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ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY 

CALCULATION OF THE SCREENING CONSTANT AND ENERGY 

OF A TWO-ELECTRON ATOM  

V. V. Skobelev  UDC 539.12 

Using the results of a paper previously published by the author, general expressions have been obtained for the 
energy and screening constant for a two-electron atom for arbitrary sets of quantum numbers of the electrons. 
In the particular case of the ground state of the atom, the well-known classical result is obtained from the 
general formulas.  
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INTRODUCTION  

The most effective approach to solving the quantum-mechanical analog of the classical three-body problem, in 
this case, to calculate the energy of a two-electron atom is the Hylleraas variational method [1, 2] and its various 
modifications, including an increase in the number of variational parameters [3]. Applying this method to a calculation 
of the energy and the screening constant for the ground state of the helium atom with electrons in the states 
{ 1, 0, 0}n l m    and { 1, 0, 0}n l m      gives a result in agreement with experiment (see [4, 5]). It is of 

interest to extend this method to arbitrary states of the electrons in the general case of a two-electron atom with arbitrary 

value of Z  ( He, Li , etc.), including, as a special case, the ground state of the helium atom ( 2Z  ), considered 

elsewhere. This then is the subject of discussion in the present paper. We will also apply the results of one of our 
previous papers [6].  

1. INTERACTION OF ELECTRONS. CORRECTION TO THE ENERGY OF THE ATOM  

The total energy totE  of a two-electron atom is found by adding together the energies of the atomic electrons 

atE  nE  nE   in the field of the nucleus, these having the value  

 nE  
2 2

2

( )

2
eZ m c

n


, 1, 2, ...n  ,  

2e

c
,  (1)  

together with the interaction energy of the electrons eeE , this being, in general, a correction to atE , but nevertheless 

comparable in magnitude with atE , in which regard, in place of perturbation theory it has been proposed to use the 

variational method, which is applied next in Section 2 with the variational parameter Z   with the substitution Z Z   
in the wave functions, at the same time employing the general results of our previous paper [6] applied to the problem at 
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hand.  
The value of eeE , as is well known [4, 5], is equal to (the plus and minus signs refer to the singlet and triplet 

states)  

 ( )
eeE    K  J ,  (2) 

where K  is the average Coulomb interaction energy:  

 K   
2e

dV 2
( )M r  

dV 
2

( )M   r 1
r r

,  (3a)  

and J  is the so-called exchange energy, which does not have a classical analog:  

 J  2e dV ( )M r
*( )M  r  dV  *( )M  r ( )M   r

1
r r

.  (3b)  

The symbols M  { , , }n l m and M   { , , }n l m    are used here for brevity to denote sets of quantum numbers of the 

electrons, and the electron wave function in the field of the nucleus ( )Ze  is equal to [5] 

 M    nlm   nlR lmP m . (4) 

The factored dependence on the spherical coordinates is given by the expressions  

 nlR  3/ 2
0( ) ( )nl nlR r r R  , 0r 

 
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,  (5a)  
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(F is the degenerate hypergeometric function and nn  is the Kronecker symbol),  

 lmP  ( 1)m (cos )lmP  , (6a) 
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( ( )lmP x  are the normalized adjoint Legendre polynomials),  
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For convenience in what follows, it is useful to transform in expressions (3a) and (3b) into dimensionless 
variables and functions:  

 K  2( ) eZ m c  K ,  (8) 

 K  dV 
2

( )M ρ dV  
2

( )M   
1

 
, (8a)  

 J  2( ) eZ m c  J ,  (9) 

 J  dV  ( )M  *( )M   dV   *( )M   ( )M   
1

 
.  (9a)  

Here we have introduced the notation   0/ rr  and dV  3
0/dV r , and the functions M  differ from the functions 

M  (Eqs. (4) and (5a)–(5d)) by the substitution ( )nlR r  ( )nlR   with the factor 3/ 2
0r
  dropped.  

Thus, employing representation (4) of these functions with equalities (5a), (6a), and (7a) taken into account, we 
obtain  
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If we employ the Euler formula cos sinixe x i x  , it is easy to see that the imaginary part of expression (11a) in any 

case ( , orm m m m   ) vanishes, as it should, i.e., it is possible to make the replacement exp[ ( )( )]i m m    

 cos[( )( )]m m     , so that we obtain, in analogy with the representation of K  (Eq. (10)),  
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To obtain equalities (10) and (11b), we observed that the double integral 
2 2

0 0

d d
 

    over spherical coordinates, for 

example, in expression (11b), reduces to 
2

0

d

  since the integrand depends only on the difference     (denoted 

after the substitution of variables       as   with subsequent dummy integration over d  , giving the factor 

2 ), where the limits of integration do not vary (see in this regard [7]).  

2. THE VARIATIONAL METHOD: ENERGY OF A TWO-ELECTRON ATOM AND THE SCREENING 
CONSTANT  

For convenience in what follows, we introduce the following notation. The total average kinetic energy  
    of the electrons in a two-electron atom expressed in terms of the variational parameter Z   can be written in the 

form  

   E
2Z  , (12) 

 E 
2 2

1 1

n n

   

2 2

2
em c

, (12a) 

which follows from a result in our previous paper [6], according to which   nE   nE  for arbitrary sets of 

quantum numbers. With this notation (Eq. (12a)), the average total potential energy of the electrons in the field of the 
nucleus, expressed as a function of the variational parameter, according to a result of that same paper, is equal to  

   2 E ZZ  . (12b) 

In line with the notation introduced above, the energy ( )E Z       ( )
eeE   of a two-electron atom expressed 

as a function of the parameter Z   with equalities (2), (8), (9), (12a), and (12b) taken into account, can be written in the 
form  
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 ( )E Z   E
2{ 2Z ZZ   ( )I  }Z  ,  (13) 

where  

 ( )I  
( )

ee

E

E

Z




 2

E

K J


 
 , (13a)  

and the value E  differs from E  (Eq. (12a)) by dropping the factor 
2 2

2
em c

. 

Next, in accordance with the idea of the variational method [2, 3] (see also [4, 5]), the true value of the energy 

realE  of a two-electron atom corresponds to the value assigned by Eq. (13) at the minimum of this expression (for Z 
 effZ ), i.e., realE   eff( )E Z . Inserting this value at the minimum, i.e., in the relation obtained by setting 

( )
0

dE Z

dZ





, we obtain  

 effZ  Z  , 
1

2
  ( )I  

E

K J


 
 ,  (14) 

and the value of the energy as a result of a simple calculation turns out to be  

 realE   E
2( )Z  .  (15) 

From a comparison with the energy of the atom 0E    E
2Z  with the interaction energy of the electrons 

not taken into account, it follows that the quantity   should be interpreted as a screening constant taking into account 
the mutual influence of the electrons, effectively decreasing the charge of the nucleus.  

3. DISCUSSION  

Formulas (10), (11a), (14), and (15), as has already been noted, are approximately valid within the framework 
of the variational method for arbitrary sets of quantum numbers of the electrons { , , }n l m  and { , }n l m   . For 

illustrational purposes and to check the calculations, let us consider the particular case of the ground state of a two-
electron atom with identical sets of quantum numbers of the electrons {1,0,0}. 

As is well-known [4, 5], in this case only K contributes to the energy. To transform the last integral in 

expression (10) (the integral over dφ) we note that the expression in parentheses in the radicand is simply cos , where 

  is the angle between the vectors and r r  (  and  ). Next, choosing    , we see that the integrand, taking the 

value 00P  1/ 2 const  into account, does not depend on and  , so that the integration over these variables is 

a dummy integration, giving a factor of 4 . Taking account the form of the function 10 ( )R   2e  [5], subsequent 

integration is quite elementary (see also [4, 5]) and leads to the result K 5/8 . Observing that 2 2(1/ 1/ )ET n n 

2  in the ground state, where 1n n  , we find, according to Eqs. (14), that 5 /16  . These results are in 
agreement with the classical results presented in these same books.  

Somewhat more cumbersome is the procedure of calculating the energy and the screening constant in the 
excited states of a two-electron atom with energy quantum numbers of the electrons 1; 2, 3, ...n n    By virtue of its 

obvious importance for the helium atom, this will be the subject of future work, and we plan to publish the result 
separately.  
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