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QUASI-TWO-DIMENSIONAL ELECTRON-HOLE LIQUID IN 

AN ELECTRIC FIELD 

A. A. Vasilchenko and G. F. Kopytov  UDC 538.915 

The density functional theory is used to determine the ground state of quasi-two-dimensional electron-hole 
liquid in an external electric field. The Schrödinger equations for electrons and holes are solved numerically. 
The equilibrium density of electron-hole liquid in SiO2/Si/SiO2 quantum wells is found as a function of the 
quantum well width and electric field strength. 
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INTRODUCTION 

Condensation of excitons into electron-hole liquid (EHL) has been actively studied since the late 1960s. The 
properties of three-dimensional EHL in various semiconductors have been rather well studied [1, 2]. The properties of 
EHL in low-dimensional semiconductor structures are less studied. For the first time, the possibility of the formation of 
quasi-two-dimensional EHL in silicon MOS structures was shown in [3, 4]. These studies demonstrate the possibility of 
the formation of quasi-two-dimensional EHL consisting of two layers (the first layer with a surface density of N1 and 
the second layer with a surface density of N2, where Nt = N1 – N2 is the surface charge density). The properties of quasi-
two-dimensional EHL are actively studied both theoretically [5–9] and experimentally [10–15]. 

In this paper, we use the density functional theory to calculate the energy of quasi-two-dimensional EHL in 
an external electric field. The method for solving the problem is similar to the method proposed in [8] for EHL in a zero 
electric field. In this work, calculations were performed for quantum wells (QWs) of various widths and satisfactory 
agreement was obtained between the calculated values of the equilibrium density and the experimental results [10] for 
the (100) silicon surface. 

THEORETICAL MODEL 

Let us consider EHL in SiO2/Si/SiO2 QWs in an external electric field directed perpendicular to the electron-
hole layer. An electric field can be created by a gate located behind the SiO2 layer. We introduce as a parameter the 
two-dimensional density of the gate charge Nt. Then, for an electro-neutral system, we write: Ne = Nt + Nh, where Ne and 
Nh are the two-dimensional densities of electrons and holes. In case of Nt > 0, we obtain a system of electron-hole pairs 
with the density Neh = Nh associated with an electron layer with the density Nt. In the opposite case Nt < 0, we obtain 
a system of electron-hole pairs with the density Neh = Ne associated with a hole layer with the density Nt. 

Further, the exciton system of units is used, in which energy is measured in units of Ryex = e2/2kaex and length 

is measured in units of 2 2
ex /a k e  , where µ is the reduced mass and k is the dielectric constant. For silicon, µ = 
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0.126 and k = 11.4, then, ex 5 nma   and ex 13 meVE  . To calculate the energy of EHL, we use the model proposed 

in [8]. In the framework of the density functional theory, the total energy of quasi-two-dimensional EHL is written as 
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where Te, Th are the kinetic energies of charge carriers, Vc(z) is the Coulomb potential, Exc is the exchange-correlation 
energy, Ue(z), Uh(z) are the external potentials for electrons and holes, and ne and nh are the densities of electrons and 
holes. 

To find the charge carrier densities, it is necessary to solve two Schrödinger equations for electrons and holes: 
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where Veff,e(z) = Vc(z) + Vxc,e(z) + Ue(z), Veff,h(z) = –Vc(z) + Vxc,h(z) + Uh(z), and mz,e, mz,h are the charge carrier masses 
across the QW. 

The exchange-correlation potentials have the following form: 
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For the exchange-correlation energy εxc, we use the formula proposed in [16]: 
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where 1/3(3 / (4 ))sr n  , a = –4.8316, b = –5.0879, c = 0.0152, and d = 3.0426. 

External potentials for electrons and holes are defined by the expression 
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where d is the quantum well width and i = e, h. 
The electrostatic potential is derived from the Poisson’s equation 
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Equations (1)–(6) have the same form as in [8]. Equation (7) is distinguished by the first term, which takes into 
account an external electric field with the strength 8πNt. 
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RESULTS 

The calculations were performed for the SiO2/Si/SiO2 QWs. For calculations, we used the following parameters 
[8]: the number of electron valleys ge = 2 and the masses of the electron state density md,e= 0.19m0, mz,e = 0.918m0, and 
mh = 0.53m0 for (100) Si, ge = 6, mz,e = 0.258m0, md,e = 0.358m0, and mh = 0.53m0 (m0 is the free electron mass) for 
(111) Si, Ue = 246, Uh = 384. 

Nonlinear Schrödinger equations (2) and (3) for electrons and holes were solved numerically. Figures 1 and 2 
show the electron and hole density profiles for the ground state of the EHL for different values of the external electric 
field. For negative values of Nt, the external electric field is screened by holes and the hole density profile shifts toward 
negative values of z. As can be seen from Fig. 1, such a shift is rather weak for QWs with the width d = 1. For example, 
at Nt = –0.5, the density maximum is reached at z = –0.08 for holes and z = 0.03 for electrons. 

 

Fig. 1. Density profiles of electrons (1, 3) and holes (2, 4) for Nt = –0.1 (1, 2) 
and –0.5 (3, 4). d = 1, (111) Si. 

 

Fig. 2. Density profiles of electrons (1, 3) and holes (2, 4) for Nt = –0.1 (1, 2) 
and –0.5 (3, 4). d = 2, (111) Si. 
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For the QW width d = 2 (Fig. 2), the influence of an external electric field is much stronger than for a QW with 
the width d = 1. It can be seen that the overlap of the electron and hole densities decreases with increasing electric field 
strength. This separation of EHL leads to an increase in the Coulomb energy and a decrease in the equilibrium density 
of electron-hole pairs. 

The decrease of the equilibrium density of EHL in an external electric field is clearly demonstrated in Fig. 3. It 
can be seen that the dependence Neh(Nt) has an almost symmetric form despite the difference in the effective masses of 
electrons and holes. This symmetry is explained by the fact that the main contribution to the change of energy in 
an electric field is made by the Coulomb and exchange-correlation energies. At d = 2 and Nt = –0.4 (or Nt = 0.4), the 
equilibrium density of the electron-hole pairs is Neh ≈0.1. This density corresponds to the parameter rs =  
1/(π Neh)

1/2 ≈ 1.8 and at such densities, an electron-hole plasma is formed. When d = 1, in the considered range of Nt 
(Fig. 3), the parameter rs is always less than 1 and the ground state is EHL. Thus, in a wide QW, the EHL is destroyed 
at a smaller value of the electric field strength compared with a narrow QW. 

 Similar calculations were also performed for (100) Si. For this silicon surface, the equilibrium density of EHL 
in a zero electric field is much less than for (111) Si. Figure 4 shows the dependences of the equilibrium density of 
electron-hole pairs on the gate charge density for (100) Si. The form of the dependence Neh(Nt) is the same as for (111) 
Si. It can be seen that in case of d = 2, the equilibrium density decreases more with increasing electric field strength 
compared with the case of d = 1. At d = 2, the transition to an electron-hole plasma for (100) Si occurs in smaller 
electric fields than for (111) Si. It should be noted that the theoretical model uses the condition of local neutrality of 
EHL [8]. The EHL separation in an electric field will reduce the exchange-correlation energy and the transition to 
an electron-hole plasma should occur in even smaller electric fields. 

CONCLUSIONS 

In the present work, the density functional theory is used to calculate the energy of quasi-two-dimensional EHL 
and to find the equilibrium density of electron-hole pairs in the presence of an external electric field. The nonlinear 
Schrödinger equations for electrons and holes were solved numerically. The calculations were performed for EHL in 
SiO2/Si/SiO2 QWs for (100) and (111) silicon surfaces. The densities of electrons and holes are calculated as a function 
of the electric field strength and QW width. It has been shown that strong separation of electrons and holes occurs in 
wide QWs. The dependences of the equilibrium density of electron-hole pairs on the electric field strength and QW 
width for (111) Si and (100) Si are found. The calculated equilibrium density of electron-hole pairs decreases with 

 

Fig. 3. Dependences of the equilibrium density of electron-hole pairs on the 
gate charge density for (111) Si. 
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increasing electric field strength. A particularly strong decrease of density occurs in wide QWs, in which an electric 
field can destroy the EHL. For (100) Si, the transition to an electron-hole plasma in wide QWs occurs in smaller electric 
fields than for (111) Si. 

This work was supported by the Russian Foundation for Basic Research and the Administration of the 
Krasnodar Region (project No. 16-42-230280). 
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Fig. 4. Dependences of the equilibrium density of electron-hole pairs on the 
gate charge density for (100) Si. 
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