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EXTENSION OF THE CHERN–SIMONS THEORY: 

CONSERVATION LAWS, LAGRANGE STRUCTURES, AND 

STABILITY 

D. S. Kaparulin, I. Yu. Karataeva, and S. L. Lyakhovich  UDC 530.2; 530.13  

We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of 
the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for 
constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family 
includes the canonical energy that is unbounded from below, whereas others conservation laws from the family 
can be bounded from below for certain combinations of the Lagrangian parameters, even though higher 
derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related 
with invariance of the theory with respect to the time translations and ensures the stability of the model. 

Keywords: higher-order derivative theories, stability, Lagrange anchor.  

INTRODUCTION 

We consider the class of models of the vector field =A A dx  on the 3d  Minkowski space with the action 

functional  
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where   is the constant whose dimension is inverse to that of the mass, 0 1 2, , , , na a a a  are some real numerical 

parameters, and   denotes the Hodge dual. The signature ( , , )    of the metric is used. Due to the special structure of 

the action that includes powers of the Chern–Simons (CS) operator =w d , model (1) is an extension of the CS 

theory. We define the order of extension as the maximal order of the derivative in the action. Hereinafter, we consider 
only finite-order extensions. 

The Euler–Lagrange equations have the form  
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with the wave operator M  given by the expression  
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The real numbers i  and the complex conjugate numbers and jj   are roots of the polynomial ( )M w  with 

multiplicities ip  and jq , respectively. Depending on values of the coefficients ka , the extension of the CS theory 

describes the well-known models of field theory. The extension of order 1 includes the original CS theory and its 
massive analog, the CS–Proca model [1, 2]. The extension of order 2 describes the Maxwell–CS–Proca theory and its 
modifications [3, 4]. The extension of order 3  has been studied in [5]. The generalized Podolsky electrodynamics [6] in 
three dimensions is an example of extension of order 4. Due to simplicity and generality, the extension of the CS theory 
can be considered as a useful test model for studying various aspects of field theory with higher derivatives. 

In the present work, we study the stability of extension of the CS model from the viewpoint of existence of 
conserved quantities bounded from below. In particular, using the Lagrange anchor concept [7], we study the 
relationship between the conserved values bounded from below and the invariance of the theory with respect to the 
translations of time. The existence of a bounded conservation law related to the invariance of the theory with respect to 
the translations of time is a less restrictive condition than the requirement for the canonical energy to be bounded from 
below, but this condition still ensures the presence of the Hamiltonian formulation with the Hamiltonian bounded from 
below. For the theories with higher derivatives, the use of the alternative Hamiltonian formulations provides methods of 
stability control at the classical and quantum levels [8–12]. Therefore, the construction of bounded conservation laws 
and the study of their relationship with time translations is of interest. 

The stability of the extension of the CS theory has been studied in [13], where the method for construction of 
the second-rank conserved tensors has been proposed and, in the extension of the third order, the bounded conservation 
laws have been classified. The present work further develops these results in two ways. First, we propose a covariant 
procedure for construction of bounded conservation laws in extensions of any order. Second, we prove that any positive 
(non-negative and equal to zero only on purely gauge solutions of the equation of motion) conserved quantity can be 
related to the invariance of the theory with respect to the translations of time. In total, our results demonstrate the 
stability of the extension of the CS theory even though the canonical energy of this model is unbounded from below. 

The work is organized as follows. In Section 1 we associate with each Killing vector of the Minkowski space 
the n-parameter family of symmetry transformations that keep the action of the theory invariant. In Section 2 we find 
the family of conserved currents and identify those corresponding to bounded conserved quantities. In Section 3 we 
study a relationship between the bounded conserved quantities and the invariance of the theory with respect to the 
translation of time. In conclusion, we briefly summarize the results. 

1. HIGHER SYMMETRIES 

The extension of the CS theory of order n  admits the following n-parameter family of symmetry 
transformations associated with the Killing vector of the Minkowski space X :  

 
1

=0
= æ

n
l l

X X
l

A w A


   , (4) 

where =X X Xi d di  is the Lie derivative along X , and the real numbers æl , = 0, , 1l n   are the parameters of 

the transformation. The symmetries that include the higher orders of the CS operator are equivalent to the lower-order 
transformations and can be excluded from consideration. The variation of action (1) under transformation (4) has the 
form  



 1932 

 
1 =

1

=0 =1
= æ ( ( ) )

n s l
l l s l s

X X X
l s

S d i w A MA w A w MA


       . 

The symmetries in the form defiend by Eq. (4) is inconvenient for us, because it is difficult to keep track positivity of 
the corresponding Noether conserved quantities. To construct bounded conserved quantities, we chose another 
parameterization of the family of symmetries  
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Here the parameters are real numbers æ and  æ
qp
ji , and the notations  
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have been used. The relationship between the parameters æ ,æ
qp
ji , and æl  is defined from the requirement of equality 

of the numerical coefficients at the corresponding powers of the operator w  in the relation  
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The one-to-one correspondence between the numbers æ ,æ
qp
ji , and æl  is a mere consequence of the Bezout lemma for 

the univariate polynomials ( )i w  and ( )j w . 

2. CONSERVED CURRENTS 

According to the Noether theorem, the extension of the CS theory of order n  admits the following n-parameter 
family of the conserved currents:  
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Two different parameterizations of this family correspond to two different parameterizations of family of symmetries 
(4) and (5). The conservation laws under consideration have the following form:  
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where we have used the notation , 1 1
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As far as the stability is concerned, we are interested in the conserved quantities that are both related to the time 
translations and bounded from below. Such conserved quantities are generated by the family of conserved currents 0j  

that are associated with the timelike Killing vector = /X t  . The quantity bounded from below is controlled by the 0  

component 00 0 0( )j j  of the conserved current 0j . The canonical energy is always reproduced by the family 0j , but 

is not bounded from below whenever > 2n . 
Consider the problem of existence of the conserved quantities bounded from below that are defined by the 

family of conserved currents 0j . Since the sign of the conserved quantity coincides with that of 00j , it is necessary to 

identify the values of the parameters æl  (or, equivalently, æ and  æ
qp
ji ) such that 00 0j  . There are two obvious 

cases when the extension of the CS theory admits conservation laws bounded from below: 
i) The roots of the polynomial ( )M w  are real and simple:  
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ii) The polynomial ( )M w  has the zero root 1 = 0  with the multiplicity 1 = 2p ; all other roots are real and 

simple:  
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  (11) 

In formulas (10) and (11) the weak equality is understood modulo natural equivalence in the definition of the conserved 

current, and the summation over the repeated at the same level index = 0,1,2  is assumed. If 0æ 0i  , the constructed 

conserved values are positive (that is, nonnegative and equal to zero only for pure gauge solutions to equations of 
motion (2)) for all possible values of the subscript i . 

Let us prove that the extension of the CS theory admits no other positive conserved currents. Due to a smooth 

dependence of the conserved current on the parameters æl  and roots and  i i   of the polynomial ( )M w , the 

condition of existence of bounded conservation law defines an open subset in the space of parameters æ , , and  l
i i  . 

Thus, any point of this subset is contained in it with its neighborhood. The last requirement, however, is impossible in 
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all cases except i) and ii). The presence of complex roots is excluded from the condition that each multiple complex root 
by a small change can be replaced by the appropriate number of simple complex roots, and the conserved currents 
associated with simple complex roots are unbounded from below (this was shown in [13]). The presence of multiple 
real roots is excluded due to the fact that one real root of multiplicity 2 can be replaced by a pair of complex conjugate 
roots. Finally, the case of zero root is special due to the presence of the gauge symmetry. Without breaking of the gauge 
symmetry, we can replace the zero root of multiplicity 3 by a pair of complex conjugate roots and a simple zero root. 
Thus, the multiplicity of zero root cannot exceed 2. 

Using the similar considerations, we can show that for any bounded (but not necessarily positive) conserved 
current  

  0 10æ = æ = æ = 0j ji  (12) 

whenever > 1 and  > 0i jp q ; > 2ip  if = 0i . To prove that, one should consider the positivity of conserved 

current (8) on the particular solution such that only nonzero component ( )i j   among and   obeys the equation  

  2 2( ) = 0 ( 2Re | | ) = 0i i j j jw w w       . 

Families (10) and (11) generalize the families of the second-rank conserved tensors that have been found in the 
third-order extensions in [13]. Our result demonstrates that depending on the structure of the roots of polynomial (3), 
the positive conserved currents may exist in extensions of any order, even though the canonical energy for these models 
is unbounded. The existence of the positive conservation law is a sufficient condition for the stability only at the 
classical level. The quantum stability requires that the spectrum of the Hamiltonian has to be bounded from below. It is 
natural to expect that the classical Hamiltonian is also bounded from below. To identify the positive conservation law 
with the Hamiltonian of the theory, one should find the Lagrange anchor that relates the positive conservation law with 
the invariance of the theory with respect to the translations of time. 

3. THE LAGRANGE ANCHORS 

In case of linear variational theories, the Lagrange anchor is given by the formally self-adjoint operator acting 
on the space of fields (see [10], Appendix С). The extension of the CS theory of order n  admits n-parameter family of 
the Lagrange anchors  

 
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where two sets of numbers, kV  and and
qp
jiV V , correspond to two different parameterizations of this family. The 

terms that include the higher orders of the CS operator are equivalent to the lower-order Lagrange anchors and can be 
excluded from our consideration.  

The Lagrange anchor defines the map from the space of conservation laws to the space of symmetries (for more 
details, see [14]). For conserved current (8), the corresponding symmetry reads  

 =V
X XA VQ A  , 

with =X X XQ A Q A    being the characteristic of the conserved current Xj . Here we have used the notation  
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In particular, for the family 0j , which is associated with the Killing vector = /X t  , the symmetry transformation 

reads  

 
0 = { }.V A VQA

t
 

  

To relate the conserved current 0j  with the time translation, it is sufficient to impose the requirement that  

 1VQ  , (13) 

where the weak equality denotes the equality modulo wave operator (3). Whenever the univariate polynomials ( )Q w  

and ( )M w  are relatively prime, the existence of the Lagrange anchor V  satisfying Eq. (13) is a consequence of the 

Bezout lemma. Conversely, if the polynomials ( )Q w  and ( )M w  have nonzero common divisor, the solution to 

Eq. (13) does not exist. When applied to the CS extension, this result suggests that the conservation law of 0j  from 

family (8) can be related with the time translation symmetry if and only if  

 00æ 0, æ 0, = 1, , , = 1, ,ji i r j s    . (14) 

Conversely, if at least one coefficient among 00æ and  æ ji  equals to zero, the conserved current cannot be related with 

the time translations. Requirement (14) is not compatible with condition (12) whenever the wave operator has the 
complex roots and multiple real roots with exception of the multiplicity 2 zero root. Therefore, any bounded 
conservation law that is related with the time translation has to be positive. 

The following values of the parameters p
iV  and 

q
jV  define the Lagrange anchors that relate positive 

conservation laws (10) and (11) with the invariance of theory with respect to the time translations: 
i) The roots of polynomial ( )M w  are real and simple  
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ii) The polynomial ( )M w  has the zero root 1 = 0  with the multiplicity 1 = 2p , given that all other roots are 

real and simple  
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Relation (13) is verified explicitly considering that 0i j    for all i j . For this reason, any positive conservation 

law can be related with the time translation, and the extensions of the CS theory that are compatible with the existence 
of the positive conservation law should be considered as stable. 
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CONCLUSIONS 

In the present work, we have demonstrated that the extension of the CS theory of order n  admits n-parameter 
family of conservation laws. The procedure of construction of these conservation laws is explicitly covariant and admits 
generalization for the case of curved space-time. Depending on the structure of roots in polynomial (3), the positive 
tensors exist among the conserved quantities, while in the other cases, none of the conserved quantities is positive. The 
positive conservation laws are encountered in the extensions of any order, even though the canonical energy is 
unbounded in all the extensions with higher derivatives. By means of the Lagrange anchor concept, we proved the 
relationship between the positive conservation laws and interpret this result as the stability of the theory. As shown in 
[15], any Lagrange anchor, which is admissible by the equations of motion, ensures existence of the Hamiltonian form 
of the equations of motion. The Hamiltonian is then the conserved value that is related to the invariance of the theory 
with respect to the time translations by the Lagrange anchor. The nonequivalent Lagrange anchors define the 
canonically nonequivalent Poisson brackets. If the equations of motion admit several nonequivalent Lagrange anchors, 
the theory is multi-Hamiltonian, and this takes place in the considered model. We should also mention that the existence 
of different Lagrange anchors implies the existence of different Peierls brackets [16], even though the model has one 
action. The other important statement is that the Lagrange anchor allows to systematically include the interactions that 
are compatible with the stability condition [17]. This observation makes it possible to construct the stable interactions in 
the extension of the CS theory with higher derivatives. 
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