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QUANTUM ELECTRONICS 

REGARDING NONSTATIONARY QUADRATIC QUANTUM 

SYSTEMS 

Sh. M. Nagiyev,1 A. I. Ahmadov,2 V. A. Tarverdiyeva,1 and Sh. A. Amirova1  UDC 530.145 

With the help of the evolution operator method, we have established unitary connection between quadratic 
systems, namely between a free particle with variable mass ( )M t , a particle with variable mass ( )M t  in 

a variable homogeneous field, and a harmonic oscillator with variable mass ( )M t  and frequency ( )t , on 

which a variable force ( )F t  acts. Knowledge of the unitary connection allowed us to express easily in general 

form the propagators, invariants, wave functions, and other functions of a linear potential and a harmonic 
oscillator in terms of the corresponding quantities for a free particle. We have analyzed the linear and 
quadratic invariants in detail. Results known in the literature follow as particular cases from the general 
results obtained here.  

Keywords: nonstationary quadratic systems, evolution operator, invariants, wave functions, unitary 
connection.  

INTRODUCTION  

Nonstationary quadratic quantum systems – a free particle with variable mass [1–3], a particle with variable 
mass in a variable homogeneous field [2–7], a nonstationary harmonic oscillator (with a driving force and without 
a driving force) [8–16] – like their stationary analogs, play an important role in many branches of physics. They find 
wide application in statistical physics, the theory of superconductivity, atomic and nuclear physics, molecular 
spectroscopy, quantum field theory, etc. (see the References to [14]).  

Quadratic quantum systems are among exactly solvable quantum-mechanical problems. Other exactly solvable 
nonstationary systems include a singular oscillator with variable frequency [17] and a relativistic particle in a variable 
homogeneous field [18, 19]. Many examples of exact nonstationary solutions of the Klein–Gordon and Dirac relativistic 
wave equations are contained in [20, 21]. Questions of the generation of exactly solvable potentials (stationary and 
nonstationary) by the method of dressing the differential operators are expounded in [22, 23].  

Exact solutions of the equation of motion are always of interest from a physical as well as a mathematical point 
of view since they can model real physical phenomena and allow the most complete tracking of changes in physical 
quantities or lead to the establishment of new mathematical relations between special functions. Exact analytical 
solutions can also be useful in grounding approximate solution methods, in particular when verifying numerical 
methods for solving the equation of motion. Examples: 1) the time-dependent harmonic oscillator models the behavior 
of a charged particle in a variable magnetic field whereas a time-dependent linear potential models the motion of 
a charged particle in a variable homogeneous electric field (for example, see [11, 24]); 2) an ion in a Pauli trap is 
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described by a parametric oscillator model [25]. The Hamiltonian of a parametric oscillator with arbitrary time 

dependence of its frequency has the form 2 2 2ˆ ˆ/ 2 ( ) / 2H p m m t x   . For an ion in a trap, the time dependence of 

the frequency has the form 2 2 2( ) 1 sint k t    ; 3) induced Raman scattering can also be described with the help of 

a quadratic Hamiltonian (for example, see [26]).  
To investigate nonstationary quantum systems, the following methods are commonly used: the method of 

invariants [11, 12], the path integral method [9], the method of spacetime transformations (for example, see [6]), the 
method of generating functions [17, 27], and the evolution operator method [2, 7, 28, 29].  

The aim of the present work is to construct first- and second-order invariants and various wave functions for 
a free particle with variable mass, a particle with variable mass in a variable homogeneous field, and a harmonic 
oscillator with variable mass and frequency under the action of a variable force. In this paper, we use the evolution 
operator method. As is well known, for a quantum system described by the Hamiltonian ( ),H t  the evolution operator is 

defined by the formula  

 
0

0( , ) exp ( )
t

t

i
U t t T H t dt

     
  


, (1) 

where Т is the time-ordering operator. Since the Hamiltonian of the system is a Hermitian operator, the evolution 

operator is unitary: 1U U UU   . The variation of the states of a quantum system in time is described by the time-

dependent Schrödinger equation ˆ( ) ( ) 0S t t   or the evolution operator 0( , )U t t  if the wave function of the system at 

the initial time, 0( )t  is known, i.e., 

 0 0( ) ( , ) ( )t U t t t   . (2) 

Here the Schrödinger operator has the form ˆ( ) ( )tS t i H t   . The evolution operator also satisfies the Schrödinger 

equation  

 0
ˆ( ) ( , ) 0S t U t t   (3) 

with the obvious initial condition 0 0( , ) 1U t t  . The kernel of the evolution operator is called the Green’s function or 

the propagator of the quantum system and contains all the information about the system.  
This paper is organized as follows: Section 1 presents in general, chronologically disentangled form 

expressions for the evolution operators, and also the limiting and unitary connections between them; Section 2 considers 
construction of linear and quadratic invariants in general form for quadratic quantum systems, and also these same 
invariants in general form for the given quantum systems, as well as particular cases of linear and quadratic invariants; 
Section 3 establishes unitary connections between the considered systems. The main results are summed up in the 
Conclusions.  

1. EVOLUTION OPERATORS  

In what follows, evolution operators of the considered systems will play an important role. Therefore, we 
present the explicit form of each of them. We will work in coordinate space.  

1.1. A free quantum particle with variable mass ( )M t . In this case, the Schrödinger equation and the evolution 

operator have the form  
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 ˆ ( , ) ( , ) 0F FS x t x t  , 
2

2
0

ˆ ( )
2 ( )F t xS i V t

M t
    

 , (1.1) 

 
2

0 2( ) ( )( , ) xi t i S t
FU x t e     , (1.2) 

where 
0

1
0 0( ) ( )

t

t

t V t dt     , 
0

2 ( )
2 ( )

t

t

dt
S t

M t




 , and 0 ( )V t  is a potential well (or barrier), whose depth (height) 

varies with time.  
1.2. A quantum particle with variable mass ( )M t  in a variable homogeneous field. In this case, we have  

 
2

2
0

ˆ ˆ( , ) ( , ) 0, ( ) ( )
2 ( )L L L t xS x t x t S i F t x V t

M t
       

 , (1.3) 

 ( , ) ( , ) ( , )L L FU x t V x t U x t , (1.4) 

where we have introduced the following notation:  

 0 1( , ) ( )( , ) xi x t S t
LV x t e e   ,  1

0 0( ) ( )x t S t    , (1.5) 

 
0

( ) ( )
t

t

t F t dt    , 
0 0

2

0 1
( ) ( )

( ) , ( )
2 ( ) ( )

t t

t t

t t dt
S t dt S t

M t M t

    
   . (1.6) 

The operator LV  (Eqs. (1.5)) can be rewritten in the form  

 
1

1 1( ) [ ( ) ( ) ( )]( , ) x LS t i M t S t x t
LV x t e e

  
 , (1.7) 

where the function L  is the classical action for a particle in a variable homogeneous field, i.e.,  

 
0

2
1 1

1
( ) ( ) ( ) ( ) ( )

2

t

L
t

t M t S t F t S t dt
         
  . (1.8) 

For ( )M t m   const we have  

 2 1
0 1 2

( ) ( )
( ) , ( ) , ( )

2 2

t t
S t S t S t

m m m

  
   , (1.9) 

where 
0

1( ) ( )
t

t

t t dt    , 
0

2
2 ( ) ( )

t

t

t t dt    , and 0t t   . Formulas (1.2) and (1.4) set up a unitary connection 

between a free quantum particle and a quantum particle with variable mass in a variable homogeneous field [2], i.e.,  

 1ˆ ˆ
L L F LS V S V  , 1ˆ ˆ

F L L LS V S V . (1.10) 

1.3. A harmonic oscillator with variable mass ( )M t  and variable frequency ( )t , on which a variable force 
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( )F t  acts. Such an oscillator is described by the Schrödinger equation  

 ˆ ( , ) ( , ) 0H HS x t x t  , 

 
2

2 2 2
0

1ˆ ( , ) ( ) ( ) ( ) ( )
2 ( ) 2H t xS x t i M t t x F t x V t

M t
       

 , (1.11) 

and the corresponding evolution operator is given by the expression  

 (0)
1( , ) ( , ) ( , )H HU x t U x t U x t , (1.12) 

in which we have introduced the following notation:  

   2 20
1

( ) ( ) ( ) ( )(0) 2( , ) x x
b t i t i t x b t x iS t

HU x t e e e e
     , 

 
1 ( ) ( ) ( )( )

1( , ) Hx
i M t t x ttU x t e e

      


. (1.13) 

Here (0) ( , )HU x t  is the evolution operator of a harmonic oscillator when a force is not acting on it, and 1( , )U x t  is the 

operator generating the action of the force on the oscillator. The function ( )t  is the solution of the Ricatti equation  

   2 22 1
( ) ( ) ( )

( ) 2
t t M t t

M t
     




, (1.14) 

the function ( )t  satisfies the equation  

 2( ) ( ) ( ) ( ) ( ) ( )
d

M t t M t t t F t
dt
      

  (1.15) 

with natural initial conditions 0 0( ) 0, ( ) 0t t    , and the function ( )H t  is the classical action for a harmonic 

oscillator in the presence of an external force:  

              
0

2 2 21 1
( )

2 2

t

H
t

t M t t M t t t F t t dt
                 
  . (1.16) 

It is well known that the Ricatti equation (Eq. (1.14)) can be reduced to a second-order linear homogeneous differential 
equation  

 2[ ( ) ( )] ( ) ( ) ( ) 0
d

M t t M t t t
dt

      (1.17) 

by introducing the new function ( )t  using the formula  

 
( ) ( )

( )
2 ( )

M t t
t

t


 





. (1.18) 
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The functions ( )b t  and ( )S t  in formula (1.13) are defined as follows:  

 
0

0( )( )
( ) 2 ln

( ) ( )

t

t

tt
b t dt

M t t

         
 , 

 
0

2 ( )

( )
2 ( )

b tt

t

e
S t dt

M t




  = 
0

2
0 2

( )
2 ( ) ( )

t

t

dt
t

M t t




 
 . (1.19) 

We emphasize that the following initial conditions for the functions   and  : 0( ) 0t  , 0( ) constt  , and 

0( ) 0t   follow from the requirement (0)
0( , ) 1HU x t   on the evolution operator (see formula (1.13)). Note that the 

operator LV  generates the action of the force ( )F t  on a free particle, and that the operator 1U  generates the action of 

the force ( )F t  on an oscillator.  

Let us consider three particular cases of oscillator model (1.11) and find an explicit form of the functions  , 

 , S , and   for them (see formulas (1.14)–(1.19)). 

1) Stationary oscillator with a driving force. This model is described by the Hamiltonian  

 
22

20ˆ
ˆ ˆ( )

2 2

mp
H x F t x

m


    (1.20) 

and the functions  

 0 0( ) cost     , 0
0( ) tan

2

m
t


    


,  

 0
0

( ) tan
2

S t
m

  



,  
0

0
0

1
( )sin ( )

t

t

t F t t t dt
m

     
  . (1.21) 

Hence, in the limit 0 0   we have ( ) 0t  , ( ) 0t  , 2( ) ( )S t S t  , and 1( ) ( )t S t  , i.e., we obtain the 

functions 1( )S t  and 2 ( )S t  corresponding to linear potential (1.3).  

2) Parametric oscillator for ( ) 0F t  . This model is described by the Hamiltonian [14]  

 
2 2

2 2
0 2

ˆ 1 2
ˆ

2 2 cosh ( )

p
H m x

m t

 
    

 
. (1.22) 

For this model we have  

 0 0 0( ) cos( ) sin( ) tanh( )t          , 

 
2 2 2
0 0 0 0 0

0 0 0

[ sin( ) cos( ) tanh( ) sin( )cosh ( )]
( )

2 [ cos( ) sin( ) tanh( )]

m
t

            
  

       
, 

 0 0 0 0
2 2
0 0 0 0

[ sin( ) cos( ) tanh( )]
( )

2 ( )[ cos( ) sin( ) tanh( )]
S t

m

        


          


. (1.23) 



 2178 

If 0  , these formulas coincide with formulas (1.21) for the stationary oscillator for 0F  . In order to take the limit 

0 0   in expressions (1.23), we take ( )t  in the form 0 0
0

( ) cos( ) sin( ) tanh( )t


       


. This is possible 

since the function ( )t  is defined to within a constant factor. Thus, in the limit 0 0   from expressions (1.23) we 

obtain expressions for an oscillator with frequency 
2

2
2

2
( )

cosh ( )
t

t


 


, namely  

 ( ) 1 tanh( )t     , 
2[tanh( ) cosh ( )]

( )
1 tanh( )

t
    

  
  

,  

 
tanh( )

( )
2 [1 tanh( )]

S t
m




   


. (1.24) 

From a comparison of integral representation (1.19) with expression (1.24) for ( )S t , we obtain the integral formula  

 
2

tanh

1 tanh(1 tanh )

dx x
C

x xx x
 

 . (1.25) 

It is easy to convince oneself of its validity by checking it directly.  
3) The Caldirola–Kanai oscillator with a driving force. The Hamiltonian of this model has the form [14]  

 
22

2 2 20ˆ
ˆ ˆ( )

2 2
t tmp

H e x e F t x
m

  
   . (1.26) 

The functions  ,  , S , and   in the given case are assigned by the formulas  

 ( ) ( )t e Q t  , 
2

20 sin( )
( )

2 ( )
tm

t e
Q t

 
  


, 02sin( )

( )
2 ( )

tS t e
mQ t

 



, 

 
0

( )1
( ) ( )sin ( )

t
t t

t

t e F t t t dt
m

       
 

, (1.27)  

where ( ) cos( ) sin( )Q t        and 2 2
0 0      . For 0   functions (1.27) transform to the functions 

assigned by formulas (1.21) for a stationary oscillator with the driving force ( )F t  (see Eq. (1.20)), whereas for 0 0   

they reproduce the corresponding formulas for a linear potential when the mass 2( ) tM t me  , i.e.,  

 ( )t i   , ( ) 0t  ,  02 2
2

1
( ) ( )

4
t tS t e e S t

m
     


, 

  
0

2
1

1
( ) ( )

t
t

t

t e t dt S t
m

       . (1.28) 
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Formulas (1.12) and (1.13) set up a unitary connection, on the one hand, between nonstationary harmonic oscillators for 
0F   and 0F  , i.e.,  

 (0) 1
1 1

ˆ ˆ
H HS U S U  , (0) 1

1 1
ˆ ˆ

HHS U S U , (1.29) 

and, on the other, between a nonstationary harmonic oscillator and a free particle under the condition that the mass 

( )M t  of the free particle has been renormalized, i.e., it has been replaced by 2 ( )
Re ( ) ( ) b t

nM t M t e . The 

Schrödinger operator and the evolution operator for a free quantum particle with renormalized mass are obtained from 
Eqs. (1.1) and (1.2) by replacing ( )M t  in them by Re ( )nM t , and 2 ( )S t  by ( )S t , respectively, i.e., they are equal to  

 
2

Re 2
0

Re

ˆ ( )
2 ( )

n
F t x

n

S i V t
M t

    
 , 

2
0 ( ) ( )Re ( , ) xi t iS tn

FU x t e    . (1.30) 

Thus, we have  

 Re 1ˆ ˆ n
H FH F FHS V S V  , Re 1ˆ ˆn

F FH H FHS V S V , (1.31) 

where  

 (0)
1FH FHV U V ,   2

1
( ) ( )(0) 2 .x

b t i t x b t x
FHV e e e   (1.32) 

In what follows, we will find invariants and wave functions for the considered quadratic functions with the help of the 
operators considered here.  

2. INVARIANTS  

An invariant is defined as a time-dependent operator ( )I t , whose mean value does not depend on time, i.e., 

( ) / 0dI t dt  . In other words, an invariant ( )I t  is an operator that commutes with the Schrödinger operator: 

ˆ[ ( ), ( )] 0S t I t  . As is well known (for example, see [24]), if there exists in the quantum system an evolution operator 

( )U t , then it is possible to construct 2 N  independent (basis) invariants 0ˆ ( )x t  and 0ˆ ( )p t  according to the formulas  

 1
0ˆ ˆ( ) ( ) ( )x t U t xU t , 1

0ˆ ˆ( ) ( ) ( )p t U t pU t , (2.1) 

where N  is the number of degrees of freedom of the system. They correspond to the initial points in the phase space of 

a classical system. Generally, operators (2.1) are linear combinations of the operators x̂  and p̂  with time-dependent 

coefficients, i.e.,  

 0 1 2 3ˆ ˆ ˆ( ) ( ) ( ) ( )x t e t x e t p e t   , 0 1 2 3ˆ ˆ ˆ( ) ( ) ( ) ( )p t d t x d t p d t   . (2.2) 

If the Hamiltonian of the system has the form 2 2
2 2ˆ ˆ ˆ( ) ( ) ( )H t p t x F t x    , then these coefficients satisfy the 

equations  

 1 2 22e e  , 2 2 12e e   , 3 2e Fe  , 1 2 22d d  , 2 2 12d d   , 3 2d Fd  , 2 1 1 2 1d e d e   (2.3) 
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with initial conditions 1 0 2 0( ) ( ) 1e t d t   and 2 0 3 0 1 0 3 0( ) ( ) ( ) ( ) 0e t e t d t d t    . Equations (2.3) follow from the 

commutation relations 0
ˆ ˆ[ , ] 0S x  , 0

ˆ ˆ[ , ] 0S p  , and  0 0ˆ ˆ,p x i   . All remaining invariants can be expressed in 

terms of the basis invariants. For example, invariants that are linear and quadratic in powers of 0x̂  and 0p̂  can be 

expressed, generally, as  

 1 10 0 10 0 10ˆ ˆ( )I t A p B x C   , (2.4) 

 2 2
2 20 0 20 0 20 0 0 20 0 0 20 0 20 0 20ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )I t A p B x C p x C x p D p E x F       , (2.5) 

where the coefficients 10 10,,A B ,… are arbitrary constants, in general complex.  

We write out the explicit form of invariants (2.2), (2.4), and (2.5) for the quadratic quantum systems considered 
in Section 1.  

1) For a free quantum particle with variable mass they are equal to  

 0 2ˆ ˆ ˆ( ) 2 ( )Fx t x S t p  , 0ˆ ˆ( )Fp t p , (2.6) 

 1 1 10 10ˆ ˆ( ) ( )F FI t A t p B x C   , (2.7) 

 2 2
2 2 20 2 2 2 20 20ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )F F F F FI t A t p B x C t px C t xp D t p E x F       , (2.8) 

where  

 1 10 10 22A A B S  ,  

 2
2 20 20 2 20 20 24 2( )FA A B S C C S     , 2 20 20 22FC C B S  ,  

 2 20 20 22FC C B S   , 2 20 20 22 ( )FD D E S t  .  

If in expression (2.7) we choose 2
10

2

i
A





, 1
10

2
B





, and 10 0C  , then we obtain the invariant (annihilation 

operator) of [2]  

 1 2 1 2
1

ˆ ˆ( ) [ ( ) ], 2
2

F F FA t x i t p i S        


, (2.9) 

where 1  and 2  are complex numbers satisfying the condition 1 2Re( ) 1   . 

2) For a particle with variable mass in a variable homogeneous field we have  

 0 2ˆ ˆ ˆ( ) 2 ( )Lx t x S t p  , 0ˆ ˆ( ) ( )Lp t p t   , (2.10) 

 1 1 10 1ˆ ˆ( ) ( ) ( )L L LI t A t p B x C t   , (2.11) 

 2 2
2 2 20 2 2 2 2 2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )L L L L L L LI t A t p B x C t px C t xp D t p E t x F       , (2.12) 

where  
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 1 10 10 22LA A B S  , 1 10 10 10LC C A B     ,  

 2
2 20 20 2 20 20 24 2( )LA A B S C C S     , 2 20 20 22LC C B S  , 

 2 20 20 22LC C B S   , 2 20 20 20 2 20 20 1 20 22 4 ( )(2 ) 2LD D A B S C C S E S          , 

 2 20 20 20 202 ( )LE B C C E      , 2 2
2 20 20 20 20 20 20 20( )LF A B C C D E F            , (2.13) 

and 2 12 ( ) ( ) ( )t S t S t    . If we set 2
10

2

i
A





, 1
10

2
B





, and 10 0C   in expressions (2.11), we obtain the 

invariant (annihilation operator) of [2]  

    1 1
1

ˆ ˆ( ) ( )
2

L FA t x S i t p        
. (2.14) 

3) For a harmonic oscillator with variable mass and frequency, acted on by a variable force, we have  

 
0 2 2 2

0 1 1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),

H

H

x t M t a t x a t p M t t

p t M t a t x a t p M t t

    

    




 (2.15) 

 1 1 1 1ˆ ˆ( ) ( ) ( ) ( )H H H HI t A t p B t x C t   , (2.16) 

 2 2
2 2 2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H H H H H H H HI t A t p B t x C t px C t xp D t p E t x F t       , (2.17) 

 1 10 1 10 2HA A a B a  , 1 10 1 10 2 1( )H HB M A a B a MA       , 

 1 10 10 1 10 2( )HC C M A B     , 

 2 2
2 20 1 20 2 20 20 1 2( )HA A a B a C C a a     , 

 2 2 2
2 20 1 20 2 20 20 1 2[ ( ) ]HB M A a B a C C a a        , 

 2 20 1 1 20 2 2 20 1 2 20 2 1( )HC M A a a B a a C a a C a a         , (2.18) 

 2 20 1 1 20 2 2 20 2 1 20 1 2( )HC M A a a B a a C a a C a a         , 

 2 20 1 20 2 20 1 1 20 2 2 20 20 1 2 2 1[2( ) ( )( )]HD D a E a M A a B a C C a a           , 

 2
2 20 1 20 2 20 1 1 20 2 2 20 20 1 2 2 1( ) [2( ) ( )( )]HE M D a E a M A a B a C C a a                 , 

 2 2 2
2 20 1 20 2 20 20 1 2 20 1 20 2 20[ ( ) ] ( )HF M A B C C M D E F             , 

where  
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 ( )
1 ( ) / (0)b ta e t    , 1

2 12 ( ) ( )a S t a t   , 

 ( ) ( ) ( ) ( ) ( ) , 1, 2i i i it a t t a t t i        . 

The functions 1a , 2a , and 1,2  satisfy the following initial conditions 1 0( ) 1a t  , 1 0( ) 0a t  , 2 0( ) 0a t  , 

0 2 0( ) ( ) 1M t a t   , and 1 0 2 0( ) ( ) 0t t    . 

1) Let 10 / 2A il  , 10 1/ 2B l , and 10 0C  , where (0)m M  and 0 (0)   , and 1/ 2
0( / )l m   

is the amplitude of the zero oscillations of the oscillator. In this case, the linear invariant (2.16) is written in the form  

 
0

1( ) ( ) ( ) ( )
2

t

H H
t

i
I t a t F t t dt    

, (2.19) 

where the operator  

  ˆ ˆ( ) ( ) ( ) ( )
2

H H
i

a t t p M t t x   


 (2.20) 

and its Hermitian conjugate ( )a t  are annihilation and creation operators for the nonstationary oscillator given by 

Eq. (1.11) for ( ) 0F t  , i.e., [ , ] 1a a  . Here the function H  has the form  

 1/ 2 1
0 0 1( ) ( ) [1 2 ( )] ( )H t m i m S t a t       1/ 2

0 1 0 2( ) ( )m a im a   . (2.21) 

It satisfies Eq. (1.17) and the condition ( ) 2H H H HM i        . For ( ) constM t m   and 0( ) constt    , 

Eq. (2.16) yields the linear invariant for the stationary oscillator with a driving force obtained in [12]:  

 
0 0

0 0

0

( )
( )ˆ

ˆ( ) ( )
2 2

i t t t
i t t

t

e x il il
A t p F t e dt

l

 
       

 
 

. (2.22) 

If we set 2 ( )( ) tM t e   and 2 ( )( ) ( ) tF t f t e   in Eq. (2.19), we obtain a linear invariant for the Caldirola–Kanai 

oscillator with the driving force that was obtained in [12]. Following [11, 15, 24], we set ( )exp[ ( )]H t i t    , where  

 1 2 2 2 2
0 1 0 2( ) ( ) ( )Ht t m a m a        and 

0

2
( )

( ) ( )

t

t

dt
t

M t t


 

 
 .  

Here the function ( )t  will be the solution of the nonlinear equation  

 2
2 3

1
( )

M
t

M M
      




  . (2.23) 

Let us express the invariants ( )a t  and ( )a t  in terms of  : 



 2183

 
ˆ1

ˆ ˆ( ) ( )
2

ix
a t i p M x e  

      



, 

ˆ1
ˆ ˆ( ) ( )

2
ix

a t i p M x e   
      




. (2.24) 

Operators analogous to the two represented in Eqs. (2.24) were obtained in [13, 15, 24] by another technique, but they, 
in contrast to operators (2.24), are not linear invariants of a nonstationary oscillator. With the help of operator (2.19) 
and its Hermitian conjugate, we can construct the quadratic invariant  

 
0

2
2

2 1 1 2

ˆ ˆ1
ˆ ˆ( ) 1/ 2 ( ) ( ) sin( )

2

t

H H H
t

x x
I t I I p M x F t dt  

               
 


 
  

 
0 0

( )1 1
ˆ ˆ( ) ( ) cos( ) ( ) ( )

2

t t
i

t t

p M x F t dt F t F t e dt dt                      
 

, (2.25) 

where ( ), ' ( )t t      , etc. This invariant is a generalization of the Lewis–Riesenfeld invariant [11] to the case of 

a variable mass and a variable force. Its particular case when ( ) 0F t   was obtained in [15] by another technique. 

Invariant (2.25) is a particular case of quadratic invariant (2.17), corresponding to the following values of the 
coefficients assigned in Eqs. (2.18):  
 

 1
20 0(2 )A m    , 20 20 0C C  , 20 200, 0D E   and 20 0F  . 

2) Let 2
0( ) and ( ) consttM t me t     , which corresponds to the Caldirola–Kanai oscillator 

(Eqs. (2.26)). Note that in this case we have  

 0( )
1 2

( ) ( ) sin
, t tt Q t

a e a e
m

  
   

  
. (2.26) 

For the choice of coefficients (expressions (2.18)) in the form 20 1/ 2A m , 2
20 0 / 2B m  , 20 20 / 2C C   , 

20 20 20 0D E F   , and 0 0t  , the quadratic invariant obtained in [14], namely  

 ˆ ˆ ˆ ˆ( )
2

E H px xp


   ,  (2.27) 

follows from expression (2.17).  

3) If we choose the coefficients in expressions (2.18) in the following way: 2 2
20 0 /A m  , 2 2 2

20 0( )B     , 

20 20 0C C  , 20 200, 0D E  , and 20 0F  , we obtain the linear invariant for a parametric oscillator (Eq. (1.22)), 

which coincides with the result from [14]:  

 
2 3 6 2 2 2 2 2 6

2 2 2 20 0
0 2 3 6 2 2 2

0

ˆ sinh sinh ( ) cosh
ˆ ˆ ˆ ˆ ˆ( tanh ) ( )

cosh cosh ( tanh )

p t t t
E t px xp x

m m t t t

         
       

     
. (2.28) 



 2184 

3. UNITARY CONNECTION  

As has already been stated, a quantum particle with variable mass in a variable homogeneous field is unitarily 
equivalent to a free quantum particle with variable mass, and a nonstationary harmonic oscillator with a driving force is 
unitarily equivalent to a free quantum particle with a variable, in-some-way renormalized mass. According to formulas 
(1.10) and (1.31), the indicated unitary connections between systems in the first case are realized by the operator LV  

(Eqs. (1.5)), and in the second case, by the operator FHV  assigned in the first of Eqs. (1.32). Note also that the operator 
(0)

FHV  assigned in the second of Eqs. (1.32) realizes the unitary connection between nonstationary harmonic oscillators 

for ( ) 0F t   and for ( ) 0F t  . In order to write out explicitly these connections between these invariants and between 

the wave functions of the indicated systems, let us first consider the operators  

 1
1 1ˆ ˆ ˆ( ) ( )L Lx t V xV x S t    and 1

1ˆ ˆ ˆ( ) ( )L Lp t V pV p t    , (3.1) 

and also the operators  

 1
2

1

ˆ ( )
ˆ ˆ( )

( )FH FH
x t

x t V xV
a t

  
   and 1

2 1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )FH FHp t V pV a t p M t a t x M t t     . (3.2) 

Recall that ( )t  is the solution of Eq. (1.15). Moreover, we introduce the notation ˆ ˆ( ) ( , , )nF nFI t I p x t  for 

an nth order invariant of a free particle. Then the unknown unitary connections between the invariants can be written in 
the form  

 1ˆ ˆ( ) ( , , )nL L nF LI t V I p x t V  1 1ˆ ˆ( , , )nFI p x t ,  (3.3) 

 Re 1ˆ ˆ( ) ( , , )n
nH FH nF FHI t V I p x t V  Re

2 2ˆ ˆ( , , )n
nFI p x t , (3.4) 

and the unitary connections between the wave functions, in the form  

 0 ( , )
1( , ) ( , ) ( , )i x t

L L F Fx t V x t e x t     , (3.5) 

 
1 2

0 1 2 2 22 ( )Re Re
2( , ) ( , ) ( , )i b i x xn n

H FH F Fx t V x t e e x t
        , (3.6) 

where expressions of the form Re ˆ ˆ( , , )n
nFI p x t  and Re ( , )n

F x t , etc. are obtained from the corresponding expressions 

ˆ ˆ( , , )nFI p x t  and ( , )nF x t , etc. for a free particle by replacing ( )M t  by Re ( )nM t  and 2 ( )S t  by 1 ( )S t , and the 

equalities:  

 1 1( )x x S t  , 1 ( )p p t   ,  

 2 1[ ( )] / ( )x x t a t   , 2 1 1 1( ) ( ) ( ) ( ) ( )p a t p M t a t x M t t    ,  

 1 1 2
0 0 1 1 2 1, ( ) ( ) ( ), ( ) ( )H M t a t t t a t             . (3.7) 

Formulas (3.5) and (3.6) allow us to obtain, in turn, relations between the Wigner functions of the considered 
systems. To obtain these relations, we base ourselves on the fact that the Wigner function is a functional that depends 
on the wave function  
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1

( , , ) , ,
2 2 2

ipx

x x
W p x t x t x t e dx








                





. (3.8) 

As a result, we find  

 1
1 1( , , ) ( , , ) ( , , )p xS

L F FW p x t e e W p x t W p x t
    , (3.9) 

 1 1( ) Re Re
2 2( , , ) ( , , ) ( , , )p p x xbp M a x bx n n

H F FW p x t e e e e W p x t W p x t
        


. (3.10) 

Note that relations (3.5) and (3.9) were obtained in [2].  
We present one example of the application of formulas (3.6) and (3.10). Toward this end, let us consider the 

plane wave [2]  

 
0

2
0 0 2

1
( , ) exp ( )

2
F
p

i
x t p x p S t

        
 (3.11) 

and the Wigner function  

 1/ 3 1( , ) 2 ( ) ( ( , , ))F
AiW x t Ai h p x t   , (3.12) 

describing the motion of a free quantum particle with variable mass, where ( )Ai x  is the Airy function, and 

 2 2 23
0 2( , , ) 4 2 ( ) /h p x t Bx b pBS t p B     . Thus, the corresponding wave function of plane wave type and 

the corresponding Wigner function for a nonstationary harmonic oscillator with a driving force (Eq. (2.11)) will be 
given by the expressions  

 
0

1 2 1 2
0 1 2 2 2 0 2 0

1
( , ) exp 2 ( ) ( )

2
H
p

i
x t i b i x x p x p S t                




, (3.13) 

  1/ 3 1 Re
2 2( , , ) 2 ( ) ( , , )H n

AiW p x t Ai h p x t   . (3.14) 

Naturally, Wigner function (3.12) satisfies the evolution equation for a free particle  

 0
( )

W p W

t M t x

 
 

 
, (3.15) 

and Wigner function (3.14) satisfies the evolution equation for a harmonic oscillator with a driving force  

 2( ) ( ) ( ) 0
( )

W p W W
M t t x F t

t M t x p

          
. (3.16) 

CONCLUSIONS  

In this paper we have applied the evolution operator method to describe the properties of such simple 
nonstationary quadratic quantum systems as a free particle with variable mass, a particle with variable mass in 



 2186 

a variable homogeneous field, and a nonstationary harmonic oscillator with variable driving force. Here, basing 
ourselves on the explicit, chronologically disentangled form of the evolution operators for these systems, we first 
constructed basis invariants, and then, with their help, constructed linear and quadratic invariants for an arbitrary time-
variation law of the external parameters of the Hamiltonians.  

Knowledge of the evolution operators allowed us to easily set up a unitary connection between the considered 
quadratic quantum systems. The given connection enabled us to obtain invariants, wave functions, and other functions, 
both for the particle in a homogeneous field and for a harmonic oscillator with a driving force from the corresponding 
expressions for a free particle with variable mass. By way of an example, using the evolution operator method we found 
the propagator in the р-representation for a nonstationary harmonic oscillator, acted on by a variable force. The 
evolution operator in the given case is equal to  

 (0)
1( , ) ( , ) ( , )H HU p t U p t U p t ,  

where (0) ( , )HU p t  is the evolution operator of a nonstationary oscillator ( ( ) 0)F t   

 
2 2 2 2 ( ) 2

1
( ) ( ) ( )(0) ( )2( , )

b t
p p

b t i t b t pi S t e p
HU p t e e e e

         , 

and the operator 1U  is given by the formula  

 
[ ( ) ( )] ( ) ( )

1( , )
H p

i
t p t M t t

U p t e e
     


 . 

Thus, we obtain  

  2 2
2 1 0 0 1 2 1 2 1 1 1

1

( , ; , ) ( ) exp ( ) ( ) ( )
4 ( )H

i
K p t p t t t i t p t p p t p

t
         

  

 
2[ ( ) ( ) ] 2( ) 2

2 1 12 2 2

exp[ ( )]
exp ( ) ( ) ( )

4 ( ) 4 ( )

i
t t p b ti b t i i

e p p e M t t S t p
t t

              
 

  
. 

This expression contains within itself the propagators of a free quantum particle with variable mass and a quantum 
particle with variable mass in a variable homogeneous field.  
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