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ON THE INTERNAL GEOMETRY OF TRAJECTORIES OF 

CHARGED PARTICLES IN SYMMETRIC EXTERNAL FIELDS  

E. A. Voronova and S. É. Korenblit  UDC 530.145, 539.12, 514.8 

The curvature and torsion of trajectories of charges in external gauge fields, including fields of magnetic 
monopoles, have been determined. It has been shown that these quantities are effectively calculated with the 
help of the equations of motion and first integrals. For a wide class of magnetic fields, their form-invariant 
combination has been revealed.  
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1. THE FRENET EQUATIONS  

As is well known [1, 2], the internal geometry of the trajectory  tx x  of a classical particle, like any 

smooth curve  x x   in Euclidean space, where   is the arclength along the curve, is prescribed by two scalar 

parameters – the curvature k  and the torsion  , closely associated with the motion along it of the orthogonal Frenet 

frame via the corresponding Frenet equations for the tangent vector τ , the normal vector ν , and the binormal vector β  

to this curve (Fig. 1): 
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τ , k  x τ ν ,   β ν , k   ν β τ ,  (1) 

for  

 k  τ ,   2k    τ τ τ ,   β τ ν ,   ν β τ . (2) 

Since instead of  t   it is possible here to use any scalar parameter t  increasing along the curve [1, 2], for 

example, the time of motion, the impression arises [2] that to calculate k  and   it is necessary to know the explicit 

form of the trajectory     t tx x  . In spherical components for  

 rx n , r  x , r r    x n n  ν τ ,  t   ν ,      a x  ν τ τ ,   0 n n  (3) 

and so on, the curvature and torsion from Eqs. (2) in the nonrelativistic case can be represented in the form [2]  
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We will show that for motion, including the relativistic case, in some spherically and axially symmetric external fields 
or magnetic fields, including non-Abelian monopoles, to find the curvature k  or some form-invariant combination of 
k  and  , besides the field it is sufficient to know only the first integrals of the motion.  

2. MOTION UNDER THE ACTION OF THE LORENTZ FORCE  

As is well known [3–5], the Lorentz force F  contains a magnetic component and an electric component: 
m m F x a , such that  

  1e

m c
    
 

a B Eν  ( c  is the velocity of light). (5) 

Upon substituting this equation of motion into relations (4), after some transformations we obtain  
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1e
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cm
     B Eν ν ν

ν
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e e
mc m

           
 



a a B B a E

a

 ν ν ν

ν
.  (6) 

Equation (5) for 0B  in a spherically symmetric potential field takes the form [3]  

  e
U r

m r
 

x
a  for    U r U r   xE n , where r x n .  (7)  

Inserting formulas (7) into Eqs. (6) and employing the laws of conservation of energy 2 2
02ε 2m U m  v v  and 

angular momentum    2m mr   M x v n n  with 2
0m b mr  M n , where b  is the impact parameter, we 

find  

 

Fig. 1 
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Thus, in spherically symmetric potential fields, the curvature of a trajectory as a function of r  is uniquely assigned by 
the potential and the first integrals of motion – the energy and the angular momentum. The curve is planar since for 

such a potential torsion is absent: 0   since        2
0U mr   a a x vν ν . For example, for the Coulomb 

potential [3]  U r
r


   we find  
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. (9)  

Let us now consider Eqs. (6) for the case 0E  [4, 5]. Since a v  and a B  for  e

mc
 a Bν , it follows that  
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, (10) 

from which for B B ζ  with 2 1ζ  we have  

 
   22

2 2

e e

mc mc

          
 

BB

a

ν ζ ζν

ν
.   (11)  

If nζ , i.e., the magnetic field is, as it were, spherically symmetric, then by virtue of Eq. (3) the second term in the 

expression for the torsion vanishes:        0r r    n n n n n n  ν . This also happens if in Eqs. (10) and (11) 

the field B  is everywhere constant in direction 0 ζ . In view of the fact that the force is always perpendicular to the 

velocity, ( ) 0 aν , the velocity in both cases is constant in magnitude, 2 2
02εm m ν ν , and the curvature and 

torsion for mp ν  satisfy the relation  
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where 
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B

ν ν
  (12а) 

are respectively the classical electromagnetic radius of the charge e  with mass m , and volume density of the field 
energy [4, 5], but since   is the cyclotron frequency,   is the radius of the circular trajectory for 0  . Thus, in the 

 ,k   plane for 0   we have a circle of radius 1  .  
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3. MOTION IN A FIELD OF MAGNETIC MONOPOLES  

The hedgehog of the magnetic field of an infinitely heavy monopole with magnetic charge g , located at the 

origin, can be represented from the classical point of view as outgoing from the initial point of one semi-infinite thin 
solenoid – a string stretched in some direction (Dirac), or from the initial point for two such symmetric solenoids 
(Schwinger) [6–9]. The equation of motion (Eq. (5)) of the electric charge e  and the field B  of the magnetic 
monopole have the form  

  3

Q

mr
 a xν  for 

2

g

r


n
B , 

eg
Q

c
 , tan const

m b

Q Q
   

M ν
, 0 ν .  (13) 

Here 2  is the opening angle of the cone around which the charge trajectory is wound [6, 9], with axis along the 

conserved total angular momentum vector Q  J M n J κ , and b  is the conserved (in modulus) impact 

parameter. Substituting expressions (13) into Eqs. (10) and (11) for the curvature and torsion, we find  

     2

3 2 3

cotQ b
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ν
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.  (14)  

Squaring these expressions and adding them together, we again obtain in agreement with relations (12) and (13)  
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Q e
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.   (15) 

By virtue of formula (8), the curvature  k r  of the trajectory for the monopole problem projected onto the plane 

R κ  [9] as a function of distance r R  x R  in it with  sin   R x xκ κ  falls off more rapidly:  
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22

Q
U R
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  . (14а) 

The relativistic generalization of formulas (4) to the case of non-Abelian external fields requires the use of Wong’s 

classical relativistic equations of motion [5, 10–13]. Taking the metric of space  0 ,x x  x  as before to be flat and 

choosing as the parameter    along the trajectory of a (spinless) particle the proper time   or the interval ds  [4, 5] 

for d dtx    

           22
2 2 2 22

2

c dt
ds cd dx dx c dt d

     


x , i.e., 
d d

u
ds c dt





   ,   (16) 

for the 4-velocity  

  0 , 1,
dx p

u x u
ds mc c

 
         

 
u 

 for 2 1u u u
   ,  (17) 

 with 4-momentum  
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  ,
E

p mcx
c

      
 

p  and energy  20 2 2 2 2E p c mc mc c     p , (18) 

 and also for the 4-acceleration  

  
2

0
2

  ,
du d x

w u w x
ds ds

 
      w   for 0w u   ,   (19)  

we obtain expressions for the curvature and torsion that are analogous to expressions (4) with the substitutions  uν  
and a w :  
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.  (20) 

The dot in Eqs. (17)–(20) now denotes the operation of differentiation (Eq. (16)) with respect to s , and the 
transformation to the nonrelativistic limit c  for 1   is given by the reverse substitution u ν , w a .  

Wong’s system of equations [5, 10–13] describes motion in an external non-Abelian gauge field aA  with 

tensions aG  both of a classical test particle  x s  and of its intrinsic classical color isospin  Ι s


 with components 

 a s  in the internal color isospin space with fixed basis ae


. In the case of the gauge group SU(2) with generators 

 a abc

bc
T i    in the adjoint representation1 for the covariant derivative ˆD̂ ieA    1  with gauge field 

ˆ a
aA A T  , scalar field ˆ a

ah h T , and unit matrix 1  in the same representation [5, 6, 11, 15] for 1c   (Latin 

indices , , ; , , 1,2,3j k l a b c   are assumed to be upper and convolve according to the Euclidean metric) and  

 ˆ ˆ ˆ,a
aeG eG T i D D        , where abc

a a a cbG A A e A A            ,  0 ,    ,  (21) 

  ˆ ˆˆ ˆ , abc
a cbaa

D h D h h e A h          , for ˆ a
a a aΙ T Ι e   

  ,  ˆ2 Sp a
a I T  , (22) 

these equations have the form  

 2
a amc w eG u 

   ,  ˆ ˆ 0abca
cba

d
u D I e A u

ds
 

 


     .  (23) 

The gauge  0 0aA x  is responsible for the absence of a chromo-electric field 0 0j j
a aE G    in the stationary case 

0 0   in the rest frame of reference [16] of this classical field [5, 6, 11]. The chromo-magnetic field jk jkl l
a aG B   

in the remaining gauge-invariant combination a a B B


 with components of the color isospin (Eqs. (22)) reduces Eqs. 

(23) to the form [5, 11–13]  

 0 0w  , 2mc e    w u B


,  abc
a b ce    A u , where   0 w u , i.e., 2 constu .  (24) 

                                                           
 
1 For the general case of compact groups and different representations of the field, see [11, 14–16].  
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Similarly to the transformation from relations (4) and (6) to relations (10) and (11), we obtain from relations (20) 
relativistic expressions for k  and  :  
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from which for B B
 

ζ  with 2 1ζ  we have  
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e e

mc mc

          
 

B uu B

u w

 ζ ζ
. (26) 

Since the 3-velocity u  in Eqs. (17) will be given by the same formula (3) for  , but with the operation of 

differentiation with respect to s  (Eq. (16)), it follows that for both cases, 0 ζ  and nζ , where    0 u n n , 

and taking relation (18) into account, we again arrive at the relativistic non-Abelian generalization of the form-invariant 
(expression (15)):  

 
2 22 2 2 2

2 2
2 2 2 2 2 4

e e e
k

cmc E m c

              

B B B

u p

  
, a a B B


. (27) 

In the nonrelativistic limit 2 εE mc   this expression reverts to expression (12) with nonrelativistic 3-momentum 

p  and nonrelativistic energy ε . According to Eqs. (23) and (24), 2 consta aI    


, i.e., the dynamics of the 

classical color angular momentum  x s , covariantly conserved along the trajectory, reduces to its rotation in color 

space in the form of precession about some direction with variable frequency and axis of rotation [5, 10–13]. According 
to [13], this dynamics, tangled up with the trajectory dynamics, nevertheless admits a decoupling of the form shown in 

Eqs. (27), thanks to the effective abelization in Eqs. (24)–(27) for nζ  or 0 ζ  of the interaction of the color 

angular momentum with the chromo-magnetic field. In particular, it takes place in the nonrelativistic approximation, 

where for the 4-velocity (expression (17))  1,u  0 , d dt , and in the gauge 0 0aA  , from Eqs. (23) we obtain  

 0 0,abca
b c

d
e A

dt


      i.e., 3 3 2

3const a a
a I      


,  (28) 

which corresponds to for the effective abelization 3e qB B


 with the obviously thusly conserved Abelian electric 

charge 3q e   [5], which in this case is generated by the color charge e  and the proper color isospin of the particle.  

Another example of abelization is provided by the Abelian projection of the ’t Hooft–Polyakov monopole 
solution in the Georgi–Glashow model with spontaneous breaking [5, 6, 9, 11–17] of the symmetry arising out of the 
Lagrangian density, by the corresponding equations of motion and the vacuum mean value:  

      221 1 ˆ ˆˆ ˆ f
4 2 4

a
a a a

a a
L G G D h D h h h 

 


      for 30 0 fh  ,  (29) 

    ˆˆˆ ˆabc
b

a c
D G e h D h 
   ,    2ˆˆ ˆ fa b b

a
D D h h h h
    .  (29а) 
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The components 1 2andh h  of the scalar field are absorbed by the longitudinal components of the charged vector fields 

1 2andA A  , which thereby acquire mass 2 2 2fM e  [6, 9, 15]. The photon field 3A , which remains massless, is 

responsible for the residual U(1) gauge symmetry necessary for the existence in this theory of Abelian magnetic 
monopoles [6, 14, 15] and associated with the remaining freedom of rotation about the third axis in color space defined 
by the vacuum mean value in expression (29).  

In the gauge 0 0aA  ,   0a n A , the classical solution is prescribed by the functions  K r  and  H r :  

 rx n ,    1
k

j jka
a

n
A ε K r

er
     x ,      

f 1a a
a

H r
h n S r n

er
     x ,  (30)  

        2 1
jkl l a

jk jkl l la l a
a a

dK rn n
G B K r n n

er r dr

              
x , 

1

2
l jkl jk
a aB G   , (31) 

which obey well-known equations following from the field equations (Eqs. (29a)) [5, 6, 9, 16, 17]  

 
2

2 2 2
2

1
d K

r K K H
dr

     ,  
2

22 2 2
2 2

2
d H

r H H Mr K
dr e

       
 (32) 

with boundary conditions in the limit 0r  :  

    21K r O r   and    1S r O r  ,  (33) 

and in the limit r  :  

   ~ MrK r e , а   2~ MrS r e  if 0  ,    ~ 1S r Mr  if 0  .  (34) 

The corresponding gauge-invariant Abelian magnetic field, acting on the ordinary Abelian electric charge q e , is 

determined by the scalar projection 3
jkG  of the tensor assigned by formula (31) onto the direction an  of the vacuum 

classical Higgs field (expression (30)) and the ’t Hooft added-term [6, 9, 15, 16]:  

for 
 

 2
3 1 2 2

1
jk jkl l

jk a jk jkl la a
a

r
b b

h G n
G n G K r B

erh h 

           ,  (35) 

 
 

   3 3 2
ˆ ˆˆ ˆ

abc
jkjk j k jkl la

b c
d d

h
F G D h D h B

e h h


    , где   2er


n

B x ,  (36) 

in complete agreement with Eqs. (13) and (15). For pure Yang–Mills theory with Lagrangian (29) without the scalar 

field ah , we obtain the Wu–Yang solution [6], created by the purely longitudinal field l
aB  in Eq. (31) for 0K   and 

leading to the same form-invariant (15) (27) with field (13) (36) for g c e  . Here, the role of an effective 

Abelian charge of the test particle instead of the quantity indicated by Eqs. (28) is played by the gauge-invariant 
quantity q , the latter being the classical limit [5] of the corresponding effective charge operator q̂  for the quantity  

eB


, closely associated [6, 9, 11, 12, 15–18] with the limit in Eqs. (22):  
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 e qB B


 for ˆ a a a
aq en T q en    for  ˆˆ2 Trq qI .  (37) 

The stationary ss gauge field of general type [15–17] if no additional discrete symmetries removing the last two 
terms are imposed, is decomposed into three ss-structures, mutually orthogonal in both the configuration space and the 
color space:  

          γ α βj jka k j a ja j a
a

r r r
A ε n n n n n

er er er
    x , where    α

0a
a

r
n

er
   n A , (38) 

where the second longitudinal structure is orthogonal to the two transverse ones individually in each space. The 
condition of spherical symmetry of the ss-vector field (Eqs. (38)) implies its invariance [11] under simultaneous spatial 

rotation  R g  and global gauge rotation  V g  with the same rotation parameters from the diagonal subgroup 

 d2SUg  [17] of rotations in the configuration and color spaces:           1 1ˆ ˆV R R V    A x g g A g x g , 

and is fulfilled independently for each of these ss-structures. In the corresponding orthogonal expansion over them of 
the strength (Eqs. (31)) of the chromomagnetic field (Eq. (21)), the longitudinal contribution does not depend on the 

gauge function  α r  and is determined only by the functions on the transverse structures in Eqs. (38), whereas the 

transverse contributions contain it here and the prime indicates the derivative with respect to r :  

    
 

   2 2
2 2 2

1 1 γ β γ αβ β α 1 γ

ja j aj a jka k
j

a

n nn n ε n
B r r

er er er

 
               x .  (39) 

It would seem that the four functions remaining unknown in the fields assigned by formulas (38), (39), and (30) should 
be determined by the four equations following from Eqs. (29a). However, gauge invariance leaves one of them arbitrary 

since for  1 γ Y r   we have the system of equations 

    2 2 2 2αβ
β 1 α β α

d rY
r Y Y H r Y

dr r

         
 

, 

    2 2 2 2β α
β β 1 α αβ

d r Y
r Y H rY

dr r

         
 

, (40) 

    β αβ β αrY Y r Y    , 

    
2

22 2 2 2
2 2

2 β
d H

r H H Mr Y
dr e

        
, 

which reverts to Eqs. (32) for α and β 0  and can also be obtained by variation of the corresponding energy 

functional [15]. The third equation immediately gives upon substitution in it of the functions  

      cosωY r K r r ,      β sinωr K r r  for 2 2 2β 0Y K   , that    ω αrr r r  . (41) 

Thus, the fourth and any of the first two of Eqs. (40) lead again to the same system of equations (Eqs. (32)) for the 

functions K  and H . The chromo-magnetic field j
aB  (formula (39)) versus the case ω 0  (Eqs. (31)) takes the form  
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    2 21 cosω sinωj j a ja j a jka k
aer B n n K n n rK ε n rK         x .  (42) 

It can be seen that exactly the longitudinal contribution, which is of particular interest to us, does not depend on the 

remaining arbitrary gauge  ω r , i.e.,  α r , and the condition of complete spherical symmetry of this field and 

likewise disappearance of both terms transverse to j an n  coincides with the condition of its gauge independence. Thus, 
Eqs. (31) and (42) lead again to the longitudinal non-Abelian Wu–Yang field with the arbitrary constant 

  0K r C   and to its subsequent effective abelization (Eqs. (37)) to a field of the form assigned by Eqs. (36), 

leading thus again to the non-Abelian form-invariant assigned by Eqs. (27), where now  

   2
2

1
j a

j
a

n n
B C

er
   x ,   2

2
1 C

er
   

n
B x  for 0C    (43) 

 or for 0K C   when β 0Y   .  (44) 

However, the first of Eqs. (32) for 0C   reduces to the condition 2 21H C  . Thus, the second of Eqs. (32) has 

meaning only in the Prasad–Sommerfeld limit 0   [6, 16], where it gives the condition 2 22 1 0C C  , whose 

unique solution 2 1C   assigns the zero strengths , 0j
a ah B  . The particular solution   0K r C   of the first of 

Eqs. (32) leads to the particular solution  H r Mr  of the second of Eqs. (32) with nonzero fields and j
a ah B , 

possessing correct behavior in the limit r   and correct topological properties [6, 15, 16]. According to the 
boundary conditions assigned by Eqs. (34) and (35), in this asymptotic limit properties (43), (27), (37), and (36) will be 
possessed by all of the solutions of Eqs. (32) obeying them.  

On the other hand, by virtue of Eqs. (16) and (22), the antisymmetry of the structure constants, and the Wong 

equation (Eq. (23)), for any operator of the form ˆ a
aq T   the derivative with respect to s  of the Abelian charge 

a aq     is equal to  

        1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆTr Tr
2 2a aa a

dq
q u qI u D I u D q u D qI

ds
   

           ,  (45) 

and covariant conservation along the trajectory  ˆ ˆ 0
a

u D q   entails conservation 0q   of the Abelian charge of the 

particle as a direct generalization of the above-mentioned conservation of the square of its classical color angular 

momentum 2I


. For the charge operator assigned by Eqs. (37) in the field assigned by formula (38) we have a
a en   

and      ˆ ˆ βa abc b c

a
u D q Y r n r n n
    , which also independently of the form of the gauge function  α r  

vanishes only for β 0Y   , again leading to a non-Abelian Wu–Yang monopole (42)(43) for   0K r C   [11, 

12, 17, 19]. Note that the result of Abelian projection (Eqs. (35) and (36)) with the same effective Abelian magnetic 

field  B x  in Eqs. (36) [9, 15] is generally independent of the form of the functions  H r ,  α r ,  γ r , and  β r  

in the expressions for the fields (expressions (30), (38), and (39)). That is to say, we are talking here about substantially 
different pathways to abelization.  
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CONCLUSIONS  

In this work we have shown that for motion of a classical particle in some axially and spherically symmetric 
external fields, to find the curvature k  of its trajectory or a form-invariant combination of k  and the torsion   it is 

sufficient to know, in addition to the external field, only the first integrals of motion. The universal form-invariant 

combination assigned by Eq. (27) has been revealed in the relativistic case for a wide class of magnetic fields, including 

fields of non-Abelian monopoles. According to [13], in all of the considered cases an effective abelization of the 

interaction with the Yang–Mills external field takes place, under which the gauge-invariant effective Abelian charge of 
the particle q  (Eqs. (37)), generally speaking, is not necessarily conserved. We have shown that it is precisely 

conserved in some solutions of the equations of motion for fields of magnetic monopoles or is, at least, an 

asymptotically conserved quantity [9, 11, 12]. We emphasize that this Abelian electric charge is generated here by the 
initial color charge e  and the proper color isospin of the particle. Therefore, quantization of this charge is closely 

associated with quantization of its color angular momentum [9].  

Taking into account that the second Wong equation (Eqs. (23)) for  Ι̂ s  coincides in essence with the 

equation for the Wilson line [17, 20] in the adjoint representation, one may hope for the existence of a more universal 

approach to decoupling the trajectory  x s  dynamics from the internal  a s  dynamics of the classical motion in 

non-Abelian external fields by using closed Wilson lines [16] traced out by the classical color angular momentum 

vector on the sphere 2 constI 


, for which      a
aΙ s s e Ι s s    

 
 for some s . But then  

   ˆ ˆΙ s s Ι s   , transforming gaugewise only globally – the same as for the field strength (Eqs. (21)): 

         1ˆ ˆV VΙ s x s Ι s x s  with an arbitrary point  x s  from a segment of the particle trajectory 

corresponding to any interval s , meaning from an arbitrary point on the trajectory  x s  if, for given initial 

conditions on the Wong equations (Eqs. (23) and (24)), s  exists as a unique finite period of such a kind.  
The authors express their gratitude to Ya. Shnir, A. Wipf, A. Rastegin, S. Lovtsov, and E. Aman for valuable 

comments.  
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