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ON THE METHOD OF CORRECT DETERMINATION OF 

EIGENVALUES OF A TRUNCATED HAMILTONIAN MATRIX ON 

THE EXAMPLE OF A MORSE OSCILLATOR 

E. S. Bekhtereva, O. V. Gromova, P. A. Glushkov, and A. S. Belova  UDC 530.145 

A method of precise determination of the eigenvalues of energies of the molecular Hamiltonian based on high-
order perturbation theory has been developed and implemented for a diatomic molecule. The proposed method 
makes it possible not only to obtain the energy values, but also to estimate the accuracy of their prediction and 
the applicability limits for the employed model. Numerical calculations have been performed for the extended 
Morse oscillator with corrections for the potential functions up to the sixth power of the Morse coordinate. The 
results obtained are compared with the results of calculation for the model of the truncated Hamiltonian 
matrix. The possibilities of application of the method are analyzed compared to other approaches to the 
determination of the potential functions for polyatomic molecules. 
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INTRODUCTION 

The problem of determining the intramolecular potential function (IPF) of a molecule (generally, polyatomic) is 
one of the most urgent modern problems of chemical physics, since quantitative information on the IPF of molecules 
provides the basis for solving numerous purely academic and applied problems. Because of the limited volume of 
publications, it is impossible to present a comprehensive review on the current state of the art of this problem. We note 
only that this problem has been considered for many decades and still remains urgent owing to its complexity not only 
(and not so much) because of the lack of methods and models (the theoretical basis) of its solution, but also because of 
the possibilities of its practical implementation (computational power of computers). Bearing in mind a constant growth 
of resources (first of all, random access memory and computational rate) of modern computers, the constant increase in 
accuracy of the so-called ab initio calculations [1–6] is not surprising. However, it should be noted that the results of 
even the most accurate calculations are only points in the multidimensional spatial internuclear distances and angles 
between the bonds. To realize on this basis the intramolecular potential function, a Hamiltonian model (a model of the 
potential function) with the parameters defined by fitting to ab initio calculated points and experimental data is 
necessary first of all. Moreover, even the most accurate model does not yet guarantee the correct determination of the 
sought-after intramolecular function for the simple reason that the final result depends directly on the method of 
determining the model parameters. Here it is possible to mention: 1) various modifications of perturbation theory [7–
12], 2) classical variational method of quantum mechanics [13–15], and 3) construction and subsequent diagonalization 
of the Hamiltonian matrix in the basis of infinitely-dimensional functions according to the general principles of 
quantum mechanics [13–15]. The last method requires (for its practical implementation) truncation of the constructed 
(generally infinitely dimensional) matrices to reasonable dimensions with allowance for the capabilities of the 
employed computers. It should also be taken into account that in the process of determining the model Hamiltonian 
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parameters, in any case it is necessary to use the variational procedure; for this reason, the construction of a high-
dimensional matrix and its subsequent diagonalization are multiply repeated. This imposes certain restrictions on the 
dimensions of such matrices. From our point of view, at present the repeated construction (100–1000 iterations) and 
diagonalization of matrices with dimensions n(104–105) are already impossible owing to huge computational time. It 
should be borne in mind that according to the principles of quantum mechanics [13–15], both the classical variational 
approach and the use of the truncated matrices permit a correct description of only some examined states (for example, 
in approach (3) it is possible to consider as those no more than the third of the lowest states taken into account in the 
construction of the state matrix). Obviously, these conditions are more than favorable for a study of diatomic molecules 
for a description of their real spectra corresponding up to several tens excited vibrational states. However, they become 
inacceptable for polyatomic molecules.  

Main objectives of the present work are the development and practical implementation of the computational 
scheme which permits correct determination of the eigenvalues of the Hamiltonian. 

MODEL OF A MOLECULE AND VIBRATIONAL ENERGY SPECTRUM 

Note that the problems of correctness and accuracy of results of ab initio calculations and correctness of the 
model used for a description of the IPF points obtained by ab initio calculations are not discussed here (it is assumed 
that those and others are quite physical and adequate). As a model of a diatomic molecule, we consider the perturbed 
Morse oscillator [16] 
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where ( )1 ea r ry e    is the coordinate, a is the Morse parameter, and D is the dissociation energy. Strictly speaking, 

the total number of functions in the Morse oscillator model is limited; therefore, the basis of the Morse functions is 
incomplete [17, 18]. However, for the present work, as follows from considerations below, the given circumstance is 
not an obstacle. The problem can be solved, for example, using the results obtained in [18].  

As in the general problem of determining the eigenvalues of the Hamiltonian given by Eq. (1) and of 
comparative analysis presented below, the first step is the construction of the Hamiltonian matrix given by Eq. (1). To 
solve this problem, we use the results obtained in [19], where the eigenvalues of the molecular Hamiltonian for the 
model of the unperturbed Morse oscillator and the nonzero matrix elements in powers of the coordinate y were obtained 
in the form: 
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(the characteristic number of bounded states is 2k D a   ),  
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and the multiplier  
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is defined for m n  and .j m n   With allowance for formulas (3)–(10), Hamiltonian matrix (1) can be easily 

constructed. However, a question arises on the parameters 3 4, ,...a a  entering the Hamiltonian. In principle, to perform 

a comparative analysis, it is sufficient to take reasonable values of all these parameters. We here use the parameters of 
the real HCl molecule borrowed from [20] and recalculated into the parameters of model (1). 

The essence of the aforementioned analysis in this work consists in the following. For the HCl molecule 
(according to the theory of the Morse oscillator [16–19]), 24 vibrational states are located below the dissociation 
threshold. As a consequence, the maximum dimensions of the Hamiltonian matrix in this model are 24  24. The twenty 
four eigenvalues of Hamiltonian (1) in this model are determined by diagonalization of the matrix, and we call them 
exact energy values. It is obvious that for real problem, the Hamiltonian matrix has infinite dimensions, and important 
questions arise: Where the matrix should be truncated to solve the problem? What is the accuracy of the energy values 
obtained with this truncated matrix? And to what extent can we believe the predictions obtained based on this truncated 
matrix? Hence, a correct solution can be obtained only for the lower states of the system, and even energy values of the 
lower states depend strongly on the number of states taken into account in the matrix. Figure 1 shows plots of the 
dependence of the energies of the vibrational states for the model Hamiltonian of the HCl molecule studied in this work 
on the number of states taken into account in the matrix (the convergence to the exact value).  

For example, it can be seen that with allowance for ten states, more or less correct are only five lower states. 
For the diatomic molecules (as already indicated above), this circumstance is not critical, since the number of the 
employed states can always be increased. However, if we consider only 10 main states per one vibrational degree of 
freedom, even for the smallest polyatomic molecules we obtain at least 103 lines and columns in the matrix. For a four-
atomic molecule, the dimensions of the matrix will already be (106  106), etc. (in this case, it becomes practically 
impossible to solve the problem, not mentioning the molecules with a greater number of atoms).  
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METHOD OF DETERMINING THE EIGENVALUES 

In this work, we propose sufficiently simple and more exact procedure of determining the eigenvalues of the 
Hamiltonian matrix based on the analogy to the operator theory of perturbations in the matrix construction [10–12] that 
can be easily generalized to polyatomic molecules. Let us assume that using this or that model Hamiltonian, we 
construct the matrix Hij for which the condition  

 ii ijH H  (11) 

is satisfied, that is, the non-diagonal elements are much less than the diagonal ones (without loss of generality, it is 
possible to consider that Hij (i ≠ j) are values of the order k with respect to the values of Hii (here   is a small 
parameter). We take advantage of the transformation 

 H G HG  (12) 

with the operator G  small compared to the unit unitary operator. It can be represented in the form 
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where ng  are the Hermitian operators of the order of smallness n . This circumstance allows us to represent G  in the 

form of the Hausdorff series [13]. We now substitute Eq. (13) into Eq. (12) and consider that all three operator 
multipliers in the right-hand side represent the sum of terms of different orders of smallness. As a consequence, the 

operator H  in the left-hand site is also the sum of terms of different orders of smallness. Thus, in order that Eq. (12) 

 

Fig. 1. Deviations of the energy values obtained by diagonalization of the 
truncated matrices (the figures indicate the dimensions) from the exact values 
obtained by diagonalization of the full-dimensional 24  24 matrix. 
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was correct, it is necessary and sufficient to level the terms of different orders of smallness in the right- and left-hand 
sites. As a consequence, we obtain 

 0 0( ) ( )ij ij ij ijH H H     , (14) 

 0( )mm mmH H   

for the zero order of smallness, 
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for the first order of smallness, 
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for the second order of smallness, 
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for the third order of of smallness, 
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for the fourth order of smallness (the procedure can be continued to refine further the eigenvalues of the Hamiltonian). 
Since the unitary operator G  is arbitrary, it is possible to choose from a set of unitary operators such the part 

1( )i g  of which, according to formula (15), will nullify values of all non-diagonal elements of 1( )ijH   of the order 1 , 

the part 2( )i g , according to formula (15), will nullify values of all non-diagonal matrix elements 2( )ijH   of the order 

2 , etc. Obviously, the diagonal elements with accuracies 1  and 2  will coincide with the eigenvalues of the initial 
matrix (the eigenvalues of the Hamiltonian). From the above discussed, the advantage of this approach is 
understandable over the simple diagonalization of the truncated Hamiltonian matrix: 1) this approach allows one to use 
non-truncated full matrix; 2) its applicability limits for a specific model of the molecule can be easily estimated; 3) its 
application for the excited states yields more correct results compared to the truncated matrix. 
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Without intermediate calculations, we present the results obtained using procedures (12)–(19) for contributions 
of the lower states to the eigenvalues of Hamiltonian (1) and the corresponding results for the unitary operator G  that 
allowed us to implement this procedure. In this case, we consider that in accordance with quantum mechanics (for 

example, see [13]), to determine the contributions to energy up to the order of smallness 2n , it is sufficient to know 

the eigenfunctions (in our case, the unitary operator G) to within the accuracy n . As a result of calculations from 
formulas (12)–(19), for the operator G  it was obtained that: 1) it can be assigned in the matrix form and 2) to determine 
the operator G , it is sufficient to know the matrix elements of the operators nig  entering in it: 
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Equations (16)–(19) allow the eigenvalues of the Hamiltonian matrix to be determined up to the fourth order of 
smallness. Because of the limited volume of the work, it is impossible to present contributions of higher orders of 
smallness. 

As an example of application of the results obtained and for their comparison with the results obtained by 
diagonalization of the truncated matrix, we now consider the HCl molecule. The corresponding parameters of the 
Hamiltonian obtained by recalculation of the potential parameters from [20] are D = 35747.2 cm–1, a = 1.90102109 cm–1, 
ρ = 1.29810–8 cm, a3 = 1452.6 cm–1, and a4 = 241.32 cm–1. We limited ourselves to six lower vibrational states 
sufficient for a comparative analysis.  

The second column in Table 1 contains the exact values of the vibrational energy obtained by diagonalization 
of the full Hamiltonian matrix ((2424) in our test calculation). Results of calculations with the truncated (20, 10, and 
5 dimensional) matrix are presented in columns 3–5. Results of calculations by the scheme proposed in this work are 
shown in columns 6–8. As can be seen from columns 6–8, the energy values obtained by the proposed method are in 
better agreement with the exact values. With allowance for the corrections of higher order of smallness, a better 
agreement can be obtained. 

CONCLUSIONS 

The method of determining the eigenvalues of the molecular Hamiltonian which demonstrates the best 
convergence to the exact energy values compared to the energy values obtained by diagonalization of the truncated 
Hamiltonian matrix has been proposed, which is critical for investigation of polyatomic molecules. Compared to the 

TABLES 1. Energy Values Obtained by Direct Diagonalization of Matrices of the Indicated Dimensions in 
Comparison with the Result Obtained by Application of the Scheme Given by Eqs. (12)–(19) 

n L = 24 L = 20 L = 10 L = 5 PT2 PT3 PT4 
1 2 3 4 5 6 7 8 
0 1480.225 1480.225 1480.225 1480.225 1480.225 1480.225 1480.225 
1 4365.005 4365.005 4365.005 4365.005 4365.008 4365.005 4365.005 
2 7142.623 7142.623 7142.630 7142.643 7142.627 7142.625 7142.622 
3 9811.957 9811.961 9812.074 9813.752 9811.933 9811.994 9811.944 
4 12371.248 12371.289 12372.306 12378.781 12371.030 12371.584 12371.086 
5 14815.381 14816.245 14822.321  14814.966 14817.881 14814.306 
6 16854.732 17132.751 17160.941  17128.723 17038.984 16994.460 
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application of the truncated matrices, the proposed method allowed us to consider contributions from non-diagonal 
elements disregarded in the incomplete set of the basic functions. The approach has also the advantages associated with 
resource consumption, since it has no restrictions on the dimensions of the initial matrix and obviates the necessity of its 
numerical diagonalization. The efficiency of the developed approach was demonstrated on the example of the diatomic 
molecule and can be important for solving direct and inverse problems for polyatomic molecules.  

This work was supported in part by the Russian Science Foundation (Project No. 18-12-00058). 
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