand d dZ jX j kL    and  tanu u uZ jX j kL   , respectively, where 

 60 ln b a     is the wave impedance of the coaxial resonator segments, a  and b  are radii of the central 

electrode and housing, 0 0 2k          is the wave number,   is the TEM wavelength, 2 f   is the 

frequency,   and   are the relative dielectric permittivity and the magnetic permeability of the medium in the 

resonator. Below we consider that the medium is non-magnetic ( 1   and 1  ). 

When dL  and uL  are less than 4 , the impedance of the coaxial segments is inductive in character. The 

coaxial resonator segments are connected through the gap of height t  and capacitive impedance ( )CjX j C   , 

where C  is the total capacitance of the gap volume including the so-called lateral capacitance. The resonant frequency 

is determined by the condition Cd uX X X   = 0 that gives 

    tan tan 1 ( ) 0udkL kL C       . (1) 

The fields of the lowest TEM modes in the coaxial sections are in antiphase, and in the cross-section of the resonator in 
the gap volume at the distance d d dz L t   ( 0d ut t t   ) there is the plane – an electric wall – with the radial 

electric field component   0r dE z   in the entire plane for 0 r b   (Fig. 1). This boundary condition on the virtual 

surface allows us to divide the double CRSC with the lowest TEM mode into two single CRSCs. The condition 

  0r dE z   concretizes the field dependence on the coordinate z  and limits the form of the functions suitable for field 

representation. For the fundamental TEM mode in the initial double resonator, the gap can be represented in the form of 
two capacitors-gaps in each single resonator connected in series. Their total capacitance is determined by the relation  

    1 1 1
    d uudC C t C t  

   , (2) 

 

Fig. 1. Double CRSC (a) and its representation by two single CRSCs (b). 
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where  d dC t  and  u uC t  are capacitances of gaps with heights dt  and ut , including lateral capacitances. The gap 

sizes dt  and u dt t t   are determined by the equality of the resonant frequencies of two single CRSCs and the 

frequency of the initial double CRSC. Substitution of formula (2) into Eq. (1) taking into account the condition 

  0r dE z   on the electric wall leads to the equations 

    , ,tan 1 0dd u d uk L C t            (3) 

for two single CRSCs. The system of equations (3) gives the resonant frequency   the same for the single CRSCs, the 

gap size dt , and u dt t t  . In addition to the capacities of the flat capacitors, the capacitances ,d uC  also include the 

lateral capacitances [3] 

 
2

0,
, ,

2 2
2 lnd u

d u d u

a b a
C a

t t

   
         

. (4) 

We preformed electrodynamic calculations of the resonant frequency of the double CRSCs by the PV method. First we 
considered the single CRSCs with the coaxial sections of lengths dL  and uL  corresponding to the gap heights dt  and 

ut . The frequencies of the single identical CRSCs monotonically increased with gaps; moreover, the decrease of 

 u d dt t t t   corresponded to the increase of dt . The change of the dt  value was accompanied by opposite changes 

of the frequencies  d df t  and   u u df t t  of the lower and upper single CRSCs; they coincided for a certain gap size

0dt . The point     0 0 0d d u u df t f t t f   gives the resonant frequency of the double CRSC 0f  and the 0dt  value, 

that is, the wall coordinate 0 0d d dz L t  . The gap height t  of the double real CRSC should be determined from 

separate measurements.  
Thus, calculation of the double CRSC is reduced to calculation of two single CRSCs with different lengths of 

the coaxial sections and gap sizes by the same program. The eigenfunctions of the field representation must satisfy to 
the boundary condition imposed on the conductive resonator walls and to the condition 0rE   on the partition plane 

d d dz L t   the position of which is determined in the process of problem solution. 

Let us consider for definiteness the lower section of the double CRSC – the single CRSC with the height dL  of 

the central electrode and the gap height dt  (see Fig. 1b). By analogy with [4], we take advantage of the electromagnetic 

field representation for the single CRSC. Owing to the independence of the field of the azimuthal angle, the function   

used to represent the field should depend only on the coordinates ( ,r z ). We divide the single CRSC by the plane 

dz L  into two PVs: waveguide 1 and coaxial 2 (Fig. 1b). 

We represent the field in waveguide volume 1 for d d dL z L t   , 0 r b  , by the spectrum of waves 0qE

. The resonant frequency of the fundamental TEM mode for the resonators used in practice lies below the critical 
frequencies of waveguide modes 0qE , that is, waveguide volume 1 at the resonant frequency is the postcritical 

waveguide for them. The field components in volume 1 are described by the functions 

  ,1 0
1

( )coshz q q q d d
q

E B J u r z L t



      , (5) 

  ,1 1
1

( )coshq q q d d
q q

k
H j B J u r z L t

u






      , (6) 
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  ,1 1
1

( )sinhq
r q q q d d

q q

E B J u r z L t
u






       , (7) 

where qB  are the amplitudes; qu  and 2 2
q qu k    are the transverse and longitudinal wave numbers in volume 1, 

1,2,3,...q  ; and  0 qJ u r  and  1 qJ u r  are the zero and first order Bessel functions. The boundary condition 

 ,1 0zE b   applied to Eq. (5) gives the equation  0 0qJ u b   the roots of which define the transverse wave numbers 

qu . The functions in Eqs. (5)–(7) satisfy to the boundary condition  ,1 0rE z   introduced at d dz L t  . In each of 

Eqs. (5)–(7), the dependence on z  without this condition should contain even functions cosh( )  and odd functions 

sinh( )  for the double CRSC.  

We represent the field in coaxial volume 2 as the sum of the TEM modes and the spectrum of higher waveguide 

0sE -modes of the coaxial line: 

 ,2 0
1

( )cosh( )z s s s
s

E C Z r z



   , (8) 

 ,2 0 1
1

cos( )
( )cosh( )

2 s s s
s s

a kz k
H jC j C Z r z

r






   
 

 , (9) 

 ,2 0 1
1

sin( )
( )sinh( )

2
s

r s s s
s s

a kz
E C C Z r z

r






   

 
 , (10) 

where 0C  and sC  are the amplitudes; s  and 2 2
s s k     are the transverse and longitudinal wave numbers in 

volume 2;  

      
   0

0 0 0
0

s
s s s

s

J a
Z r J r N r

N a


    


,      

   0
1 1 1

0

s
s s s

s

J a
Z r J r N r

N a


    


, 1,2,3,...s  ; 

and  0 qN u r  and  1 qN u r  are the zero and first order Neumann functions. The boundary condition  ,2 0zE b   

applied to Eq. (8) gives for s  the equation 

      
   0

0 0 0
0

0s
s s s

s

J a
Z b J b N b

N a


     


.  

The number of eigenwaves in calculation of the CRSC should be limited. We take Q  eigenwaves for 

waveguide PV 1 and S  eigenwaves (except the TEM wave) for coaxial PV 2. At dz L , the tangential field 

components in PVs 1 and 2 should be continuous:    ,1 ,2r d r dE L E L  and    ,1 ,2d dH L H L  ; then from 

Eqs. (6), (7), (9), and (10) we obtain the equations 

    
1 0 1

1 1

sin
( )sinh ( )sinh( ) 0

2

Q S
q d s

q q q d s s s d
q sq s

a kL
B J u r t C C Z r L

u r 

 
     

 
  ,  (11) 
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      1 0 1
1 1

cos
( )cosh ( )cosh 0

2

Q S
d

q q q d s s s d
q sq s

a kLk k
B J u r t C C Z r L

u r 
     

 
  .  (12) 

Let us multiply Eq. (11) by  1 mrJ u r  ( 1,2,...,m Q ) and integrate it over r  within the limits  0,b . We multiply 

Eq. (12) by 1 1r r   corresponding to the TEM wave and integrate it over r  within the limits  ,a b . Then we 

multiply Eq. (12) by  1 nrZ r  ( 1,2,...,n S ) and integrate it over r  within the limits  ,a b . After integration, 

from Eq. (11) we obtain Q homogeneous linear equations, and from Eq. (12) we obtain 1+S linear homogeneous 
equations. Thus, Eqs. (11) and (12) lead to the system of M = Q + 1 + S linear homogeneous equations for the 
amplitudes of the qB , 0 ,C  and sC  modes used to represent the field in PVs 1 and 2 of the single CRSCs. We 

designate 1Q p  ; then the elements of the main matrix of the system assume the form 

 
    21

,

sinh ( ) 2 ,      ,

0 ,                                                  ,

i i i d i

i j

u t J u b i j
D

i j

    
 

 1, ...,i Q , 1, ...,j Q , 

 
   0

,

sin

2
d i

i j
i

a kL J u a
D

b u b
 


, 1, ...,i Q , j p ,  

          
   

0 1
, 22

sinh
i i j p

i j j p j p j p d

i j p

u a J u a Z a
D L

u b b


  




   

 
, 1, ...,i Q , 1, ...,j p M  ,  

      0
, cosh

j
i j j j d

j

J u a
D k u t

u b
  , i p , 1, ...,j Q  , 

 
   ,

cos
ln

2
d

i j

a kL
D a b

b



, i p , j p ,  

 , 0i jD  , i p , 1, ...,j p M   and 1, ...,i p M  , j p , 

          
   

0 1
, 2 2

cosh
i p i p j

i j i p i p d

i p j

u a J u a Z a
D k u t

u b b

 
 




 

 
, 1, ...,i p M  , 1, ...,j Q ,  

 
       2 2

1 1

,
cosh ,    ,

2

0,                                                                                 ,

j p j p
j p j p d

i j

Z a Z b
k L i j

D

i j

 
 

             

 

 1, ...,i p M  , 1, ...,j p M  . 

The determinant of the matrix D  is a function of the frequency and vanishes at the resonant frequency. To 
calculate the double CRSC, it is necessary to find the resonant frequencies df  and uf  (zeros of the determinants) of 
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the single CRSCs and the dt  value at which d uf f .The results of quasi-stationary calculations are used as initial 

approximations.  
The problem on the accuracy of the CRSC model is inseparable from the accuracy of the initial data – the 

internal sizes of the real CRSC, in particular, of the gap size t  that most strongly affects the resonant frequency. The 
diameter 2a  and the lengths dL  and uL  of the cylinders-electrodes were measured precisely with a micrometer for the 

disassembled resonator and remained unchanged after its assemblage. The internal diameter 2b  of the cylindrical 
housing was determined from the spectrum of resonant frequencies of the volume resonator – initial CRSC – without 
central electrodes [10]. The most difficult and critical was direct measurement of the height of the gap between the 
electrodes in the assembled resonator. Separate measurements of L , dL , and uL  in the disassembled resonator and 

calculation of d ut L L L    for the assembled design did not provide the required accuracy. For the experimental 

assembled CRSC model, the upper electrode could be descended until it rested against the lower electrode ( 0t  ), and 
electrode lifting was accompanied by measuring its motion and fixing in the upper position. The gap t  was measured 
with an electronic displacement meter with resolution of 1 m. The sizes of the double CRSC are presented in Table 1. 

The convergence of the calculated resonant frequency of the single CRSC was studied for the constant number 
S  = 60 of waves in PV 2 and increasing number Q  of waves in PV 1 (Fig. 2а) and for the number Q  = 60 of waves in 

PV 1 and increasing number S  of waves in PV 2 (Fig. 2b). 
The calculated resonant frequencies of the single resonators df  and uf  and their differences d uf f f  

during measurements of the gap height dt  are given in Table 2. The experimental resonant frequency and the results of 

calculations by the quasi-stationary and PV methods are presented in Table 3.  
From Tabes 2 and 3 it follows that there are points of equal frequencies of the single CRSCs with different dL  

and uL  values and gaps dt  and u dt t t   for quasi-stationary approximation and electrodynamic analysis. The 

steepness of the resonant frequency was 2 d df t   25 MHz/mm, which corresponded to the relative frequency shift 

 d d df f t   0.05% and showed the importance of exact measurement of the gap size for estimation of the real 

accuracy of the calculation model. The difference between the calculated and experimental frequencies f  = 0.2% was 

mainly determined by the error in determining the t  value.  

TABLE 1. Sizes of the Double CRSC, mm 

2b  2a  dL  uL  t  d uL L t L    

152.167 38.029 25.520 39.391 2.159 67.070 

 

Fig. 2. Dependences of the resonant frequency on the number Q  of waves in waveguide 

volume 1 (a) and on the number S  of waves in the coaxial volume (b). 
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The approach considered above with application to the double CRSC with a dielectric sample will allow the 
accuracy of measuring the dielectric parameters to be increased up to technical restrictions on the accuracy of the 
sample sizes and its position in the resonator. The reduction of the eigenmode number without loss of accuracy is 
connected with inclusion of the modes with continuous spectrum in the gap volume.  
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TABLE 2. Dependence of the Calculated Frequencies df  and uf  of the Single CRSCs on the Gap Height dt  

( 70) Q S  

dt , mm 0.790976 0.790977 0.790978 0.790979 0.790980 

df , GHz 0.4667079 0.4667081 0.4667084 0.4667086 0.4667088 

uf , GHz 0.4667086 0.4667085 0.4667083 0.4667082 0.4667081 

f , kHz –0.7 –0.4 0.1 0.4 0.7 

TABLE 3. Experimental and Calculated Resonant Frequencies expf  and calcf  together with Calculated 0dt  and 

0ut  Values 

expf , GHz Model calcf , GHz f , % 0dt , mm 0ut , mm 

0.467648 
Quasi-stationary 0.495473 5.9 0.801 1.358 

Multi-mode waveguide 
with PV 

0.466708 0.2 0.79098 1.36802 
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