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STABLE INTERACTIONS BETWEEN THE EXTENDED CHERN-

SIMONS THEORY AND A CHARGED SCALAR FIELD WITH 

HIGHER DERIVATIVES: HAMILTONIAN FORMALISM 

V. A. Abakumova, D. S. Kaparulin, and S. L. Lyakhovich UDC 530.145 

The constrained Hamiltonian formalism for the extended higher derivative Chern–Simons theory of an 
arbitrary finite order is considered. It is shown that the n-th order theory admits an (n–1)-parametric series of 
conserved tensors. It is clarified that this theory admits a series of canonically non-equivalent Hamiltonian 
formulations, where a zero-zero component of any conserved tensor can be chosen as a Hamiltonian. The 
canonical Ostrogradski Hamiltonian is included into this series. An example of interactions with a charged 
scalar field is also given, which preserve the selected representative of the series of Hamiltonian formulations. 
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INTRODUCTION 

The issue of constructing a Hamiltonian formalism in higher-derivative theories has been in the focus of 
investigations over a number of years, starting from the study by Ostrogradski [1]. For the first time a procedure for 
constructing the Hamiltonian formalism with interactions for degenerate higher-derivative theories was proposed in [2]. 
Based on this procedure and its numerous modifications, a number of different gauge theories, gravity models among 
them, have been investigated [3, 4]. The major feature of the Hamiltonian theory, constructed via the Ostrogradski 
method and its generalizations, is the unboundedness of the Hamiltonian, which gives rise to well-known troubles 
associated with the dynamics stability and a subsequent construction of the quantum theory [5–7]. 

The alternative procedures of a transition into the Hamiltonian formalism, not relying on the Ostrogradski 
construction, were first introduced in the Pais-Uhlenbeck oscillator theory [8, 9]. In a more recent work [10], it has been 
shown that every free higher-derivative theory admits a series of canonically non-equivalent Hamiltonians and Poisson 
brackets, which includes a canonical representative. An explicit construction of a series of non-canonical Hamiltonian 
formulations in the gauge field theory was for the first time performed in [11, 12], where we dealt with the extended  
3-rd and 4-th order Chern–Simons theory (CS-theory) [13]. 

In the present paper a Hamiltonian formulation is considered for an arbitrary-order extended CS theory. It is 
shown that a free extended CS-theory admits an (n–1)-parametric series of Hamiltonian formulations such that a zero-
zero component of an arbitrary representative of the series of conserved tensors [14] could be taken as a Hamiltonian. It 
is also demonstrated that the earlier constructed [15] non-Lagrangian interaction vertices of the extended CS-theory 
with the charged scalar field retain the selected representative in the series of Hamiltonians. 

This work is organized as follows. Some basic facts on the CS-theory are presented in Section 1, where among 
other things the equation of motion and the conserved tensors are derived in explicit forms. A Hamiltonian formulation 
of the extended CS-theory is constructed in Section 2, where the calculations largely implement the techniques of using 
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Hankel and Bezout matrices that are available, e.g., in [16]. In Section 3, a Hamiltonian formulation is discussed for the 
case of interactions with a charged scalar field. 

1. EXTENDED n-TH ORDER CHERN–SIMONS THEORY 

The extended Chern-Simons theory of the n-th order is a class of models of vector field A = Aμ(x)dxμ, μ = 0, 1, 
2 in the three-dimensional Minkowski space with the following action functional: 

 2
012

1

1
[ ( )] ( ) , , 1

2

n
k k

k
k

S A x A m d A dA A dx   








            
 
 , (1) 

where m is the constant with the dimension of mass, the real numbers α1, …, αn are the model parameters, such that αn 
differs from zero, the symbols * and d indicate the Hodge operator and de Rham differential. The Minkowski metric 
signature is mostly negative. The Lagrange equation, following from the action functional (1), is given by 
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The action (1) and the equations of motion (2) are invariant with respect to the standard gradient gauge transformation 
for field A. 

The series of the second-rank conserved tensors in the theory (1) was constructed in [14]. The most common 
representative of this series is written as follows: 
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where numbers α = (α1, …, αn) are the parameters in the Lagrangian and quantities β = (β1, …, βn) are the parameters of 
the series; the following notation is used: 

 ( ) 1( ) , 0,..., 1r rF m d A r n    , (4) 

where F(0)
μ ≡ Aμ. The quadratic matrix Cr,s(α, β), r, s = 1, …, n, is determined by the generating relation 
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where the polynomials of a single variable M(z), N(z) of degree n –1 are given by  
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Quantity Cr,s(α, β) (5) is known as the Bezout matrix of the polynomials M(z), N(u) [16]. Also note that the polynomial  
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derived by a formal substitution of variable z for the CS-operator *d in the Lagrange equations, is termed as 
a characteristic polynomial of the theory (1) [14]. 

The conserved tensors in the model (1) are determined as the coefficients at the parameters β1, …, βn in the 
series (3) 
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By construction, T(1)
μν(α) coincides with the canonical energy-momentum tensor of the theory (1), while T(r)

μν(α),  
r = 2, …, n –1, are new independent conserved quantities. Quantity T(n)

μν(α) (7) is a linear combination of other 
conserved tensors due to the identity  
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We keep T(n)
μν(α) for the sake of a convenient inclusion of interactions. The expansion of an arbitrary representative of 

the series (3) in terms of the basis of independent operators T(r)
μν(α), r = 1, …, n –1 (7) is given by 
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The canonical energy-momentum tensor is always included into the series (3); it corresponds to the parameter values 

 1 2 31, ... 0n         , (11) 

while other values of the parameters β1, …, βn in the series (3) determine non-canonical conserved quantities. 
The zero-zero component T00(α, β) of the conserved tensor (3) is given by  
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where i = 1, 2, and summation over the recurrent index is assumed. This quantity is a quadratic form of the variables 
(4); it is positive definite if the matrix Cr,s(α, β) (5) is positive definite. A possibile existence of a bounded 
representative in the series (12) is determined by the structure of the roots of the characteristic polynomial (7): there is 
a bounded conserved tensor, if all non-zero roots of the characteristic polynomial are real and different, and the non-
zero root is a multiple of one or two [14]. In terms of the polynomial M(z) (6) it is sufficient to require all its roots to be 
real and different. The canonical energy of the theory (1) is included into the series (12) at the parameter values (11); it 
is an inevitably unbounded quantity, if n > 2. 

2. HAMILTONIAN FORMULATION OF AN EXTENDED CHERN–SIMONS THEORY 

Let us show that the theory (1) admits an n –1-parametric series of canonical non-equivalent Hamiltonian 
formulations such that almost any representative of the series of conserved quantities (12) can be chosen as 
a Hamiltonian. In order to achieve the desired result, first we are going to reduce the order of equations (2) to the first 
order in the derivative by time t = x0, then we are going to find a Poisson bracket and a Hamiltonian reducing these 
equations to a Hamiltonian form. 
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Let us introduce new variables absorbing the time derivatives of the initial vector field Aμ, using spatial 
components of one-form F(r)

i, i = 1, 2, r = 1, ..., n –1 (4). Then the first-order formulation in time for the theory (2) 
would be written as 
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The equivalence of equations (2) and (13)–(16) can be observed as follows. Formulas (13) and (14) express the 
auxiliary derivatives F(r)

i, i = 1, 2, r = 1, ..., n –1 in terms of the derivatives of A. As soon as all auxiliary derivatives are 
excluded, (15) and (16) reproduce the spatial and temporal members of the equations of motion (2). Note also that 
within the first-order formalism quantity Θ (16) does not involve any time derivatives and can be treated as a constraint. 

The system of first-order equations (13)–(15) is a Hamiltonian one, provided that there is a Hamiltonian H(α, β) 
and a Poisson bracket { , }α,β, such that 
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The sign « ≈ » denotes an equality of the left- and right-hand sides of the relation modulo constraint Θ (16). 
An introduction of the β parameters includes into consideration a possible existence of several different Hamiltonian 
formulations for the same equations. We choose a Hamiltonian of the theory in the form 
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where T00(α, β) is the zero-zero component (11) of the general conserved tensor (13), expressed in terms of the phase-
space variables as follows: 
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and Θ is the constraint (16). Constants k0, k1, …, kn–1 are introduced into the Hamiltonian (18) for the sake of 
convenience; they will be determined in what follows.  

The Poisson bracket is determined from the condition that equations (13)–(15) are written as (17) with the 
Hamiltonian (18), which is equivalent to a system of equations with respect to an unknown Poisson bracket and 
parameters k0, k1, …, kn–1, 
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Relations (20)–(22) represent a system of linear equations for the unknown matrix elements of the Poisson brackets of 
the phase-space variables F(r)

i, i = 1, 2, r = 0, ..., n –1. In the class of field-independent Poincare-invariant Poisson 
brackets a solution to this system is written as follows: 
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Parameters k0, k1, ..., kn–1 are determined by the formulas 
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In (23)–(26), quantity γ is a free parameter, M r,s(α, β) denotes a matrix coupled with the Bezout matrix Cr,s(α, β) (5): 
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The solution (23)–(26) of equations (20)–(22) is well-defined if 
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The compatibility conditions (28) for equations (20)–(22) have a straightforward physical interpretation. The first 
relation is equivalent to the non-degeneracy of the quadratic form of the Hamiltonian (18). The second relation 
guarantees that the constraint Θ (16) generates gauge symmetries for the vector potential A. 

The solution check (23)–(26) of equations (20)–(22) uses the following relations:  

 , ,( , ) ( , ) 0,r s k lM M s r k l         , (29) 
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These conditions are satisfied, since the matrix added to the Bezout matrix Cr,s(α, β) (5) is a Hankel matrix constructed 
using the polynomials (6). The proofs of these statements can be found in [16]. 

Formulas (17), (18), (23)–(26) determine the series of Hamiltonian formulations for the extended CS-theory 
(1). An arbitrary representative of this series is determined by the 2n +1 parameters α1, …, αn, β1, …, βn, γ. Quantities 
α1, …, αn determine the model parameters (1), numbers β1, …, βn–1 select a representative in the series of conservation 
laws (3), which will be prescribed by a Hamiltonian. Quantities βn, γ are auxilliary: βn can always be absorbed by 
redefinition of the parameters β1, …, βn–1, and constant γ determines a specific representative in the class of equivalence 
of Poisson brackets (23)–(25). The Poisson brackets of the physical observables are independent of the value of γ. The 
total number of the parameters resulting in non-equivalent Hamiltonian formulations in the model (1) is equal to n –1, 
thus an extended CS-theory admits an (n –1)-parametric series of Hamiltonian formulations. 

For all admissible parameter values in the Hamiltonian the Poisson bracket represents a non-degenerate tensor 
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In this case, the Hamilton eqiations (13)–(16) result from the least-action principle for the functional 
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The symplectic form Ωr,s(α, β) is determined by the generating relation 
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where M (z) is the characteristic polynomial (7) of the theory (1) n, while N  (z) is prescribed by the formula 
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In order to derive relations (33), (34), it is necessary to use the formula of inversion of the Hankel matrix of the Poisson 
brackets from [16]. The sum total of formulas (32)–(34) makes it possible to systematically reconstruct the symplectic 
structure, provided that the Hamiltonian of the theory has been prescribed. 

The Ostrogradski canonical Hamiltonian formulation [1] is reproduced by the formulas (18), (32)–(34) for the 
following parameter values in the Hamiltonian: 

 1 2 31, ... 0, 0n           . (35) 

The first-order action in this case is given by 
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where T(0)
00(α) is the zero-zero component of the canonical energy-momentum tensor, and by construction it is assumed 

that αr = 0 for all r > n. Obviously, the canonical Hamiltonian action (36) is not equivalent to the common 
representative of the series (32), since the canonical Hamiltonian is always unbounded from below, while in the general 
case bounded representatives are admissible. 

3. INTERACTIONS WITH A CHARGED SCALAR FIELD 

In [16], we proposed the following interaction vertices between the extended CS-theory (1) and the scalar field 
φ = Re φ(x) + i Im φ(x) with higher derivatives  
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Here β1, …, βn, e1, ..., eN are the coupling constants and the following notation is used: 
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The parameters ρa, a = 1, ..., N, of the complex scalar field theory are non-negative and pairwise different. The 
covariant derivative is determined in a non-minimal way 
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Its action on the complex-conjugate scalar field is given by the complex conjugation of this expression. The gauge 
symmetry of the theory (37) is written as 
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The conserved tensor in the theory (37) is determined by the relation 
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where Tμν(α, β) is determined by (3).  
The first-order formulation for the theory (37) is given by 
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Here the quantities F(r)
i, i = 1, 2, r = 1, ..., n –1 (4), φ(a), a = 1, ..., N (38), and π(a), a = 1, ..., N, are new auxiliary 

variables absorbing the derivatives of original vector and scalar fields. All the auxiliary variables are expressed from the 
equations (42)–(47), after which the resulting system coincides with the initial higher-derivative equations. Also note 
that in the first-order formalism, quantity Θ (47) does not involve any time derivatives and can be treated as 
a constraint. 

Equations (42)–(46) are Hamiltonian in the sense of (17) with respect to the Hamiltonian 
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where T00(α, β) was determined in (18). The Poisson bracket of the phase-space variables is determined by the relation 
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Expressions (49)–(52) are well defined if 

 1det ( , ) 0, 0, 0aC e      . (53) 

The first pair of relations guarantees a non-degeneracy of the Hamiltonian, while the third condition ensures the 
presence of a gauging U(1)-transformation for the scalar field. A possibility where β1 = 0 is considered as a special case 
and is not studied in what follows. Thus, it has been shown that almost all interactions constructed in [15] admit 
a Hamiltonian formulation. These Hamiltonian formulations are not canonically equivalent to the Ostrogradski one, 
since the original equations are non-Lagrangian. 

Let us illustrate the overall structure of the Hamiltonian formulation using an extended third-order CS-theory as 
an example, which interacts with a charged massless scalar field. In this case, the equations of motion (37) are written 
as 
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where e = e1 is the coupling constant and the covariant derivative is determined by the relation 
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Then the Hamiltonian (48) takes the following form: 
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The Poisson brackets (49)–(52) of the phase-space variables are determined by the relations 
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Here we used the notation 

 2 2 2 2 2 2
3 1 3 2 2 1 3 1 2 3 1 2 3 1 2 1 3 1 1 3det ( , ) (2 2 )C                            . (69) 

The Hamiltonian (62) and the Poisson brackets (63)–(66) are well defined whenever 

 1det ( , ) 0, 0, 0C e      . (70) 

At φ = π = e = 0, the vector field dynamics is separated and the formulas (56)–(58), (62)–(67) reproduce one of the 
admissible representatives of the series of Hamiltonian formulations for the free extended third-order CS-theory [11]. 
Thus a correspondence is set with the results obtained earlier. 

SUMMARY 

In the present study it has been shown that the free extended n-th order Chern-Simons theory is a multi-
Hamiltonian theory admitting an (n–1)-parametric series of canonically non-equivalent Hamiltonian formulations, in 
which case a zero-zero component of any representative of the series of conserved tensors could be selected as 
a Hamiltonian. For certain model parameters there are bounded Hamiltonians among the admissible ones, while in other 
cases the Hamiltonian is always unbounded. In a compact form, the Hamiltonian boundedness condition is equivalent to 
the requirement of a positive definiteness of the matrix Cr,s(α, β) (5). The canonical Hamiltonian formulation is included 
into the constructed series and its Hamiltonian is always unbounded. It has been shown at the interacting level that 
a class of non-Lagrangian vertices of interaction with the scalar field obtained in [15] preserves the unique 
representative of the series of symplectic structures, whose parameters are fixed by the values of the coupling constants. 
This allows preserving the dynamics stability and the possibility of a subsequent quantization of the theory at the 
interacting level. 

The work has been carried out within the terms of reference of the Ministry of Education and Science of the 
Russian Federation, Project No. № 3.9594.2017/8.9. 
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