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RIGID BODY INERTIA PROPERTIES 

T. B. Goldvarg and V. N. Shapovalov  UDC 531 

Definitions are given and properties of the rigid body inertia characteristics are formulated. The influence of 
the geometrical symmetry of a rigid body on its characteristics is described. The geometrical approach to the 
material presentation is used. 
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INTRODUCTION 

In all textbooks on theoretical mechanics, the inertia properties of a rigid body are considered (for example, see 
[1–5]), but accurate definitions and proofs of their properties are lacking. In the present work, precise geometrical 
definitions of centers of masses and moments of inertia about a point, an axis, and a plane as well as of the inertia center 
are given, and their properties are studied. The influence of the geometrical symmetry of the body on its characteristics 
is described. 

1. MOTION IN E3  

Definition 1. The non-singular mapping 3 3:D E E  is called space motion if 

 3( , ) ( ( ), ( )),   ,a b D a D b a b E     . 

From the definition, the existence follows of the orthogonal operator 3 3
ˆ :d E E  for which the relation  

 3
ˆ( ) ( ) ;    ,d a b E  D a D b ab , (1) 

holds true. Hereinafter, the vector is designated by ab . 

2. INERTIA CHARACTERISTICS OF A BODY 

Let ( ) and ( )a i m i  denote the location and mass of the i th particle of a body, and m  denotes the mass of the 

body. 
Definition 2. The point 3c E  the radius-vector of which relative to a certain point 3o E  has the form 
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 ( ) ( )m m ioc oa i  (2) 

is called the center of mass of the body. Hereinafter, summation is performed over the indices repeated twice in the 
monomial. 

Definition 3. The scalar  

 2( ) ( )oI m i oa i  (3) 

is called the moment of inertia relative to the point o . 
Definition 4. The scalar  

 2( ) ( )[ ( ), ]oI m il oa i l  (4) 

is called the moment of inertia relative to the straight line passing through the point o  parallel to the unit vector l .  
Definition 5. The scalar  

 2( ) ( )( ( ), )o m i l oa i l  (5) 

is called the moment of inertia relative to the plane with the normal l  passing through the point o .  
Definition 6. The quantity  

 2ˆ ˆ( )( ( ) ( ) ( ))oI m i E oa i oa i oa i  (6) 

is called the inertia tensor relative to the point o , where Ê  is the unit tensor, and the Kronecker product of vectors [6] 
is defined as follows: 

 3( ) ( , ),   , , E  a b x a b x a b x . 

3. PROPERTIES OF THE INERTIA CHARACTERISTICS OF A RIGID BODY 

3.1. Relationships between the inertia characteristics 

 3.1.1. ˆ( ) ( , )o oI Il l l . 3.1.2. ˆ2 ( )o oI sp I . 

 3.1.3. αβ α2 ( ),  ( , ) δ ( , 1,2,3)o oI I     e e eα α β . 

 3.1.4. α ( )o oI   αe . 3.1.5. ( ) ( ).o o oI I l l  

Proofs of the properties are omitted here. 

3.2. General properties  

3.2.1. Location of the center of masses is independent of the pole choice, that is, definition 2 is constructive in 
character (there is only one center of masses for a body). 

3.2.2. The distance between the center of mass and any point of the body in motion is constant. 
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3.2.3. If a body is in the external homogeneous gravity field, the center of masses in the equilibrium position 
lies on the straight line passing through the suspension point and parallel to the free fall acceleration. 

3.2.4. Steiner’s theorem. The moment of inertia of a system relative to an axis is equal to the sum of the 
moment of inertia relative to the parallel axis passing through the center of masses and of the product of the system 

mass by the squared distance between the axes: 2( ) ( )o cI I ms l l . 

3.2.5. The inertia tensor is positively defined: ˆ( , ) 0,   0oI   u u u . 

3.2.6. The inertia tensor is symmetric and real: ,    o o o oI I I I  . 

3.3. Relationships between the inertia characteristics about the pole and the center of masses 

 3.3.1. 2
o сI I m  oc . 3.3.2. 2( ) ( ) [ , ]o сI I m l l oc l . 

 3.3.3. 2( ) ( ) ( , )o с m  l l oc l . 3.3.4. 2ˆ ˆ ˆ( )o сI I m E  oc oc oc . 

3.4. Inertia characteristics of a compound rigid body 

Let us subdivide a body into parts σ  as follows: 

 α( )V   Ø, α α( ) ( )V V   Ø, α( ) ( ),     α 1,...,σV V  ,  

where α( ) and ( )V V  are regions occupied by the body and its part number α . Here (α)m  is the mass of the part of the 

body, (α)n  is the number of particles in the part, (α )m i  is the mass of the i th particle from region number α , and 

(α)c  is the center of masses of region number α . Then 

 3.4.1. (α) ( )m m oc oc , 3.4.2. 2
(α) (α) (α) (α)c cI I m  cc . (7) 

Here (α) (α)
α 1 α 1(α) (α ),   ( ) ( ) (α ) (α )n nm m i m m i i     oc oa . 

 3.4.3. 2
(α)( ) ( ) (α)[ , (α)]с сI I m l l l cc . 

 3.4.4. 2
(α)( ) ( ) (α)( , (α))с с m  l l l cc . 

 3.4.5. 2
(α)

ˆ ˆ ˆ(α) (α)( (α) (α) (α))с сI I m E  cc cc cc . (8) 

4. SYMMETRY OF A RIGID BODY 

Let {1,2.3... }N n , where n  is the number of particles of the rigid body. 

Definition 7. Motion D  is called the symmetry element (or the symmetry) of the rigid body if the non-singular 
mapping δ : N N , such that 

 ( ( )) (δ( )),   (δ( )) ( )D a i a i m i m i   (9) 

can be specified. 
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4.1. Symmetry of the inertia characteristics of a rigid body  

If D  is the symmetry of a rigid body, then: 
4.1.1. The equality  

 ( )D c c  (10) 

holds true. 
Comment 1. From this property it follows that: 
1) If a body possesses a symmetry axis, the center of masses is on the symmetry axis; if a body possesses 

several symmetry axes, the center of masses lies at the intersection of these axes. 
2) If a body possesses an inversion center, this center coincides with the center of masses. 
3) If a body possesses a plane of symmetry (reflection), the center of masses lies in this plane. 
4.1.2. For the center of inertia with respect to the point o , the equality  

 ( )
ˆ ˆˆ ˆ  o D od I I d  (11) 

is true. 
Comment 2. From Eqs. (10) and (11), we obtain 

 ˆ ˆˆ ˆ ñ ñd I I d . 

Analogous equality is true for any point o  belonging to the symmetry axis/plane. 
4.1.3. For the moment of inertia about the plane with the normal l , the equalities 

 ( )
ˆ( ) ( ),     ( )  (  )с с o D o d     l l l l  

are true. 
4.1.4. For the moment of inertia about a straight line, the equality  

 ( )
ˆ( ) ( ),     ( )  (  )с с o D oI I I I d  l l l l  

is true. 
4.1.5. For the moment of inertia about the point o , the equality 

 ( )  o D oI I  

is true. 
Proofs 
4.1.1. We now put ( )b b i  in Eq. (1) and consider Eq. (9). As a result, we obtain ( ( )) ( ( ))D a i b iδ  

ˆ (δ( )) ( )d i a b i . After multiplication of this equality by (δ( )) ( )m i m i  and summation over i , we obtain  

 ˆ( ) dD a c ac . 

On the other hand, from Eq. (1) we have  

 ˆ) ( ) dD(a D c ac . 
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Comparing two last equalities, we obtain ( )c D c , which was to be proven. 

4.1.2. It is easy to prove the property of the Kronecker products  

 ˆ ˆ ˆ ˆ( ) Td d d dx y x y  . (12) 

Now we prove that Eq. (11) with allowance for Eqs. (1), (6), and (8) assumes the form 

 2 2ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )( ( ) { ( ) ( )} ) ( )( ( ) ( ( )) ( ) ( ))T T
od I d m i E d d m i E d d   oa i oa i oa i D o D a i oa i oa i   

 2
( )

ˆ ˆ( )( ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) D om i E I  D o D a i D o D a i D o D a i . 

This just proves it. 
4.1.3. The validity of the first formula follows from Eq. (5). For the second formula, we have  

 2 2 2 2
( )

ˆ ˆ ˆ ˆ ˆ( )( ( ), ) ( )( ( ), ) ( )( ( ) ( ( ), ) ( ( ))( ( ) ( ( )), ) ( )D om i m i d d m i d m i d d    oa i l oa i l D o D a i l D o a i l lδ . 

This just proves it. 
4.1.4. The validity of the first formula follows from definition (6). In the second case, we have 

 ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( , ) ( , ) ( , )  (  )T

o o D o D o D oI I d I d d I d I d   l l l l l l l l . 

This just proves it. 
4.1.5. From definitions (1) and (7), we have 

 2 2 2
( )( ) ( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ( ))o D oI m i m i m i I    oa i D o D a i D ο a iδ . 

This just proves it. 

4.2. Explicit form of the inertia tensor of a symmetric body  

In [7] it was shown that the geometrical image of the orthogonal operator in 3E  is either rotation about 

a certain axis by some angle or rotation through some angle about a certain axis with subsequent reflection from the 
plane perpendicular to this axis. Thus, any orthogonal operator in a proper system of coordinates is represented by the 
matrix with elements 

 13 23 31 32 33 11 22 21 120,    1,   ,   d d d d d d d a d d b           . 

Here cos and sina b    . 

Symmetry element – symmetry axis. We now choose the symmetry axis for the OZ axis; then d̂  determines 
rotation about this axis; in this coordinate system, we obtain from condition (11) 

 12 13 23 11 22 13 230,    0,   0,   ( ) 0,    (1 ) 0,    (1 ) 0I b I b I b I I b I a I a         . (13) 

This system has the following solutions: 
1) If 0b  , then 1a   , and from Eq. (13) we obtain 13 23 0I I  . 
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2) If 0b  , we obtain the diagonal tensor with elements 11 22I I . 

Symmetry element – rotation about a certain axis with subsequent reflection from the plane 
perpendicular to this axis. We choose the symmetry axis for the OZ axis and perform calculations analogous to the 
previous case: 

 12 13 23 11 22 13 230,    0,   0,   ( ) 0,    (1 ) 0,    (1 ) 0I b I b I b I I b I a I a         .  (14) 

This system has the following solutions: 
1.1) For 0 and 1b a   , this symmetry is inversion about the center of mass, and we obtain no information 

on the form of the inertia tensor. 
1.2) For 0 and 1b a  , from Eq. (14) we obtain 13 23 0I I  . 

2) For 0b  , from Eq. (14) we obtain a diagonal tensor; moreover, 11 22I I . 

5. INERTIA CHARACTERISTICS OF A RIGID BODY FOR THE MODEL OF A CONTINUOUS MEDIUM 

If we represent an absolutely rigid body as a continuous medium occupying the region of space ( )V  with the 

substance density distribution ( ) r , then definitions of the physical quantities will have explicit forms, for example, 

with designations  

 3,    ( ) ( ),    ( ),    o o a a V o E     or oa r . 

For the radius-vector of the center of mass, we obtain 

 
( )

( )o o oV
m dv oc r r . 

All properties that have been proved above for discrete bodies remain valid for continuous bodies if we accept the 
definition: the motion D  is the symmetry of a body under the condition that 

 ( ) ( ),   ( ( )) ( ),    ( )D a V D a a a V      . 

Comment on the geometrical characteristics of the region. Let us consider the region of space ( )V  with the 

volume V . Define the inertia tensor of the region relative to the point o  as follows: 

 1 2
( )

ˆ ˆ( )o o o oV
J V E dv  r r r . 

The center of the region, the moments of inertia relative to the point, axis, and plane can be determined analogously. 
The inertia tensor of the body consisting of   parts with density ( )  , occupying the region ( ( ))V   can be 

written in the form 

 2
( )

ˆ ˆ ˆ( ) ( )[( ( ) ( ) ( )) ( )]o cI V E J       oc oc oc   . (15) 

The last equality simplifies considerably calculations of the inertia characteristics of different rigid bodies if their 
geometries are identical. Thus, to calculate the inertia tensor of the body obtained by removal of the media from 
a certain region, formula (15) can be used considering that the density in cavities is equal to zero. In addition, for two 
bodies with identical geometries and the known inertia tensor of one of them, the formula presented above allows one to 
determine automatically the inertia tensor of the second body. 
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Example 

Let us consider the homogeneous sphere centered at the point o  with the mass ( )m o , density ( )o , and 

radius ( )R o . The sphere has two spherical cavities with the centers, constant densities, and radii ( ),   ( )c    , and 

( ) ( 1,2)R    . The points , ( )o c   lie on one straight line whose orientation is determined by the unit vector e . For 

convenience, we introduce the dimensionless quantities: 

 ( ) ( ) ( ),   ( ) ( ) ( )R k R o n R o    oc e . 

Using formulas (7) and (15) and taking into account the spherical symmetry of the sphere and cavities, for the radius-
vector of the center of mass of the obtained body c  and the inertia tensor we obtain 

 3 3(1 ( ( ) / ( ) 1) ( ) ) ( ) ( ) ( ) ( ( ) / ( ) 1)o k R o n k o            oc e , 

 2 3 2 2 2ˆ ˆ ˆ( ) ( ) [(2 / 5) ( ) ( ( ) / ( ) 1){( ( ) (2 / 5) ( ) ) ( ) }]oI m o R o E k o n k E n            e e . 

From here, in particular, it follows that: 
1) If ( ) ( )o    , we obtain the inertia tensor of the continuous sphere. 

2) If ( ) 0   , we obtain the inertia tensor of the sphere with empty cavities. 

3) Obviously, with the proper choice of the density ( )  , the center of mass of the body (point c ) can 

coincide with the geometrical center of mass of the continuous sphere (point o ). 
4) Though the system possesses only the axial symmetry, nevertheless, for a definite relationship between the 

densities of the cavities, the inertia tensor will be scalar. 

CONCLUSIONS 

The definitions are given and the properties of the inertia characteristics of an absolutely rigid body are 
formulated. The relationship of the symmetry of the body with the properties of its inertia characteristics has been 
established. We consider that the material of this work can be included in textbooks on theoretical mechanics. 
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