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QUASI-TWO-DIMENSIONAL ELECTRON–HOLE LIQUID IN 

Si/SiO2 QUANTUM WELLS  

A. A. Vasilchenko1,2 and G. F. Kopytov2  UDC 538.915 

To calculate the energy and equilibrium density of electron-hole pairs in SiO2/Si/SiO2 quantum wells (QWs), 
nonlinear Schrödinger equations for electrons and holes were numerically solved. Calculations were carried 
out for (100) and (111) silicon surfaces and various values of the QW width. It is shown that the binding energy 
of electron-hole pairs in a quasi-two-dimensional electron-hole liquid (EHL) is much higher than the binding 
energy in a three-dimensional EHL. The results of calculations are compared with the experimental results for 
a wide range of QW widths. 
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INTRODUCTION 

Low-dimensional systems, in particular, two-dimensional layers in semiconductors, exhibit new properties in 
comparison with three-dimensional samples of the same compounds, which is explained by spatial limitations that 
enhance the effects of inter-particle interactions. One of such systems is a quasi-two-dimensional EHL, intensive studies 
of which have been conducted in recent years. Recently, EHL has been found in SiO2/Si/SiO2 QWs [1, 2], in Si/SiGe/Si 
heterostructures [3, 4], and in GaAs/AlAs superlattices [5]. The recombination radiation of nonequilibrium electron-
hole pairs in SiO2/Si/SiO2 quantum wells was experimentally studied in [1, 2]. In these papers, the possibility of 
formation of a quasi-two-dimensional EHL has been demonstrated and its properties have been studied in detail as 
a function of the quantum well width. 

The studies in this area are mainly aimed at creating new light-emitting devices. Of an obvious interest is also 
the verification of theoretical methods for systems with strong inter-particle interaction. One of these methods is the 
density functional theory. This theory has proved itself well in studying properties of a three-dimensional EHL (see the 
review [6]). 

In this paper, the density functional theory is used to calculate the EHL energy and find the equilibrium density 
of electron-hole pairs in the SiO2/Si/ SiO2 quantum wells. 

STATEMENT OF THE PROBLEM 

In the framework of the density functional theory, the total energy of a quasi-two-dimensional EHL can be 
written in the form 
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where Te and Th are the kinetic energies of charge carriers, Vc(z) is the Coulomb potential, Exc is the exchange-
correlation energy, Ue(z) and Uh(z) are the external potentials for electrons and holes, and ne and nh are the densities of 
electrons and holes. 

Below, the exciton system of units is used: energy is measured in the units Ryex = e2/2kaex and length is 

measured in the units 2 2/exa k e  , where  is the reduced mass and k is the dielectric permittivity. For silicon, 

0.126   and k = 11.4 and then, 5exa   nm and 13exE   meV. 

Varying expression (1) with respect to the densities ne and nh, we obtain two Schrödinger equations for 
electrons and holes: 
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where Veff,e(z) = Vc(z) + Vxc,e(z) + Ue(z), Veff,h(z) = – Vc(z) + Vxc,h(z) + Uh(z), mz,e and mz,h are the masses of charge carriers 
across the QW. 

The electrostatic potential is found from the Poisson equation 
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and the external potentials for electrons and holes are given by the expression  
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where d is the QW width and i = e, h. 
In what follows, we consider an EHL with the two-dimensional charge carrier concentrations Ne = Nh = N. The 

energy per one electron-hole pair is counted off from the lower energy levels of an electron E0,e and a hole E0,h in an 
empty well: Eeh = – E0,e – E0,h + Et /N. 

In case, when only the lower levels of the electron and hole energies are populated, the kinetic energy of charge 
carriers has the form 
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where gi is the number of the equivalent valleys in the conduction band, md,e and md,h are the masses of state density of 
electrons and holes, respectively. 

For the exchange-correlation energy, we use the local density approximation 

 [ , ] ( , )xc e h xc e hE n n dze n n  ,   (8) 

where e(ne, nh) is the exchange-correlation energy of electrons and holes per unit volume. Then, the exchange-
correlation potentials can be written as 
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In general case, the form of the expression for exc is unknown. In case of a neutral electron-hole plasma, ne(z) = 
nh(z) = n(z) and for the exchange-correlation energy /xc xce n  , we use the formula proposed in [6]: 
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where 1/ 3(3/(4 ))sr n  , a = –4.8316, b = –5.0879, c = 0.0152, and d = 3.0426. 

CALCULATION RESULTS AND DISCUSSION 

Nonlinear Schrödinger equations (2) and (3) for electrons and holes were solved numerically. Calculations for 
two silicon surfaces were carried out. For the calculations, we used the following parameters [1, 2]: ge = 2, mz,e = 
0.918m0, md,e = 0.19m0, mz,h = 0.53m0, and md,h = 0.53m0 for a (100) surface and ge = 6, mz,e = 0.258m0, md,e = 0.358m0, 
mz,h = 0.53m0, and md,h = 0.53 for a (111) surface (m0 is the free electron mass). In the SiO2/Si/SiO2 structure, the QW 
depths are 3.2 and 5 eV for electrons and holes, respectively [2]. 

Figure 1 shows the results of calculations for the silicon (100) surface at the equilibrium density of electron-
hole pairs of N = 0.43 and the QW widths of d = 1. The QW depths for charge carriers are much larger than the values 

 

Fig. 1. Profiles of the effective potentials and wave functions in quantum 
wells with the width d = 1 and N = 0.43. 
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of the lower energy levels, so the wave functions of electrons and holes coincide and they are indistinguishable in 
Fig. 1. We note that the QW depths decrease by an amount of the order of Ryex due to the exchange-correlation 
interaction. In general, an EHL has local electroneutrality and therefore, the image potential caused by a strong 
difference in the dielectric permittivities of silicon and silicon oxide can be neglected. In an external electric field, the 
neutrality of the EHL is violated, and the image forces will strongly influence the EHL properties [2]. 

Figure 2 shows the dependence of the electron-hole pair energy Eeh on the two-dimensional density of pairs N 
for the silicon (100) surface for various values of the QW widths d. It is seen that as d increases, the equilibrium density 
and energy decrease. The formation of an EHL is possible, if it is stable with respect to the decay into free excitons, i.e., 
if the electron-hole pair energy equal to –Eeh is greater, than the exciton binding energy. For d > aex, the binding energy 
of an exciton in a QW is close to the binding energy of a three-dimensional exciton. It follows from the results 
presented in Fig. 2 that the binding energy of the EHL with respect to the decay into excitons is of the order of Ryex or it 
is larger, then this value, which greatly exceeds the binding energy of a three-dimensional EHL. With increasing QW 
width, the binding energy decreases. We note that the three-dimensional charge carrier densities /n N d  are close to 
the value of the equilibrium density in a three-dimensional liquid. 

Figure 3 shows the calculated (the solid line) and experimental [2] (the triangles) dependences of the 

equilibrium density (in the units 1/ 2
,2 1/( )s Dr N  ) on the QW width. The calculations and experiments were 

performed for the silicon (100) surface. It can be seen that the theory gives a fairly satisfactory agreement with the 
experimental results. 

It is well known that the presence of the conduction band degeneracy leads to an increase in the equilibrium 
density and binding energy of a three-dimensional EHL. A similar phenomenon is observed in a quasi-two-dimensional 
EHL. The results of calculations for the silicon (111) surface (Fig. 4) showed that the binding energy increases by about 
1.4 times and the equilibrium density increases by more than 2 times in comparison with the density for the silicon 
(100) surface. The increase in the binding energy and equilibrium density is mainly due to the decrease in the 
longitudinal kinetic energy of electrons (the first term in Eq. (6)). For the silicon (111) surface, the equilibrium density 
of electron-hole pairs Neq = 41012 cm-2 for d = 1 and the equilibrium density decreases with increasing QW width. We 
also note that the three-dimensional densities of charge carriers are much larger than the densities in the three-
dimensional EHL. 

An analytical expression for the energy of a quasi-two-dimensional EHL was obtained in [7]. Comparison of 
the results obtained in the present paper with the analytical results [7] at d = 1 for the silicon (100) and (111) surfaces 
showed that the difference in the equilibrium density is insignificant (several percent), whereas the energy differs by 

 

Fig. 2. Dependence of the energy of an electron-hole pair on the two-
dimensional density of electron-hole pairs. 
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about 1.5 times. The difference in energy is mainly due to the fact that in this paper, the energy was counted off from 
the energy levels of electrons and holes in an empty well. 

CONCLUSIONS 

In this paper, the density functional theory is used to calculate the EHL energy and find the equilibrium density 
of electron-hole pairs in the SiO2/Si/SiO2 quantum well. Nonlinear Schrödinger equations for electrons and holes were 
solved numerically. Calculations were carried out for the silicon (100) and (111) surfaces. The largest binding energy 
and equilibrium density of electron-hole pairs were obtained for the silicon (111) surface. It is shown that the binding 

 

Fig. 3. Dependence of the parameter rs,2D on the QW width. Solid line – the 
numerical calculation, triangles – the experiment [2]. 

 

Fig. 4. Dependence of the electron-hole pair energy on the two-dimensional 
density of electron-hole pairs. 
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energy of the EHL with respect to the decay into excitons can be greater than Ryex, which is much higher than the 
binding energy in a three-dimensional EHL. Calculations have been carried out for quantum wells of various widths and 
it is found that with increasing QW width, the binding energy and equilibrium density decrease. A satisfactory 
agreement between the calculated values of the equilibrium density and the experimental results [2] for the silicon (100) 
surface was obtained. Also good agreement was found between the results of numerical calculations and the results of 
analytical calculations given in [7]. 

This work was supported by the Russian Foundation for Basic Research and the Administration of Krasnodar 
Region (project No. 16-42-230280). 
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