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ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY 

CALCULATION OF THE ENERGY OF EXCITED STATES WITH 

ZERO ELECTRON ORBITAL ANGULAR MOMENTA  

V. V. Skobelev and V. P. Krasin  UDC 539.12 

Within the framework of the variational method, as the result of a numerical calculation we have found the 
energy of the excited state and the screening constant of the helium atom in the electron configuration 1s 2s, 
which is metastable with respect to the single-photon transition to the 1s2 state, and also in the 1s 3s 
configuration. The results of numerical calculation of the energy are in approximate agreement with other 
values given for these states in the literature which are available to us. For the first time, numerical 
calculations have also been carried out for 1s ns configurations in the range of values n = 4, …, 9, in which the 
corresponding values of the energy En and the screening constant n were obtained. It was found, in particular, 
that n and | En | for the excited states in the range n = 2, 3, …, 9 fall monotonically with increasing n, where 
n  0 in the formal limit n  ∞, and En tends to the energy of a hydrogenlike atom with nuclear charge (2e), 
as it should be in accordance with the physical meaning of these quantities. The results of the calculations are 
illustrated graphically. The present study has important methodological significance in terms of the 
development and application of the basic principles of quantum mechanics to the helium atom.  

Keywords: helium, energy, screening constant.  

INTRODUCTION  

An approximate theoretical calculation of the energy of helium can be carried out numerically or, in some 

cases, analytically using the Hylleraas variational method [1, 2], which for the ground state 21s  gives results that 
essentially coincide with experiment (for example, see [3, 4]).In this calculation, including the first excited state 1 2s s  

which is metastable with respect to the single-photon transition *(2 ) (2 )e e   , we use general expressions for the 

energy and screening constant of a two-electron atom obtained in [5] in a simple version of the variational method with 
one variational parameter (the atomic number )Z . The given calculational method enables us, in particular, to elucidate 

the dependence of the energy nE  and the screening constant n  of the helium atom on the value of the quantum 

number n  in the states { 1}n  ,  2,3,...; 0n l  . The literature on calculation of the energy of the helium atom is 

quite extensive (for example, see [6–8] and the references cited therein); in this regard, a version of the variational 
method that is generally considered to be more exact, having a larger than usual [3, 4] number of variational parameters, 
was employed in [8]. Such an approach is supposed to deliver correspondingly more accurate calculations; however, for 
states with 0l   only the values 2 and 3n   were considered, whereas in the present study nE  and n  were 
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calculated for 2, 3, ..., 9n  , where the results for nE  obtained for 3n   are original to this work, and the screening 

constant was never calculated before.  
In the present study, we are interested in the particular case of the usual three-dimensional ( 3)D   two-

electron atom. Here the value of the energy for energy quantum numbers andn n  is given by an expression following 

from the general formulas presented in [5], including also the spatial dimensionalities 1 and 2D  , in the derivation of 

which, results presented in [9] were used:  

 E   E
2( )Z   ,  (1) 
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The factor E  is proportional to the summed average kinetic energy of the electrons and is equal to E  = 

  2/n nE E Z  (in this regard, see [9]), regardless of the specific values of the quantum numbers andn n  of the 

electrons and with the value of the total energy of each electron in the field of the nucleus ( )Ze  equal to 
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The parameter   in general takes into account the influence of the interaction of the electrons on the energy of the 
atom, and for n n   it can be interpreted as a screening constant of the field of the nucleus by the inner electron with 

quantum number n  as seen by the outer electron with quantum number n . The parameter E  figuring in expression 

(1a) is equal to E 
2 2

1 1

n n

   
. 

 
If the inner electron is found in a state characterized by the set of quantum numbers { 1, 0, 0}n l m      

and the outer electron is found in a state with the set of quantum numbers { , 0, 0}n n l m   , i.e., with zero orbital 

angular momenta, then the quintuple integrals in the general formulas of [5] reduce to double integrals K  nK ,  

J  nJ :  
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analogous to what was demonstrated in [5] for the ground state with electron quantum numbers 1n n   in a two-
electron atom, where, for brevity, we denote the degenerate finite hypergeometric series thus [3, 10]: 
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where this series for integer nonpositive a , as obtains in formulas (3c): ( 1)a n   , in fact truncates at the value 

k a 1 . 

Next, we employ the following representation of ( )nF x  (formula (3c)), following from formula (3d) and 

suitable for the numerical calculations to be performed in this work:  

 ( )nF x  1 
2 0

0

0

( 1 )

(2 )

k

n j
k

k

j

n j

j

 





  








1

( 1)!

kx

k




. (3e)  

The considered states of the atom with electron configuration 1s ns  are metastable with respect to the single-photon 

transition *(2 ) (2 )e e    to the ground state 21s  since the outer electron, as was noted above, is effectively found 

in the field of the nucleus and the inner electron. In this case, the situation is similar to that of a one-electron atom, and 
therefore the single-photon transition with 0l   in the case under consideration is suppressed by the corresponding 
selection rule for l, according to which 1l    [4]. In this situation, only the much less probable two-photon transition 
is allowed (for example, see [11]). The 1 2s s  state, considered below, is also absolutely metastable since the allowed 
single-photon transition is completely absent in this case. 

 

CALCULATION OF THE ENERGY OF THE ATOM IN THE CONFIGURATIONS 1s ns (n = 2, 3, …, 9)  

For the excited state 2n  , taking formulas (3c) and (3d) into account, it is convenient to represent 
expressions (3a) and (3b) in explicit form:  
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These integrals, in contrast to the results for 2n  , are quite easily calculated, in fact analytically. Their values, 
calculated numerically based on general formulas (3a) and (3b), using formulas (3c) and (3d), coincided with the results 
obtained analytically. Results of numerical calculation of quantities (3a), (3b), (1) and (1a) for 2, 3, ..., 9n   are 

displayed in Table 1 ( ( )  ( )
n
 , E  ( )

nE  , and the quantities ( )
nE   and ( )

nE   are given in eV).  

In an approximation for 2n   that is sufficient for our purposes, based on the results of this numerical 

calculation, the screening constant is equal to (the upper number is the term 1
0S , and the lower number is the term 3

1S ) 
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  
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and the absolute value of the energy is equal to  

 ( )
2E  

55.96

58.14

  
 
  

.  (6)  

As can be seen from the table, the values ( )
n
  with growth of n  in the interval 3–9 fall monotonically from tenths to 

hundredths, and in the formal limit n   , they fall to zero, which corresponds to the disappearance in this case of 
an interaction between the electrons and, consequently, as was noted above, to the screening effect. The values of 

( )
nE   in the interval of values of n  from 2 to 9 also decrease monotonically since the negative contribution to the 

total energy ( )
nE   of the atom from the energy of the outer electron in the field of the nucleus decreases, as is clear 

from formulas (1) and (2a). In the formal limit n  , 
( )

n
  0  and in the case under consideration 1n  , 2Z   

we find that ( )
nE   

2(2 )

2

 2
em c   – 54.4  eV, i.e., it tends to the energy of a hydrogenlike atom with 2Z  , as 

it should be, and is in agreement with the numerical calculation presented in the table. These tabulated values for ( )
n
  

and ( )
nE   are presented graphically in Figs. 1 and 2 for greater clarity, where to illustrate the above-indicated 

asymptotic limit, the graph of ( )
n
  in Fig. 1 is also constructed for values of 9n  , which are absent in the table.  

It is also worth mentioning that, as is clear from the table and from Fig. 1, ( )
n
  ( )

n
  for all n  in the range 

2–9 and, correspondingly, the energy levels of the 3
1S  terms for the same value of n  are located below the levels of the 

1
0S  terms in this range (2–9). This is in agreement with the results of [8] for the cases 2 and 3n  . Note that the 

TABLE 1 

n 2 3 4 5 6 7 8 9 

nK  0.210178 0.099409 0.057611 0.037507 0.026338 0.019502 0.015019 0.011907 

nJ  0.02191 0.00576 0.00233 0.00117 0.00067 0.00042 0.00028 0.0002 

( )
n
  0.18567 0.09466 0.05642 0.03719 0.02628 0.01952 0.01506 0.01195 

( )
n
  0.15061 0.08428 0.05203 0.03494 0.02497 0.0187 0.01451 0.01157 

( )
nE   55.9603 54.8584 54.585 54.4917 54.4516 54.4310 54.4209 54.4152 

( )
nE   58.144 55.458 54.832 54616 54.523 54.477 54.451 54.436 



 602

decrease in ( )
n
  on the interval from 2 to 3 of the graph is completely analogous to the same effect on the interval of 

values of n  from 1 to 2 for a one-dimensional helium atom, as follows from [12], and in this case the expression for the 
energy (formula (2)) of a hydrogenlike atom ( )Ze  is the same as in the three-dimensional version [13].  

The values of the energy ( )
2E   ( )

2RBE   for 2n  , found from [14] with allowance for the ground state 

energy   – 78.90  eV given in [3, 4], are such that the relative deviations ( )  ( ) ( ) ( )/RB VAR RBE E E    of the 

reference values from the values obtained in our simple version of the variational method for 2n  , expressed as 

percents, are equal to ( )
2
 

4

2

 
 
 

% . In the state with 3n   the deviation of the energy values presented in the table 

from the earlier calculated values [8] and the reference values presented in [14] is equal to ( )
3
 

2

1

 
 
 

% , i.e., it is 

roughly two times smaller. For the ground state of the helium atom, to which only the integral 1K  (formula (3а)) 

contributes, the deviation   of the variational value from experiment amounts to   2 %, but this result, as is 
generally considered to be the case [3, 4], confirms the adequacy of the variational method in analytical calculations of 
the ground state energy. Thus, this very conclusion can be considered to be valid also with respect to our method of 
calculation of the energy.  

    

 Fig. 1 Fig. 2 

Fig. 1. Dependence of the screening constant ( )
n
  on the principal quantum number n of the 

outer electron in excited states of the helium atom.  

Fig. 2. Dependence of the absolute value of the energy ( )
nE   on the principal quantum 

number of the outer electron in the lower excited states of the helium atom.  
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Note also that if we convert the energy values given in [8] into electron-volts, then in the states 1
02 S  and 

3
12 S  they are equal to 58.39   and 59.26  eV, respectively, with the accuracy applicable in the present study, with 

a deviation equal to   (0.2 0.3) % from the values found from the data in [14]. This means that there are quite 

weighty grounds to assume that the results of [8], obtained by an improved variational method, more closely correspond 
to the real situation than our results, obtained in its simplest version.  

Note that for the excited states under consideration in the above-indicated sense of metastable states, the energy 
of the atom found from perturbation theory, pertE , can be found as the sum of energies (formula (2)) of the atomic 

electrons in the field of the nucleus 1 nE E 0  and the interaction energy of the electrons ( )
intE  0 , similar to how 

this was done in [3, 4] for the ground state (see also formula (2) of [5]). For 2n   and 2Z   the result of the 
calculation is as follows:  

 ( )
pertE   

55.38

57.77

  
 
  

 eV. (7)  

As can be seen, in the case under consideration there is no significant difference between these values and the more 
accurate result (formulas (6)) obtained by the variational method, as is also the case in the calculation of the ground 
state [3, 4]. Thus, in both cases the variational method and perturbation theory, with allowance for their approximate 
character, give almost the same result, despite the formal inapplicability of the method of perturbations; this, in a sense, 
can have a random character.  

CONCLUSIONS  

Among the main results of this study, we may highlight both the elucidation of the applicability of the simplest 
variational method and the method of perturbation theory to a calculation of the energy of the first excited (metastable) 
state 1 2s s  of the helium atom and also a numerical calculation of the energy by the variational method in the states 1s
ns , 2, 3, ..., 9n   with an elucidation of the monotonic decrease of the screening constant with increasing n  in this 

interval and all the way up to 35n   (Fig. 1). It also turned out that the absolute value of the energy ( )
nE   of the 

helium atom in the excited states for the S -terms and the quantum numbers of the outer electron in the interval 2–9 
also decreases monotonically (Fig. 2), bearing in mind that results are presented in [8, 14] only for the energies for 

2 and 3n  , and calculation of the screening constant is completely absent. Practically complete agreement between 

the results of calculations by both methods in the case 2n   can be considered as an additional argument in favor of 
the adequacy of our approach to the problem in comparison with the results of [8], which also, like our results, differ 
from the reference values. The theoretical values of the energy in both studies with allowance for the fundamentally 
approximate character of the calculations made in them can be viewed as satisfactory in the context of their 
correspondence with the reference values [14].  

This work was performed within the scope of the base part of the Moscow Polytechnic University State 
Assignment (Project No. 3.4880.2017/8.9). 
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