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CONDENSED-STATE PHYSICS 

STRESS-STRAIN STATE OF ELASTIC PLATE WITH A CRACK 

E. E. Deryugin UDC 538.9 

The paper considers an infinite plate with a crack in the form of a narrow hole with a certain curvature at the 
tip of the crack. The stress-strain state parameters of this plate under uniaxial load are studied, such as the 
stress-concentration factor, crack-driving force, and elastic strain energy. Determined are the elastic energy 
consumption during the crack propagation, general laws of the mechanical state of the cracked plate, and 
curvature at the tip of the crack. It is shown that, in fact, the Griffith crack has no stress singularity at the end. 
The stress-strain state of the plate with an elliptical shaped crack is similar to that with a uniform plastic 
deformation zone. 

Keywords: stress-strain state, crack, elliptical shaped crack, stress concentration, crack-driving force, 
curvature, energy. 

INTRODUCTION 

Fracture of solids is caused by the formation and development of macroscopic cracks. In fracture mechanics, 
this process is schematized by replacing a crack with a hole of a zero thickness. This hole is an ellipse with its small 
semi-axis approaching to zero. A study of the localized stress-strain state in the vicinity of elliptical shaped cracks is 
therefore very interesting. 

The stress analysis for a plate with an elliptical hole was first proposed by Inglis [1]. The linear elastic solution 
proposed by Inglis for the stress field surrounding the ellipse, was an important step in the development of the linear 
elastic fracture mechanics. Similar to the solution proposed by Kirsch [2] for a circular hole, it was applied to an infinite 
isotropic plate under uniaxial tension. In contrast to Kirsch’s solution, the solution proposed by Inglis, could be applied 
to an infinite number of different scenarios of ellipses with different ratios of semi-axes. 

An important characteristic of an ellipse is its curvature at the semi-major axis, i.e., η = 1/ra, where ra is the 
curvature at the semi-major axis. The solution of the boundary value problem concerning the holes shows that only two 
geometrical parameters have a significant influence on the displacement of the crack periphery and the stress 
concentration during tension, namely: the crack length in the direction perpendicular to the tensile axis and the 
maximum curvature at the semi-major axis along this direction [3, 4]. Therefore, stresses at the tip of the crack 2a long 
and the curvature  can be determined, if considering the crack as an ellipse with the semi-major axis a and the semi-
minor axis b = (a/)1/2. 

The aim of this work is to study an infinite plate with a crack in the form of a narrow hole with a certain 
curvature at the tip. The stress-strain state and the mechanical state characteristics are determined for this plate under 
the uniaxial load, such as stress-concentration factor, crack-driving force, and elastic strain energy. The dependences 
between the stress-strain curves and the crack curvature are analyzed under the tensile load.  
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INFINITE PLATE WITH ELLIPTICAL HOLE UNDER TENSION 

The general solution of the problem of the infinite plate with an elliptical hole under tension can be found in the 
work of Mushelišvili [5]. In the Cartesian coordinate system with the origin of the semi-major axis a of the ellipse under 
σ tension along the y-axis, the stress tensor components along the x-axis can be written as 
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where 2 22c x xa b   , b is the semi-minor axis of the ellipse. The tensor component is dxy = 0. 

Equations (1) describe the nonuniform stress field outside the hole. All the stress tensor components jump to 
zero at the ellipse periphery. The significant elastic strain energy concentrates in a small region nearby the ellipse 
periphery. The stress field (Eq. (1)) identically determines the displacement of the ellipse periphery: 
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where E is Young’s modulus. One can see that the boundary conditions (Eq. (2)) at the ellipse periphery satisfy the 
uniform plastic deformation zone: 
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In accordance with the consistent continuous defect theory [6], the uniform plastic deformation zone is not associated 
with stresses. This means that the stress σ inside the ellipse is zero. Consequently, the stress-strain state beyond the hole 
accurately reproduces the stress-strain state of the plate with the plastic deformation zone (Eq. (3)). 

 Figure 1 illustrates the identity of the stress-strain state of the plate with and without the elliptic hole, but with 
the plastic deformation zone. The case shown in Fig. 1b can be considered as superposition of the uniform stress field σ 
and the plate with plastic deformation zone εp = 2σa/(bE), any external forces being absent. In the last case, the 
nonuniform and uniform (–σ) fields of internal stresses are observed outside and inside the plastic deformation zone, 
respectively. 

 

Fig. 1. Schematic of stress-strain state identity between the plate with (a) and 
without the elliptic hole, but with plastic deformation zone (b), c – uniform stress 
field σ, d – plate with plastic deformation zone εp. 
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It is much more convenient to consider the stress field outside the hole without the external uniform stress field 
σ. It is clear that the case shown in Fig. 1d, highlights the stress field associated with the hole in the plate. This 
additional stress field is characterized by the stress tensor component: 
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The maximum stress concentration occurs at the end of the semi-major axis of the ellipse. According to Eq. (1), the 
stress-concentration factor can be calculated as 

 0 / 1 2 /yk a b     . (5) 

Equation (5) is used to calculate the stress concentration [4]. For example, according to Eq. (5), the stress concentration 
factor is 3 for a circular hole (а = b). The stress concentration factor of the additional stress field (Eq. (4)) is written as  

 k = 2a/b.  (6) 

A comparison shows that the difference between Eq. (5) and Eq. (6) is unity. According to Eq. (3), the stress 
concentration factor is 2 for a circular hole (а = b). This difference is insignificant at a higher a/b ratio. 

Substitution of b = (a/η)1/2 into Eq. 3 leads to the equation for the stress concentration factor of the crack with η 
curvature: 

 / 2 ηyk a    . (7) 

Equation (7) indicates a parabolic dependence between the crack curvature η and the stress concentration factor k at 
a given crack length a 

  = k2/4a.  (8) 

The stress distribution in the aη coordinate is presented in Fig. 2. As can be seen, the stress concentration rises 
with decreasing both the crack length and the curvature. According to Eq. (8), the dependence between the crack 
curvature η and the stress concentration factor k is η= k2/4a at the crack length a. The similar dependence is observed 
between the stress concentration factor k and the crack length a at η = const, viz. a = k2/4η 

 

Fig. 2. The function k = f(a, ). 



 1842 

The crack curvature η = 10 µm –1 presented in Fig. 3, matches the curvature r = 0.1 µm. The stress y nearby 
the crack having a 1 mm length, is 200 times higher than the external stress curve . The increase in the crack length 
leads to a rapid growth in the stress concentration. The stress y nearby the crack with a 25 mm length is 1000 times 
higher than the applied stress σ (curve . 

In Fig. 4, the stress y distribution nearby the crack is presented as a function of two variables, namely 
coordinate x and crack curvature η. The certain value of the crack curvature determines the stress distribution y in front 
of the crack. Such stress distributions are presented in Fig. 5, where the increase in the crack curvature results in the 
growth in the stress concentration at the tip of the crack. The higher the crack curvature the more rapid is the stress drop 
on the x-axis. The influence of the curvature is significant only at the tip of the crack. According to Fig. 5, this influence 
is insignificant already at a distance of x  0.4 µm for the crack with a = 0.1 mm. 

Figure 6 shows the dependences between the ratio y / and the crack curvature at a different distance x to 
the tip of the crack. At x = 0 (curve 1), the ratio y / defines stresses at the semi-minor axis a, which is governed by the 
parabolic dependence (Eq. (8), curve 1). The condition in Eq. (8) is satisfied only at x = 0. As can be seen from Fig. 6, 
this condition is not satisfied at x  0. 

   

 Fig. 3 Fig. 4 

Fig. 3. k-η dependences at different crack length: 1 – 25 mm, 2 – 16 mm, 3 – 9 mm, 4 – 4 mm, 5 – 1 mm. 

Fig. 4. Stress distribution as y(x, ) function. 

 

Fig. 5. y / dependence on x for different crack curvature: 1 – 5 µm –1, 2 – 4 µm –1, 3 – 
3 µm –1, 4 – 2 µm –1, 5 – 1 µm –1.  



 1843

GRIFFITH CRACK 

Fracture mechanics of solids with cracks is based on quantitative relations proposed by Griffith [7], who 
considered a crack with a zero thickness. It was accepted that the classical Griffith crack had a significant drawback 
such as stress singularity at the tip of the crack. Approaching to the tip of the crack caused an unlimited stress growth. 
Let us consider the problem of stress singularity in a solid with a Griffith crack in more detail. 

In [8], Irwin considered the stress distribution in the vicinity of the Griffith crack. He showed that in the case of 
the opening mode fracture, when the crack edges separated without shear, the ratio y / along the tensile axis at the tip 
of the crack was  

 / 0.5y a x   .  (9) 

On the other hand, based on Eq. (1), at b = 0 we have 
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In Fig. 7, curve 1 describes the stress distribution y according to Eq. (10). At greater distances, the stress 
distribution y approaches to the external stress level of y / = 1. Curve 2 describes the ratio y / according to Eq. (9), 
which is usually used to analyze the stress-strain state at the tip of the crack [9]. The comparative analysis shows that at 
a small distance to the tip of the crack, when the distance x does not exceed a twentieth of a half-length, the values of 
the stress distribution do not differ from each other. However, with increasing distance from the tip of the crack, curve 2 
tends to zero, rather than the external stress  as curve 1 does, which is in contradiction to the facts. At a greater 
distance to the crack, the stress in the plate cannot be lower than the external stress. The use of Eq. (9) is therefore 
limited by the condition of x  a. 

   

 Fig. 6 Fig. 7 

Fig. 6. y / dependences on crack curvature η for different distance: 1 – 0 mm, 2 – 
0.1 mm, 3 – 0.2 mm, 4 – 0.3 mm, 5 – 0.4 mm, 6 – 0.5 mm. 

Fig. 7. Stress distribution у according to Eq. (10), curve 1 and Eq. (9), curve 2. 
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The relation of y = b[1 – (x/a)2]1/2 is derived from the canonical equation of ellipse (x/a)2 +(y/b)2 = 1. 
Substituting this in Eq. (2), we obtain the relation for the displacement of the crack periphery along the y-axis: 

 uy = (b+2a)[1 – (x/a)2]1/2/E.  (11) 

When b→0, the displacement of the crack edges occurs: 

 uy = 2a[1 –(x/a)2]1/2/E. 

Hence, the crack in the plate takes the form of an ellipse with the semi-minor axis b = 2a/E. As b ≠ 0, the 
Griffith crack has no stress singularity at the end, and the stress concentration (k / is observed in the loaded 
system. For a hypothetical material (steel) with a crack 1 mm long and 210 GPa Yong’s modulus, the maximum 
opening of the Griffith crack is 4 µm at 210 MPa external tension. This is 250 times shorter than the half-length of the 
crack. The stress at the crack mouth is 1000 times higher than the external stress. 

Therefore, there is no stress singularity in the Griffith crack. Nevertheless, this does not facilitate the solution 
of practical problems. Under the low stress applied, the stress concentration occurs at the tip of the crack, far greater 
than the yield point of the material. Consequently, there is still a need for new crack models allowing to clarify causes 
of the low strength of real materials. First of all, it is necessary to take into consideration the influence of plastic 
deformation on the stress-strain state of a solid with a crack. 

ELASTIC STRAIN ENERGY OF CRACKED PLATE  

Let us calculate the elastic strain energy of the plate with the elliptical hole under the uniaxial load. The identity 
of the stress-strain state of the plate with the elliptical hole and with the uniform plastic deformation zone allows us to 
determine the external stress effect on plastic deformations. According to the continuous defect theory [6, 10], the 
elastic strain energy is equal to the energy dissipated during the stress relaxation in the plastic deformation zone: 
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where S = ab is the ellipse surface. A change in the crack length by 2da, requires the energy consumption: 
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In the physical sense, the energy consumption G determines the intensity of the elastic energy release during 
the crack propagation [11]. The energy consumption is also called the crack-driving force, which is the energy per new 
surface area, which appears during the crack propagation. The energy consumption G is the crack resistance (fracture 
toughness) parameter of the material. 

The energy characteristic of the crack resistance of brittle materials with opening mode fracture is the stress 
intensity factor [10]: 

 πIK GE a   . (14) 

Equations (13) and (14) are usually used to determine the energy and force characteristics of the crack 
resistance of brittle materials with the Griffith crack. Our calculations show that these equations also hold for cracks 
with any curvature at the semi-major axis, not always being in the form of ellipse. 
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CONCLUSIONS 

The focus of many publications concerning the stress-strain state of plates with a crack is on analytical methods 
of the problem solution. The main attention is paid to the maximum stress concentration or the elastic strain energy. The 
term stress intensity factor is introduced as a force characteristic of the Griffith crack with a zero curvature. In the 
literature, the influence of a nonzero curvature on the stress-strain state of a solid is not discussed. 

This work studied the mechanical state of the plate with the elliptical shaped crack under the external load. The 
Griffith crack was a special case of such a system. The stress concentration factor, crack-driving force, and elastic strain 
energy were obtained for the stress-strain state of the plate under the uniaxial load. The following general laws of the 
mechanical state of the plate with the crack, not always in the form of an ellipse, with a curvature at the semi-major 
axis, were identified: 

1. The stress concentration was governed by k = 2(a)1/2 dependence. 
2. The influence of the curvature was significant only at the tip of the crack. 
3. The Griffith crack had no stress singularity at the end. Under the external load, the Griffith crack in the plate 

took the form of an ellipse with the semi-minor axis b = 2a/E. The stress concentration in the loaded system was k 
, where E is Young’s modulus. 

4. The stress distribution y = (0.5a/x)1/2, which is conventionally used for the stress-strain analysis of the 
plate with the Griffith crack, was incorrect already at a distance comparable with the half-length of the crack. The 
relation y = (x + a)/(x2 + 2xa)1/2 was more correct. 

5. The stress-strain state of the plate with the elliptical crack was similar to that with the uniform plastic 
deformation zone p(1 + a/b)/E. 

6. The crack-driving force G and the stress intensity factor KI did not depend on the crack curvature. Therefore, 
the known relations G = a/E and KI =  (a)1/2 obtained for the Griffith crack, could be used as the crack resistance 
characterization of the material with a crack not always in the form of an ellipse and with the known curvature at the 
semi-major axis. 

This work was financially supported by the government contract N FWRW-2021 and carried out in the Institute 
of Strength Physics and Materials Science SB RAS. 
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