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MATHEMATICAL PROCESSING OF PHYSICS 
EXPERIMENTAL DATA 

ROBUST PARAMETRIC GENERATORS OF RANDOM VARIABLES 

V. A. Simakhin,1 L. G. Shamanaeva,2,3 and A. V. Maer1  UDC 519.2; 53.082.4519.21; 551.596 

A method of constructing consistent and effective algorithms for robust parametric generators of random 
variables intended for solving problems of statistical simulation and constructing bootstrap procedures is 
considered. The consistency and efficiency of the standard and robust generators are analyzed in the presence 
of asymmetric and symmetric outliers. It is shown on real examples that the standard parametric generators of 
random variables are inconsistent for heterogeneous samples, and their use can significantly and 
unpredictably distort simulation results and decision-making procedures. It is demonstrated that in the 
presence of outliers, the efficiency of the robust generators can considerably exceed that of the standard 
parametric random variable generators, especially in the presence of asymmetric outliers.  
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INTRODUCTION 

With the advent of highly efficient and accessible computer facilities, a possibility arose of simulating complex 
systems by the Monte Carlo methods and solving problems that cannot be solved analytically [1–7]. The major 
elements of mathematical system models are programs – generators of pseudo-random numbers (processes) [1]. 
Nowadays any program environment pretending to be popular necessary contains the developed random number 
generator software (RNGS). In the developed software system, the parametric generators are widely used provided that 

the form of the distribution  ,F x   of random variable Х is known to within a parameter θ . If θ  is unknown, its value 

θN  is estimated from a sample  1,...,N Nx xX , and the generator is adjusted by substitution of the estimate θN  for 

the unknown θ  value. The need to know properties of statistical procedures for the sample of finite size N  using the 
Monte Carlo methods gives rise to the bootstrap based on the parametric generators of random variables and for 
unknown distributions – on the nonparametric ones [4, 5]. Their creation is based on parametric and nonparametric 
methods of mathematical statistics widely used to find unbiased, well-grounded, and effective estimates of the 
parameters based on the available experimental data. 

At the same time, the problem of occurrence of anomalous observations (outliers) is well known to researchers. 
The standard methods of processing inhomogeneous samples can cause a considerable bias and low efficiency of estimates 
of the parameters. This significantly distorts the results of decision-making procedures [6–9]. The centuries-old approach 
developed by experimenters is based on deleting outliers from a data sample, but for its objective application, 
nonparametric criteria of outlier detection are required the determination of which is a complicated problem [10].  
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The development of robust statistics reoriented the problem of sample censoring to the problem of synthesis of 
procedures stable against the effect of the outliers [8, 9, 11]. Robust parametric and nonparametric PNGS has poorly 
been developed, though practical simulation of real problems suggests otherwise. Indeed, let the random variable Х with 

distribution        , 1 ,F x G x H x  θ θ  is observed. Of interest is the generator for the aprioristic distribution 

 ,G x θ  with unknown parameter  , unknown outlier fraction , and distribution ( ).H x   

The maximum likelihood estimate (MLE) for θ  based on the sample  1,...,N Nx xX  from the distribution 

 ,θG x  yields a biased and inconsistent estimate of the parameter θ  for the distribution  ,G x θ . In a nonparametric 

case, the empirical distribution function (EDF)  NF x  is the unbiased and well-grounded estimate of  ,θF x , but the 

biased and inconsistent estimate of  ,θG x . The application of the RNGS system generators to obtain such estimates 

may yield unpredictable results and conclusions during simulation of complex systems characterized by the presence of 
a great number of generators and complex interrelations between the elements of the system being simulated. For 
example, even a simple visual analysis of numerous temperature and pressure distributions when modeling the 
reliability and durability of a gas pipeline system shows the presence of numerous and various outliers [3].  

The influence of the outliers can be traced on the example of processing of experimental Doppler acoustic radar 
(sodar) data on the spatiotemporal dynamics of the wind velocity in the atmospheric boundary layer. Distributions of 
the wind vector components at different altitudes are characterized by the presence of various outliers [7]. Data 
processing using traditional and robust nonparametric methods demonstrated that the efficiency of classical 
nonparametric methods of data processing can be extremely low (in some cases, only ≈5 %) compared to the robust 
methods [7]. The examples presented above show the importance and urgency of introducing robust generators with 
distributions depending on various aprioristic statistical uncertainties of the problem under study.  

In the present work, algorithms of constructing parametric random number generators for aprioristic 

distribution  ,G x θ  in the presence of the outliers are considered. Considering the level of aprioristic statistical 

uncertainty, this class of problems belongs to semiparametric problems of mathematical statistics [10]. To construct the 
robust generators, estimates of the parameters by the weighed maximum likelihood method (WMLM) are used with 
application to inhomogeneous experimental data [12]. The robust estimates based on the WMLM allow unbiased, well-
grounded, and effective algorithms for parametric random number generators of inhomogeneous experimental data to 
be constructed. Examples of robust random number generators are given. Of doubtless interest is an analysis of the 
efficiency of the standard parametric generator software for inhomogeneous samples. In this regards, the consistency 
and efficiency of standard and robust generators in the presence of asymmetric and symmetric outliers are estimated. 
On specific examples it is proved that for inhomogeneous samples, standard parametric generators of random variables 
are inconsistent and can unpredictably distort simulation results. It is shown that robust generators have much higher 
efficiency than standard parametric generators of random variables, especially in the presence of asymmetric outliers.  

1. PROBLEM FORMULATION. ALGORITHM FOR THE RANDOM NUMBER GENERATOR 

Let  1,...,N Nx xX  be a sample of independent identically distributed (IID) random variables with 

distribution function (DF)  ,F x Pθ , where P  is the class of distributions satisfying to the conditions of regularity 

of the maximum likelihood method (MLM) [13, 14]. Below we consider  ,F x Pθ , where P P   and 

 ( ,P F x    is the class of the Tukey distributions (the supermodel)  

    , (1 ) , ( )F x G x H x  θ θ ,  (1.1) 
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  0,G x Pθ  is the aprioristic model of the distribution function, ( ) HH x P  is the outlier distribution, 0   is the 

outlier fraction,  ( ),H x   is the information on the outliers,      , , , , andf x g x h xθ θ  are the corresponding 

distribution densities, and  1,...,
T

k  θ  is the vector of the unknown parameters of the distribution. The Tukey 

supermodel is used as a convenient model of real distributions  ,F x θ  that can be considered approximately 

coinciding with the aprioristic distribution  ,G x θ  [8–10].  

Let us consider the problem of construction of the random number generator for the aprioristic distribution 

 ,G x θ  on the inhomogeneous sample  1,...,N Nx xX  from the distribution  ,F x Pθ . For this purpose, we 

take advantage of the classical method of generating random variables using the inverse transformation  1X G U

of the form  1 , 1, 2,i ix G u i    , where , 1, 2,iu i   , are realizations of random variables uniform in [0, 1] 

[1]. Hence, generation of a sample value ix  from the distribution ( )G x  is reduced to finding the quantile at level iu  of 

the distribution ( )G x . As a well-grounded estimate pNX  of the quantile pX  at level p (0 < p < 1) of the distribution 

function  G x , we take the solution of the empirical equation  N pNG X p


: 

  1
pN NX G p


, (1.2) 

where  NG x


 is the well-grounded unbiased (asymptotically unbiased) estimate of  G x . To obtain the estimate 

pNX  from Eq. (1.2), various recurrent stochastic approximation algorithms are used. Below we restrict ourselves to the 

sufficiently general class of asymptotically normal estimates  NG x


, that is, assume that the random variable  

      20,NN G x G x     


 

obeys the asymptotically normal distribution  20,   with zero average and variance  

     2 2 ( )ND G x G x   


.  (1.3) 

Using the Lagrange increment, we represent Eq. (1.2) in the form  

 
     1

pN p N pN p
p

X X G X G X
g X

       


. (1.4) 

Theorem 1.1. If    20,NN G G x     


 and 2  from Eq. (1.3) is a continuous function of  G x , 

  0,pN p pNN X X D X     , where 

    
2

2pN
p

D X
g X


 . (1.5) 
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The proof follows from representation (1.4) and the continuity theorems ([13], Subsection 1.5; [14], Subsection 3.5). No 
Section references are given below. 

Let  1 ,...,
T

N N kN
    θ  be the robust, unbiased, and well-grounded estimate of  1,...,

T
k  θ , and the 

quantile pX  of the distribution  ,G x θ  has a unique solution. Using the substitution method [10, 13], we take 

 , NG x θ  for  NG x


 and define the robust estimate pNX  of the quantile pX  of the distribution function 

  0,G x Pθ  in the form  1 ,pN NX G p  θ . As a result, we obtain the following robust generator algorithm:  

 
1( , ), 1, 2, ...i i Nx G u i  θ . (1.6) 

The problems and methods of finding the estimate  1 ,...,
T

N N kN
    θ  and hence the quantile estimate pNX  

depend on aprioristic information about the set   ,P F x  θ , each element  ,F x θ  of which is defined by 

aprioristic information on   0,G x Pθ  and information on the outliers  ( ),H x  . Both parametric and nonparametric 

models of the distribution functions and their superpositions – semiparametric and semi-nonparametric models – can 
participate in mathematical model (1.1). In the parametric models, the form of the distribution function is known to 
within a finite number of the unknown parameters, whereas in the nonparametric models, it is unknown. Based on 

aprioristic information on the set   ,P F x  θ , we consider the following problem formulations for supermodel (1.1).  

1. Parametric problem 

PP P   is a parametric class, that is, 0PP  and HPP  are parametric classes; information on  ( ), 0H x    is 

known. 

2. Semiparametric problem  

PP P   is a semiparametric class, 0PP  is a parametric class, and HNP  is a nonparametric class; information 

on  ( ),H x   is unknown. 

3. Nonparametric problem 

NP P   is a nonparametric class, and 0NP  is a nonparametric class with some additional information on 

 ,G x θ   ( ), 0H x   . 

4. Semi-nonparametric problem  

NP P   is a semi-nonparametric class of the distribution functions, 0PP  is a nonparametric class of the 

distribution functions with some additional information on  ,G x θ , and HNP  is a nonparametric class; information on 

 ( ), 0H x    is unknown. 
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2. ROBUST PARAMETRIC GENERATORS 

Let us consider the problem of constructing a robust parametric generator for  ,G x θ  on supermodel (1.1) 

( 0)   at a parametric level of aprioristic uncertainty. Let  1,...,N Nx xX  be a sample of independent identically 

distributed random variables with distribution functions  , PF x Pθ ,   0, PG x P θ , and ( ) HPH x P : P , PP , 

0PP , and HPP  are the parametric classes, and information on  ( ), 0H x    is known. The parametric problems for 

a homogeneous sample ( 0  ) have been sufficiently studied. Exactly these generators are mainly present in the 

RNGS. As a robust estimate of the quantile pX  of the distribution ( , )G x θ , we take a solution of the empirical 

equation of the form 

  ,p NG X pθ  or  1 ,pN NX G p θ ,  (2.1) 

where Nθ  is the unbiased (asymptotically unbiased), well-grounded estimate of θ  on the distribution   0, PG x Pθ  

and the sample  1,...,N Nx xX  from the distribution  , PF x Pθ .  

Theorem 2.1. Let   0, PG x Pθ  be a continuous function of θ , and  NN θ θ  has the asymptotically 

normal distribution    0,NN   Bθ θ , where B is the covariance matrix in  1 ,...,
T

N N kN  θ ; then 

       2, , 0, ,N NN G x G x G x         θ θ θ ,  (2.2) 

where  

  2 , T
NG x C C    Bθ , (2.3) 

 
   

1

, ,
,...,T

k

G x G x
C

     
    

. (2.4) 

Proof. Applying the finite increment theorem, we represent    , ,NG x G x  θ θ  in the form  

 
     , , T

N NG x G x C    θ θ θ θ
. (2.5) 

The proof follows from the continuity theorems [13, 14]. Let us designate by LE  the operator of averaging over the 

distribution L . 

Theorem 2.2. If  , PF x P P θ ,   0, PG x Pθ , and Nθ  is the maximum likelihood estimate (MLE) for 

 , PF x P P θ , then 

1)   0G NE  θ θ ,  

2) Nθ  is the well-grounded estimate of θ  for the distribution G , 

3)    0,NN   Bθ θ  has the asymptotically normal distribution with zero vector of the averages and 

the covariance matrix ijbB , where 
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 ( , ) ( , ) ( , ) ( , )ij i jb U x U x W x dG x     , (2.6) 

 ( , ) ln ( , )

N

j N
j

U x g x






θ

θ θ , 
(1 ) ( , )

( , )
( , )

g x
W x

f x

 


θ
θ

θ
. 

Proof. Applying the multidimensional analog of the maximum likelihood method (MLM) to the sample 

 1,...,N Nx xX  from  ,F x θ , we find the MLE Nθ  for  ,F x θ  from the system of evaluation equations [13, 14] 

 
1

1
ln ( , ) ( ) ln ( , ) 0, 1,

N N

N

N
ij j

f x dF x f x j k
N  

 
  

 


θ θ θ θ

θ θ . (2.7) 

In this case,    0,NN   Bθ θ  obeys the asymptotically normal distribution with zero vector of averages 

  0F jNE  θ θ  and the covariance matrix ijbB , where 

 2

1 ( , ) ( , )

( , )
ij F

i j

f x f x
b E

f x

    
  

   
. (2.8) 

From the proof of the MLM and representations for the MLE [13, 14] it follows that 

  
1

2

2
ln ( , ) ( , ) ln ( , ) ( , )jN j N

jj

f x dF x f x dF x


    

       
     

 θ θ θ θ , 

and the condition of the unbiased MLE   0F jNE  θ θ  is reduced to 

 ln ( , ) ( , ) ln ( , ) ( , ) 0, 1,F N
j j

E f x dF x f x dF x j k
  

   
   
 θ θ θ θ .  (2.9) 

Let us consider Eq. (2.7) and expressions (2.8) and (2.9) for  ,F x θ  defined by supermodel (1.1),  ,F x P P θ , 

and   0, PG x P P θ . In this case, system of evaluation equations (2.7) is transformed to the form 

 
1 1

1 1
ln ( , ) ( , ) ( , ) 0, 1,

N N

i N i N i N
i ij j

f x U x W x j k
N N 

 
  

 
 θ θ θ ,   (2.10) 

where ( , ) ln ( , )

N

j N
j

U x g x






θ

θ θ  is the contribution function for ( , )G x θ  and ( , )W x θ  is the weight function:  

 
1

(1 ) ( , ) ( )
( , ) 1

( , ) (1 ) ( , )

g x h x
W x

f x g x


    

     

θ
θ

θ θ
.  (2.11) 
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Since the conditions of MLM regularity are fulfilled, condition (2.9) for the unbiased estimate can be transformed to the 
form 

 

( , )
ln ( , ) ( , ) ln ( , ) ( , )

( , )

ln ( , ) ( , ) ( , ) 0.

j j

j j

g x
f x dF x g x dF x

f x

g x dG x g x dx

 


 

 
  

 

 

 

θ
θ θ θ θ

θ

θ θ θ

 

As a result, we obtain 

 ln ( , ) ( , ) ln ( , ) ( , ) 0F N G N
j j

E f x dF x E g x dF x
    

    
       
     . 

Hence, the MLE N  is the unbiased estimate for the distribution   0, PG x P P  . 

Let us consider expressions (2.8): 

 2 2

1 ( , ) ( , ) 1 ( , ) ( , )
( , )

( , ) ( , )
ij F

i j i j

f x f x g x g x
b E dF x

f x f x

        
    

      
  

 
ln ( , ) ln ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )i j
i j

g x g x
W x dG x U x U x W x dG x

   
       

   . 

As a result, we obtain 

 ( , ) ( , ) ( , ) ( , )ij i jb U x U x W x dG x     . 

According to formulas (2.6), (2.10), and (2.11), we have the weighed maximum likelihood method for the aprioristic 
distribution ( , )G x  . The theorem has been proved. 

Computationally, the weight functions of the form [14] 

 
(1 ) ( , ) ( ( , ) )

( , )
( , )

g x C g x
W x

f x

   


 



  (2.12) 

are more convenient, especially for the distribution functions with unbounded carrier and U-shaped distributions, where 

0   is the constant defined by the user and 
1, 0,

( )
0, 0.

x
C x

x


  

 Algorithms (2.1) and (2.10)–(2.12) of constructing 

generators based on the WMLM allow robust effective estimates of the quantiles of distributions ( , )G x   to be 

obtained for the Tukey supermodel given by Eq. (1.1) in the presence of outliers with known parametric distribution. As 
a result, we obtain the following algorithm for the effective parametric random number generator with the distribution 

( , )G x   for the inhomogeneous sample from the distribution ( , )F x  : 

 
1( , ), 1, 2, ...i i Nx G u i   ,  (2.13) 
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where , 1, 2, ...iu i  , are random variables uniform in [0, 1], and the robust effective estimates  1 ,...,
T

N N kN
    

are determined from the system of evaluation equations 

 
1

1
( , ) ( , ) 0, 1,

N

i N i N
i j

U x W x j k
N

 




 


   ,  (2.14) 

 ( , ) ln ( , )

N

j N N
j

U x g x


 









  ,  (2.15) 

 
(1 ) ( , )

( , )
( , )

N
N

N

g x
W x

f x





 







.  (2.16) 

3. EXAMPLES OF THE ROBUST PARAMETRIC GENERATORS 

Let us consider the algorithms of robust parametric generators for a number of typical distributions ( , )G x  . 

Of doubtless interest is the efficiency of the standard parametric generators from the RNGS system for 

an inhomogeneous sample from the distribution  ,F x P . Investigation of the generators is reduced to 

consideration of various estimates of distribution quantiles since the algorithms of generators are defined through the 

quantile estimates. We now designate by (0)
pX  and ( )f

pX  the quantiles at level p of the distribution function 

(0)( , )G x   and by (0)  the true parameters. Let there are two quantile estimates: the standard estimate (1)
pNX  

synthesized at 0   and the robust estimate (2)
pNX . The estimates are compared by the criterion of the asymptotic 

relative efficiency [9, 13]: 

 
(2)

(2) (1)
(1)

( , )pN pN
V

Eff X X
V

 ,  (3.1) 

where       2
i i iV D b   is the root mean square error (RMSE) of the quantile estimate ( )i

pNX , 

( )( ) (0)( )ii
L ppNb E X X   is the bias, and ( ) ( )( ) 2( )i ii

L LpN pND N E X E X    is the variance of the estimate ( )i
pNX  on the 

distribution L. For 0  , the standard estimate (1)
pNX  and the robust estimate (2)

pNX  coincide, and (2) (1)( , ) 1pN pNEff X X  . 

The variant with 0   is considered below. 
Example 3.1. It is required to construct the random number generator for the exponential random variable Х 

with distribution  

     1
, 1 exp , 0; , exp , 0

x x
G x x g x x                      

,  (3.2) 

where   is the unknown parameter. The standard algorithm ( 0  ) for the generator of exponential random variable 
[1] is 

    (1) (1)1 , ln 1 , 1, ...,i i iN Nx G u u i N      ,  (3.3) 
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where the MLE (1)
N  is 

 (1)

1

1 N

iN
i

x
N 

   .  (3.4) 

For the robust generator, according to formulas (2.13)–(2.16), we obtain the algorithm 

  (2) ln 1 , 1, ...,i iNx u i N     , (3.5) 

 
(2)

(2)
(2)

1

( , )1
( ) 0

( , )

N
i N

i N
i i N

g x
x

N f x


 


 .  (3.6) 

Let us designate 0 1i pu   . For distribution (3.2) at 0   we subsequently obtain 

 ln(1 )pR    , (1) (0)
G pNE X R  , (0) (0)

pX R  , (1) 0b  ,     2
0 02D R  ,       21 0 02V D R   . 

For the distribution  ,F x   at 0  , we subsequently obtain 

 (1) (0)(1 )F HNE E X       , (1) (0)(1 )F HpNE X R E X        , (1) (0)
Hb R E X      , 

  (1) (1)(1) 2 2 (0) 2 2 2 2
10 11( ) (1 )[( ) ( ) ] ( ) ( )F F H HpN pND E X E X R b b E X E X             , 

 
(0)

10 11,F F Hb E X b E X E X    , 
(1) (1) (1) 2( )V D b  . 

Let us consider the robust estimate of the quantile (2)
pNX . From Eq. (3.6) we determine the robust estimate of the 

parameter (2)
N . From theorem 2.2 it follows that (2) (2) (0)

F GN NE E     , (2) (2) 2[ ]F FN NS E E     
2 (0)

(2) (0) 2 (0) 2
(0)

( , )
[ ] [ ]

( , )
F N

g x
E x dx

f x


      


 . Consequently, (2) (0)

F pNE X R  , (2) 0b  , (2) 2D R S , and 

(2) 2V R S . Let us consider an example of the supermodel for  0 1, 0.1, and 0.2      : 

    
2

2

( )
, (1 )exp

2

x
f x x exp

   
           

. 

Results of investigations are given in Tables 3.1–3.4. 
Example 3.2. Let Х be the random variable with the Weibull distribution:  

  , 1 exp , 0, 0, 0
x

G x x


           
,   (3.7) 
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1

, exp , 0, 0, 0
x x

g x x



            

, 

where   is unknown parameter. The standard algorithm ( 0  ) for the generator with the Weibull distribution [1, 2] 
has the form 

TABLE 3.1. Values of Quantiles 
(0)
pX  and 

( )f
pX  and Estimates (2)

f pNE X  and (1)
f pNE X  

Depending on р for  0 1, 0.1, 0.2, and 5         

/ pp X  (0)
pX  

(2)
f pNE X  (1)

f pNE X  ( )f
pX  

p = 0.55 0.80 0.80 1.28 0.94 
p = 0.75 1.39 1.39 2.23 1.79 
p = 0.95 3.00 3.00 4.81 4.92 

TABLE 3.2. Efficiency (2) (1)( , )pN pNEff X X  Depending on р and  for  0 1  , 0.1  , and 

0.2   

pX / (0)
pX  3   5   7   10   

0.55X  0.90 0.66 0.31 0.16 0.08 

0.75X  1.39 0.66 0.31 0.16 0.09 

0.95X  3.00 0.66 0.31 0.16 0.09 

TABLE 3.3. Values of 
(1)
0.75f NE X , Bias (1)b , and RMSE (1)

0.75NX  of the Quantile 

(0)
0.75 1.39X   Depending on  for  0 1, 0.1, and 0.2        

  = 3  = 5  = 7  = 10 
(1)
0.75f NE X  1.84 2.23 2.62 3.21 

(1)b  0.45 0.84 1.23 1.82 

RMSE 2.86 2.90 11.74 24.11 

TABLE 3.4. Values of 
(1)
0.75f NE X , Bias (1)b , and RMSE (1)

0.75NX  of the Quantile 

(0)
0.75 1.39X   Depending on   for  0 1and 10     

  = 0  = 0.05  = 0.1  = 0.2 
(1)
0.75f NE X  1.39 2. 30 3.21 5.03 

(1)b  0 0.91 1.82 3.64 

RMSE 1.92 12.91 24.11 45.54 
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  (1) (1)1 1/, , 1, ...,i i N Nx G u R i N      , (3.8) 

where ln(1 )pR     and the MLE (1)
N  is determined as 

 

1
(1)

1

1 N

iN
i

x
N






    
 

 .  (3.9) 

According to formulas (2.13)–(2.16), for the robust generator ( 0  ) we have  

 (2) 1/ , 1, ...,i Nx R i N   ,  (3.10) 

 
( )

( )
( )

1

( , )1
( ) 0

( , )

N
i N

i N
i i N

g x
x

N f x


 





 


 , (3.11) 

 
1/(2) ( )

N N

     .  (3.12) 

Let us designate by 
1

1
, 0 1

N

N i i
i

T x u
N

p


    . The statistics ( ( ))N L NN T E T  (0, ( ))L ND T  for the 

distribution L is the well-grounded asymptotically normal nonparametric estimate of the initial  -order moment with 
zero average and variance [14] 

  22( )L N L LD T E x E x   . 

Proceeding from the continuity theorem [13, 14], we obtain for the statistic  N NW T   

 ( ( )) (0, ( ))N L N L NN W E W D W  , (3.13) 

where 

 ( ) ( ( ))L N L NE W E T  , 
2

( )
( )

( ) ( )
L NL N t E T L N

d t
D W D T

dt 
    

. 

For 
1

0, , and ( ) ( )L F G t t       , taking into account formula (3.13) and the fact that for the Weibull 

distribution, 1k k
g

k
E x

      
, where ( )x  is the gamma function, we obtain  

    11(1)
G N GNE E T E x

        , (0) 1/ (0)
pX R   , (1) 1/

G pNE X R   , 

 
(1) 0,b   22 2 2[ ( ( )) ]G N G N G GN E T E T E x E x         

, 
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1

1
( )

( ) 1 1
( )

L Nt E T
d t

dt


 




   
 

, (0) (1) 2 2/ 2 2/
2

1
[ ( ) ]( ) ( )G ND E R R     


, 

 (0) (0) (0) 2 2/
2

1
( ) ( )V D R   


. 

Taking into account formula (3.13) for the distribution  ,F x  , for 0   we obtain 

 
(0)( ) (1 )( ) ( )F HE x E X      ,    11(1) ( )F F N FNE E T E x

       , 

 
1/(1) (1)1/ 1/( ) ( )F F FpN pNE X R E R E x
        , (1) (1) (0)

F ppNb E X X  , 

  
2(1 )2/ 22(1) (1)(1) 2

2
( )F F F F FpN pN

R
D E X E X E x E x E x


               

, 
(1) (1) (1) 2( )V D b  . 

For 0  , we obtain            1 0 1 0 1 00, , andb b D D V V      . To obtain the robust estimate of the quantile 
(2)
pNX , the robust estimate of the parameter ( )

N
  is found from Eq. (3.11), and from theorem 2.2 with allowance for 

formula (3.13) it follows that  

 ( ) ( )F G NNE E T     , 
2

( ) ( ) 2 2 ( , )
[ ] [ ]

( , )F FN N
g x

S E E x dx
f x

    
      

 , (2) 1/ (0)( )F pNE X R   , 

 (2) 0b  ,  
2(1 )2/ 2/

2(1 )(2)
2 2

( )F
R R

D E x S S
 

      
,  

2/
2(1 )(2)

2

R
V S


 


. 

Let us consider an example of the supermodel for  02, 1, and 0.1        : 

    
2

2
2

( )
, (1 )2 exp exp

2

x
f x x x

   
            

. 

The results obtained are given in Tables 3.5–3.7. 

Example 3.3. Let Х be the random variable with normal distribution  1 2,    and 

    21
2

2 2

1
, exp

2 2

x t
G x dt



  
  
    

 .  (3.14) 

The standard algorithm ( 0  ) for the generator of random variables with the normal distribution  1 2,    is 

  (1) (1) (1) (1)1
1 2 1 2, , , 1, ...,i pi piN N N Nx G u u i N        ,   (3.15) 
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where , 1, 2,piu i   , are random numbers from the standard normal distribution  0, 1  and  

 (1)
1

1

1 N

iN
i

x
N 

   , (1) 2
2 NN S  ,  2(1)2

1
1

1 N

N i N
i

S x
N 

   .   (3.16) 

For the robust generator ( 0  ), according to formulas (2.13)–(2.16), we obtain the algorithm 

  (2) (2) (1) (2)1
1 2 2, , , 1, ...,i pi piNN N Nx G u u i N        ,  (3.17) 

 
(2) (2)

(2) 1 2
1 (2) (2)

1 1 2

( , , )1
( ) 0

( , , )

N
i N N

i N
i i N N

g x
x

N f x

 
  

 
 ,  (3.18) 

TABLE 3.5. Values of the Efficiency (2) (1)( , )pN pNEff X X  Depending on р and  for 2  , 

 0 1, and 0.1      

pX / (0)
pX  3   5   7   10   

0.1X  0.33 0.44 0.16 0.07 0.03 

0.3X  0.60 0.44 0.16 0.07 0.03 

0.5X  0.83 0.44 0.16 0.07 0.03 

0.75X  1.18 0.44 0.16 0.07 0.03 

TABLE 3.6. Values of 
(1)
0.3f NE X , Bias (1)b , and RMSE of the Estimate (1)

0.3NX  of the 

Quantile (0)
0.3 0.60X   Depending on  for  02, 1, and 0.1        

 3   5  7  10   

(1)
0.3f NE X  0.80 1.10 1.44 1.97 

(1)b  0.21 0.51 0.84 1.38 

RMSE 0.20 0.17 1.23 2.86 

TABLE 3.7. Values of 
(1)
0.3f NE X , Bias (1)b , and RMSE of the estimate (1)

0.3NX  of the 

quantile (0)
0.3 0.60X   Depending on   for  0 1, and 0.2       

  0   0.05   0.1   0.2   
(1)
0.3f NE X  0.60 1. 46 1.97 2.72 

(1)b  0 0.86 1.38 2.13 

RMSE 0.09 1.27 2.86 6.38 
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(2) (2)

(2) (2)2 2 1 2
1 2 (2) (2)

1 1 2

( , , )1
( ) ( ) 0

( , , )

N
i N N

i N N
i i N N

g x
x

N f x

         
 .  (3.19)  

Let    1 1
1 2pN pN NX U     be the estimate of the quantile pX  for the distribution  1 2,    and pU  be the quantile 

at level р of the standard normal distribution  0, 1 . Let us consider an example of the supermodel for 

1 20, 1, and 0.1       :  

  
2 2

2

(1 ) ( )
, exp exp

22 2

x x
f x

      
                

. 

The results obtained are given in Tables 3.8–3.10. 

TABLE 3.8. Efficiency (2) (1)( , )pN pNEff X X  Depending on р and   in the Presence of 

Asymmetric Outliers for  0
20, and 0.1       

pX / (0)
pX  3   5   7   10   

0.2X  –0.84 0.58 0.32 0.18 0.09 

0.5X  0.00 0.55 0.29 0.17 0.09 

0.9X  1.28 0.51 0.23 0.12 0.09 

TABLE 3.9. Efficiency (2) (1)( , )pN pNEff X X  Depending on р and  in the Presence of Symmetric 

Outliers for 1 20, 0, 1, and 0.1          

pX / (0)
pX  3  6  9  

0.2X  –0.84 0.54 0.24 0.17 

0.5X  0.00 0.56 0.27 0.19 

0.9X  1,28 0,53 0.22 0.14 

TABLE 3.10. Values of 
(1)
0,2f NE X , Bias (1)b , and RMSE of the Estimate (1)

0.2NX  of the 

Quantile (0)
0.2 0.84X    Depending on  for 1 20, 1, and 0.1        

 3   5  7  10   

(1)
0.2f NE X  –0.80 –1.00 –1.24 –1.65 

(1)b  0.04 –0.15 –0.40 –0.81 

RMSE 2.32 4.29 7.40 14.06 
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CONCLUSIONS 

1. In the present work, the robust effective parametric generators of random variables have been synthesized 
(algorithm (2.13)–(2.16)). 

2. The efficiencies of the robust and standard generators of the RNGS system in the absence of the outliers 
coincide. 

3. The robust generators are efficient, well-grounded, and asymptotically unbiased for the aprioristic 

distribution  ,G x   in the presence of the outliers. 

4. In the presence of the outliers, it is impossible to use algorithms of standard generators since they 

generate random numbers (1)
pNX  from uncertain distribution. The random numbers (1)

pNX  coincide neither with (0)
ðX

from the aprioristic distribution  ,G x  , nor with ( )f
pX  from the real distribution  ,F x   for any arbitrary р (see 

Table 3.1).  
5. In the presence of the outliers, the efficiency of the standard generators from the RNGS system compared to 

the robust ones (2) (1)( , )pN pNEff X X  is independent of р, but significantly depends on the bias parameter  for the 

asymmetric outliers (see Tables 3.2, 3.5, and 3.8) and on the scale parameter  for the symmetric outliers (Table 3.9). 
6. In the presence of the asymmetric and symmetric outliers, the efficiency of the standard generators compared 

to robust ones (2) (1)( , )pN pNEff X X  is independent of р and tends to zero with increase in the bias parameter  (Tables 3.2, 

3.5, and 3.8) and the scale parameter  (Table 3.9). 
7. In the presence of the asymmetric and symmetric outliers, the standard generators become inconsistent with 

the aprioristic distribution  ,G x   for any arbitrary р, the bias and the RMSE (Tables 3.3, 3.4, 3.6, 3.7, and 3.10) 

increase with the bias parameters  (Tables 3.3, 3.4, 3.6, and 3.7) and the scale parameters  (Table 3.10). 
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